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Abstract

Recognizing when eating activities take place is one of the key challenges in automated food 

intake monitoring. Despite progress over the years, most proposed approaches have been largely 

impractical for everyday usage, requiring multiple on-body sensors or specialized devices such as 

neck collars for swallow detection. In this paper, we describe the implementation and evaluation of 

an approach for inferring eating moments based on 3-axis accelerometry collected with a popular 

off-the-shelf smartwatch. Trained with data collected in a semi-controlled laboratory setting with 

20 subjects, our system recognized eating moments in two free-living condition studies (7 

participants, 1 day; 1 participant, 31 days), with F-scores of 76.1% (66.7% Precision, 88.8% 

Recall), and 71.3% (65.2% Precision, 78.6% Recall). This work represents a contribution towards 

the implementation of a practical, automated system for everyday food intake monitoring, with 

applicability in areas ranging from health research and food journaling.
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INTRODUCTION

Dietary habits have been studied by health researchers for many decades, and it is now well-

understood that diet plays a critical role in overall human health [19]. To elucidate the 

mapping between diet and disease, nutritional epidemiologists have typically relied on 

validated dietary assessment instruments driven by self-reported data including food 

frequency questionnaires and meal recalls [33]. Unfortunately, these instruments suffer from 

several limitations, ranging from biases to memory recollection issues [15, 22]. For this 

reason, over the last 15 years, a large body of research has aimed at fully automating the task 

of food intake monitoring [11, 12, 21, 34]. Although significant progress has been achieved, 

most proposed systems have required individuals to wear specialized devices such as neck 

collars for swallow detection [2], or microphones inside the ear canal to detect chewing [20]. 
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These form-factor requirements have severely limited the immediate practicality of 

automated food intake monitoring in health research.

There are two key technical challenges in building a fully automated food intake monitoring 

system: (1) recognizing when an individual is performing an eating activity, and then (2) 

inferring what and how much the individual eats. In this paper we focus on recognizing 

when an eating moment is taking place, which includes having a sit-down meal with 

utensils, eating a sandwich, or having a snack.

Our aim with this work is to explore a practical solution for eating moment detection; we 

describe an approach leveraging the inertial sensor (3-axis accelerometer) contained in a 

popular off-the-shelf smartwatch. This approach contrasts with methods that require either 

multiple sensors or specialized forms of sensing.

Our eating moment recognition method consists of two steps. First, we perform food intake 

gesture spotting on the stream of inertial sensor data coming from the smartwatch, reflecting 

arm and hand movements. Secondly, we cluster these gestures across the time dimension to 

unearth eating moments. To evaluate our approach, we first ran a formative study with 20 

participants to validate our experimental design protocol and instrumentation. Informed by 

this pilot, we conducted user studies that resulted in three datasets, (1) a laboratory semi-

controlled study with 20 participants, (2) an in-the-wild study with 7 participants, and (3) 

422 hours of in-the-wild data for one participant collected over the course of 31 days.

The contributions of this work are:

• A practical system for eating moment estimation leveraging the inertial sensor 

(3-axis accelerometer) of a popular off-the-shelf smartwatch.

• An evaluation of a lab-trained eating moment classification model in-the-wild 

with two datasets: 7 participants over one day (76.1% F-score, 66.7% Precision, 

88.8% Recall), and one participant over 31 days (71.3% F-score, 65.2% 

Precision, 78.6% Recall). The model was tested on its ability to recognize eating 

moments every 60 minutes.

• An anonymized and annotated dataset of 3-axis accelerometer sensor data 

collected from a smartwatch. It comprises data gathered in the laboratory and in-

the-wild studies.

MOTIVATION

Today, dietary intake self-reporting is the gold standard when it comes to methods for 

studying the mapping between diet and disease, energy balance, and calorie intake. 

Although self-reports have been validated and used for decades, health researchers have long 

known that self-reported data is fraught with weaknesses, such as biases and memory 

recollection issues [15, 22]. Recently, there has been a stronger sentiment in the health 

research community that more resources need to be allocated towards the development of 

more objective and precise measures [9, 23]. Some have even questioned the validity of the 
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National Health and Nutrition Examination Survey (NHANES) data throughout its 39-year 

history [4].

The need for improved dietary assessment is also shared by individuals interested in meeting 

health goals. Recently, health concerns linked to dietary behaviors such as obesity and 

diabetes have fueled demand for dietary self-monitoring, since it is one of the most effective 

methods for weight control [6]. However, adherence to dietary self-monitoring is poor and 

generally wanes over time [5], even with modern smartphone-based systems such as 

MealSnap1 and MyFitnessPal2 [8].

Semi-automated food journaling is a promising new approach where the food tracking task 

is split between individuals and an automated system. This method offers a reduction in the 

manual effort involved in food logging while keeping individuals aware of foods consumed. 

A critical requirement in semi-automated dietary monitoring is the identification of when an 
eating moment is taking place, which is exactly the focus of our work.

There are many scenarios that illustrate how a semi-automated food journaling system could 

be used. For instance, if individuals are wearing a camera such as the one in Google Glass, 

the recognition of an eating moment could automatically trigger a reminder to capture a 

relevant food photo. If an electronic food diary is being used, a new entry could be 

automatically created at the time and location of the recognized eating moment. Finally, 

individuals could be sent an SMS message at an opportune time later in the day prompting 

for details about an inferred eating moment.

A practical and reliable automated food intake monitoring system would represent a 

breakthrough for health researchers and individuals looking to improve dietary habits. This 

work addresses technical challenges towards realizing this goal.

RELATED WORK

Research in the area of activity recognition around eating activities dates back to the 1980s 

when researchers tried to detect chews and swallows using oral sensors in order to measure 

the palatability and satiating value of foods [29]. Ongoing research work in this area ranges 

from the use of crowd-sourcing techniques [24], instrumented objects [17], wearable 

cameras, acoustic sensing, and inertial sensing.

The key advantage of lightweight wearable sensors for food monitoring is that individuals 

are free to move amongst different locations and eat anywhere since they are carrying the 

system with them at all times. In other words, they are not restricted to the infrastructure in 

the built environment. On the other hand, to have practical value, wearable sensors must 

meet a number of requirements ranging from battery life, comfort, and social acceptability.

1http://www.mealsnap.com
2http://www.myfitnesspal.com
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Acoustic Sensing

Sazonov et al. proposed a system for monitoring swallowing and chewing through the 

combination of a piezoelectric strain gauge positioned below the ear and a small microphone 

located over the laryngopharynx [28]. More recently, Yatani and Truong presented 

BodyScope, a wearable acoustic sensor attached to the user’s neck [34]. Their goal was to 

explore how accurately a large number of activities could be recognized with a single 

acoustic sensor. The system was able to recognize twelve activities at 79.5% F-measure 

accuracy in a lab study and four activities (eating, drinking, speaking, and laughing) in an in-

the-wild study at 71.5% F-measure accuracy. Cheng et al. also explored the use of a 

neckband for nutrition monitoring [7].

Recently, Liu et al. developed a food logging application based on the capture of audio and 

first-person point-of-view images [20]. The system processes all incoming sounds in real 

time through a head-mounted microphone and a classifier identifies when chewing is taking 

place, prompting a wearable camera to capture a video of the eating activity. The authors 

validated the technical feasibility of their method with a small user study.

Wearable Cameras

The method of observing individuals from first-person point-of-view cameras for overall 

lifestyle evaluation has been gaining appeal [10]. In this approach, individuals wear cameras 

that take first-person point-of-view photographs at regular intervals throughout the day (e.g., 

every 30 seconds), documenting one’s everyday activities including dietary intake [25, 30].

Although first-person point-of-view images offer a viable alternative to direct observation, 

two fundamental problems remain, image analysis and privacy. With regards to image 

analysis, all captured images must be manually coded for salient content (e.g., evidence of 

eating activity), and even with supporting tools such as ImageScape [27] and Image-Diet 

Day [3], the process tends to be tedious and time-consuming. To address this limitation, 

Thomaz et al. explored crowdsourcing the task of identifying eating activities from first-

person photos [31], and Platemate was built to extract nutritional information from food 

photographs, also through human computation [24].

Inertial Sensing

The widespread availability of small wearable accelerometers and gyroscopes has opened up 

a new avenue for detecting eating activities through on-body inertial sensing. Amft et al. 

have shown eating gesture spotting with a measurement system comprised of five inertial 

sensors placed on the body (wrists, upper arms and on the upper torso) [2, 16]. Recognition 

of four gesture types resulted in recall of 79% and precision of 73% in a study with four 

participants. A key difference between our work and Amft et al.’s is that our system is more 

practical; it requires only a smartwatch, as opposed to a body sensor array.

Zhang et al. investigated an approach for eating and drinking gesture recognition using a 

kinematic model of human forearm movements [35]. With accelerometers located on the 

wrists, features were extracted using an extended Kalman filter, and classification was done 

with a Hierarchical Temporal Memory network. Results showed a ‘successful rate’ around 
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87% for repetitive eating activities. The authors were not explicit about which performance 

measures they used in their evaluation (i.e., what they meant by ‘successful rate’), how many 

participants took part in the study, and whether the results reflected person-dependent or 

person-independent findings. Additionally, the study focused exclusively on eating and 

drinking activities so the system’s ability to differentiate between eating and drinking versus 

other activities is unclear.

Also with wrist-based inertial sensors, Kim et al. proposed an approach for recognizing 

“Asian-style” eating activities and food types by estimating 29 discrete sub-actions such as 

“Taking chopsticks”, “Stirring”, and “Putting in mouth” [18]. In a feasibility study with 4 

subjects, the authors obtained an average F-measure of 21% for discriminating all sub-

actions. The system performed better when considering only certain classes of sub-actions, 

but hand actions could not be identified at all. These measurements led the authors to state 

that the 29 pre-defined sub-actions may not be suitable for the recognition of meals. Our 

approach is different in two key ways: it is primarily focused on eating moment detection, 

and it does not require the estimation of any specific sub-actions to infer food intake 

gestures. Additionally, our system was evaluated in realistic conditions with 8 participants.

Recently Dong at al. put forth a method for detecting eating moments in real-world settings 

[12, 11]. Our work differs from Dong et al.’s in important ways. Firstly, our method revolves 

around modeling intake gestures and estimating eating moments from intake gesture 

temporal densities. In contrast, their strategy is based on a wrist-motion energy heuristic that 

might be susceptible to multitasking while eating. Secondly, our system collects inertial 

sensing data from a smartwatch, whereas Dong et al.’s system was evaluated with 

participants wearing a smartphone on the wrist; it is unclear how much the placement and 

weight of the phone influenced intake gesture movements. Lastly, from the reported metrics, 

we believe our system outperforms Dong et al.’s, particularly with regards to false positives 

in real-world settings. Having said this, it is difficult to compare results due to differences in 

evaluation techniques. For example, Dong et al. report accuracies while weighting true 

positives to true negatives at a ratio of 20:1. We report our results using non-weighted, and 

thus traditional precision and recall measurements.

Finally, Amft et al. proposed a system for spotting drinking gestures with one wrist-worn 

acceleration sensor. Based on a study with six users that resulted in 560 drinking instances, 

the system performed remarkably well, with average of 84% recall and 94% precision [1]. In 

this work, the authors also attempted to recognize container type and fluid level, and 

achieved recognition rates over 70% in both cases. Compared to our work, and beyond the 

clear eating versus drinking recognition distinction, Amft et al. used a more specialized wrist 

sensor, which was tethered to a laptop. The sensor provided acceleration and gyroscope data. 

Another important difference is that Amft et al. collected high-quality training data for each 

participant, and tested the model in a semi-controlled study. In our work we collected 

training data in a semi-controlled lab setting and evaluated it in completely naturalistic 

conditions and over multiple weeks for one participant.
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EVALUATION

Our approach for estimating eating moments was evaluated in two contexts, in the lab and 

in-the-wild. The questions we explored in our analysis were:

• How well does the model recognize food intake gestures and eating moments 

with data collected in a controlled setting?

• How does a model trained with lab data perform at recognizing eating moments 

in unseen in-the-wild data?

• What is the temporal stability of eating moment recognition in-the-wild using a 

model trained with laboratory data?

We conducted three user studies, a laboratory semi-controlled study with 20 participants 

(Lab-20), an in-the-wild study with 7 participants over the course of one day (Wild-7), and a 

naturalistic study with one participant where we collected 422 hours of in-the-wild data over 

a month (Wild-Long). More details about these details are available in Table 1.

Pilot Study

To evaluate our approach to eating moment detection with wrist-mounted inertial sensors, 

we first ran a formative study with 20 participants to validate our experimental design 

protocol and instrumentation for the semi-controlled laboratory study. Participants were 

asked to eat a variety of foods including fruits (e.g., apple), pizza, and snacks of varying 

sizes and shapes, such as cookies and M&M’s. To test the feasibility of food intake gesture 

spotting from a wrist-mounted inertial sensor, we collected data from a smartphone attached 

to participants’ arm, the same setup employed by Dong et al. [12]. A custom application 

logged all the sensor data on the phone, and all individuals were continuously video-

recorded as they ate the food provided.

The pilot study helped us address a number of issues in our experimental procedures, such 

as the foods offered to participants, the types of non-eating activities we asked participants 

to perform, the amount of time in-between activities, and our data annotation process. In 

particular, after observing participants wearing a smartphone attached to their wrists, it 

became clear that the device’s weight and size could affect participants’ arm and hand 

movements, and thus influence our study results. As a result, we transitioned to a 

smartwatch platform for data collection.

Laboratory Study

We conducted a user study in our laboratory and examined how our method performed when 

discriminating between eating and non-eating moments. We recruited 21 participants (13 

males and 9 females) between the ages of 20 and 43. All participants were right-handed. 

Due to a data collection error, we had to discard the data for one of the participants.

The study lasted an average of 31 minutes and 21 seconds and participants were invited to 

arrive around lunch time, between 11AM and 1PM. Participants were asked to wear the 

smartwatch on the arm they deemed dominant for eating activities. We did not compensate 

subjects monetarily, but provided them lunch, which they ate as part of the study itself. 
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Before the activities began, we told them the foods we would be serving and gave them the 

freedom to eat as much as they wanted. We never had more than one subject participating in 

the study at a time.

The study was designed so that participants performed a sequence of activities. Participants 

were assigned to one of two activity groups (Table 2), which contained a mix of eating 

moments and non-eating activities. The order in which subjects performed these activities 

varied depending on the activity group. There were no time constraints, and activities were 

performed in succession without a significant pause in-between. At the end of each activity, 

except for the last one, the experimenter instructed participating on what to do next. 

Although this study was scripted and took place in a lab, participants were free to eat 

completely naturally. Some participants chose to check news and messages on their phone 

while eating; others were more social, and ate the food provided while having a conversation 

with the experimenter and others non-participants who happened to be in lab.

The eating moments involved eating different kinds of food, such as rice and beans, and 

popcorn. For consistency, all foods offered were vegetarian, even though many participants 

did not have any food restrictions. Subjects were provided with utensils for the activities that 

required them, and a water-filled cup and napkins were made available to them throughout 

the study. Although drinking is often linked with food consumption, it was not annotated as 

an eating moment in this study.

The non-eating activities either required physical movement, or made participants perform 

hand gestures and motions close to or in direct contact to the head. These activities typically 

lasted no more than a few minutes, and as little as a few seconds, and were chosen because 

they are typically performed in daily life and could be confused with food intake in terms of 

the gestures associated with them. For the “Walking” activity, we asked participants to walk 

down a hallway, take the stairs down to the floor below, turn around and come back to the 

study area. The “Phone Call” task involved placing a phone call and leaving a voice 

message. For the “Comb Hair” and “Brush Teeth” activities, we provided each participant 

with a hair brush, a tooth brush, toothpaste and they performed these tasks on the spot, with 

the exception of teeth brushing, which took place in the bathroom.

Ground Truth—Participants were continuously audio and video recorded during the study 

as they performed their assigned activities (Figure 1). The only exceptions were the 

“Walking” and “Brushing Teeth” activities, when subjects left the user study room 

momentarily. The acquired video footage served as the foundation for the ground truth we 

estimated; all coding was performed using the ChronoViz tool [14].

For eating activities, we coded every food intake gesture and differentiated between gestures 

made with the instrumented arm versus the non-instrumented arm. For food intake, we 

marked the absolute time the food reached the mouth, and then added a fixed pre and post 

offset of 3 seconds to each intake event. This offset made it possible to model the entirety of 

food intake gestures, which often begin and end moments before and after the food is placed 

in the mouth. A three second offset was chosen empirically based on our observations of 

participants’ eating gestures. Non-eating activities were coded from the moment they began 
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until their conclusion. In other words, coding for non-eating activities was not focused on 

modeling any specific gesture.

The reliability of our ground truth estimation scheme was verified by having an external 

coder review 15% of the recorded audio and video. This was equivalent to 3 study sessions. 

To account for minor temporal differences in the assigned codes, we established that as long 

as they were within 3 seconds of each other, the codes referred to the same activity. By 

following this protocol, there was agreement in 96.7% of the coded gestures.

In-the-Wild Studies

To evaluate the ecological validity of our method, we conducted two in-the-wild studies. For 

the first one, we recruited 7 participants (2 males and 5 females, between the ages of 21 and 

29), who did not participate in the laboratory study. They were asked to wear the smartwatch 

on their dominant arm for an average of 5 hours and 42 minutes for one day while 

performing their normal everyday activities, which included taking public transportation, 

reading, walking, doing computer work, and eating. Four participants started the study in the 

morning and 3 in the afternoon and at least one eating moment was documented for each 

participant. Of a total data collection time of 31 hours and 28 minutes, 2 hours and 8 minutes 

corresponded to eating activities (6.7% of the total).

In the second study, one of the authors (male, 38 years of age) collected and annotated free-

living inertial sensor data for 31 days. The author wore the smartwatch throughout the entire 

day, accumulating a total of 422 recorded hours during this period. For this dataset, 3.7% of 

all sensor data collected reflected eating activities; non-eating activities spanned personal 

hygiene (e.g., brushing teeth), transportation (e.g., driving), leisure (e.g., watching tv), and 

work (e.g. computer typing).

Ground Truth—In the field of activity recognition, one of the critical challenges of in-the-

wild studies is collecting reliable ground truth data for model training and evaluation. Self-

reports are typically used for this purpose, but they are known to be susceptible to biases and 

memory recollection errors. To improve the reliability and objectivity of ground truth in our 

in-the-wild studies, we built an annotation platform around first-person images. In addition 

to the smartwatch, participants wore a wearable camera on a lanyard that captured 

photographs automatically every 60 seconds, depicting participant’s activities throughout the 

day. These images were uploaded in real-time to a server, and participants could access and 

review them at any time by logging into a password-protected web application. With this 

system, participants were able to indicate when they were engaged in eating moments from 

photographic evidence without having to share their photos with our research team, 

mitigating privacy concerns.

This method offered greater confidence for the ground truth labels, because the annotation 

was based on picture evidence. The camera was outfitted with a wide-angle lens to 

maximize the field-of-view and capture food and eating-related activities and objects even if 

they were not directly in front of the individual. However, since photos were taken only 

every 60 seconds, there is a small possibility that a short eating moment (e.g., a snack) 

occurred in-between two photos and was not recorded. We set the interval to 60 seconds as a 
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compromise between maximizing battery life and photo capturing for as long as possible on 

a given day.

Public Datasets

To encourage research in the domain of intake gesture spotting and eating moment 

recognition, we are making the Lab-20, Wild-7, and Wild-Long datasets publicly available 

to the research community3.

IMPLEMENTATION

Our system was designed to learn to identity moments when individuals are eating food. The 

sensor data processing pipeline consists of data capture and pre-processing, frame and 

feature extraction, food intake gesture classification, and eating moment estimation (Figure 

3).

Sensor Data Capture

Practicality was one of the key driving forces guiding this work. Thus, for data capture we 

relied on a non-specialized, off-the-self device with inertial sensing capabilities: the 

PebbleWatch4. We wrote custom logging software for capturing continuous 3-axis 

accelerometer sensor data from the device. The version of the smartwatch we employed did 

not contain a gyroscope. We also developed an iOS smartphone companion application for 

data storage and retrieval. Subjects wore the smartwatch on the wrist of their dominant hand. 

Sensor data was captured at 25Hz.

Frame & Feature Extraction

The first steps in the data processing pipeline involved filtering the sensor streams using an 

exponentially-weighted moving average (EMA) filter and scaling the resulting data to unit 

norm (l2 normalization).

We extracted frames from the pre-processed data streams using a traditional sliding window 

approach with 50% overlap. The frame size plays an important role in classification since it 

needs to contain an entire food intake gesture. The gesture duration is determined by many 

factors, such as individuals’ eating styles and whether they are multitasking (e.g., reading a 

book, socializing with friends) while eating. Based on data observed in our laboratory user 

study, we noticed that an intake gesture might last between 2 and 10 seconds. An analysis 

examining the sensitivity of window size suggested best classification results when the 

frame size was close to the mid-point of this range, around 6 seconds.

We computed five statistical functions for each frame, shown in Table 4: the signal’s mean, 
variance, skewness, kurtosis, and root mean square (RMS). These frame-level features 

comprise a concise and commonly used representation for the underlying inertial sensor 

data. The end result of the feature extraction step were 5-dimensional feature vectors for 

each axis of the accelerometer.

3http://www.ethomaz.com
4http://www.getpebble.com
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Food Intake Gesture Classification

The first classification task in our system is the identification of food intake gestures, which 

we define as the arm and hand gestures involved in bringing food to the mouth from a 

resting position on a table, for instance, and then lowering the arm and hand back to the 

original resting position. In practice, this task is made much harder by intra-class diversity. 

For example, individuals eat differently if compared to each other and different types of food 

consumption require different gestures. Additionally, an individual might perform other 

tasks while eating, such as gesticulate when talking to others, hold a mobile phone or 

magazine, etc.

For food intake gesture classification, we evaluated classifiers using the Scikit-learn Python 

package [26]. Best results were obtained with the Random Forest learning algorithm.

Eating Moment Estimation

We estimated eating moments by examining the temporal density of observed food intake 

gestures. When a minimum number of inferred intake gestures were within a certain 

temporal distance of each other, we called this event an eating moment. We employed the 

DBSCAN clustering algorithm for this calculation [13].

DBSCAN has three characteristics that make it especially compelling for our scenario; there 

is no need to specify the number of clusters ahead of time, it is good for data that contains 

clusters of similar density, and it is capable of identifying outliers (i.e., food intake gestures) 

in low-density regions. A well-defined method for pinpointing outliers is important because 

there are many gestures that could be confused with intake ones throughout one’s day. Once 

areas of high intake-gesture densities have been identified as clusters in the time domain, we 

calculate their centroids and report them as eating moment occurrences.

RESULTS

To reiterate, our goal is to develop and evaluate a practical approach to detect eating 

moments, using sensor data from an off-the-shelf smartwatch. To that end, the primary 

performance metric we wished to assess was whether the system could distinguish eating 

moments from non-eating moments. In this section we first review our eating gesture 

classification findings and then discuss our eating moment recognition results.

Eating Gesture Recognition

In our system, predicting eating moments hinges on the detection of food intake gestures. 

Using the Lab-20, we evaluated the performance of three food intake gesture classifiers 

(Random Forest, SVM, and 3-NN) as a function of sliding window size for the person-

dependent (Figure 5) and person-independent cases. The Random Forest classifier 

outperformed the SVM and 3-NN classifiers using the F-score measure for comparison. We 

attribute this result to the Random Forest’s powerful nonlinear modeling capability. This 

learning algorithm was also appealing to us because it does not require much parameter 

tuning.
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A person-independent evaluation of the Random Forest classifier using the leave-one-

participant-out strategy (LOPO) is shown in Figure 6. Note that the reported precision, recall 

and F-score measurements in Figures 5 and 6 reflect the classifiers’ ability to spot intake 

gestures at the frame level, and best performance was achieved with a frame size of just 

under 6 seconds.

Table 5 provides a detailed picture of how the Random Forest model performed at 

classifying eating gestures in relation to non-eating activities. The data for all laboratory 

study participants was combined and randomly split into one training and one test set; 

approximately one third of the data was held out for testing. This procedure was performed 

with Scikit-learn’s train-test-split cross-validation function [26]. For purposes of reporting 

results, we further distinguish 3 different eating gestures to gain a richer understanding of 

model classification and error rates: eating with fork and knife (i.e., Eat FK), eating with 

fork or spoon only (i.e., Eat FS), and eating with hands (i.e., Eat Hand).

Eating Moment Recognition

As previously described, our approach for inferring eating moments depends on the 

temporal density of observed food intake gestures; we cluster these intake gestures over time 

using the DBSCAN algorithm, which takes two parameters, a minimum number of intake 

gestures (minPts), and a distance measure given as a temporal neighborhood (eps). To assess 

how well eating moments were recognized, we compared ground truth and predictions over 

a time window that is longer than a frame size. This is necessary because an eating moment 

is in the range of minutes, not seconds. In this paper, we refer to this longer time window for 

eating moment recognition as a time segment, shown in Figure 4. When one or more eating 

moments are recognized within a time segment, the entire time segment is assigned the 

eating label.

One of the questions our work explores is whether it is feasible to build a model for eating 

moment recognition based on semi-naturalistic behavior data captured in a laboratory. To 

answer this question, we trained a model with the Lab-20 dataset and tested it on both in-

the-wild datasets (Wild-7 and Wild-Long). Figure 7 plots F-scores as a function of time 

segment size ranging from 5 to 60 minutes (DBSCAN parameters set to minPts=1, eps=10, 

meaning at least 1 intake gesture that is within 10 seconds from another recognized intake 

gesture). The charts show an upward trend in recognition performance as time segment 

duration increases. This is because more data points become available in terms of recognized 

and non-recognized food intake gestures, leading to improved density estimation, and thus 

better eating moment recognition results. When the time segment size is set to 60 minutes, 

the F-scores are 64.8% and 56.8%.

Our intuiting guiding eating moment recognition is that making a prediction about a 60-

minute time segment would suffice for most practical applications of our work. Given that 

intuition, it is valuable to understand how much we can optimize our classifier when the 

time segment is fixed at 60 minutes. Varying the minPts and eps parameters of the DBSCAN 

algorithm, but still using the Lab-20-trained intake gesture recognition model, (shown in 

Figures 8 and 9), F-scores of 76.1% (66.7% Precision, 88.8% Recall) and 71.3% (65.2% 
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Precision, 78.6% Recall) could be achieved when evaluating the classifier with the Wild-7 

and Wild-Long datasets, respectively.

DISCUSSION

In this section, we discuss our classification results, the instrumentation strategy we chose, 

characteristics of the data collected, and the practical implications of our findings.

Classification Challenges

To more realistically assess our system’s classification performance, we purposely included 

gestures that required arm movements similar to food intake gestures. Activities such as 

placing a phone call, combing hair and brushing teeth are all similar to eating in that they all 

require hand-arm motions around the head and mouth areas. Other observed movements that 

occurred in our laboratory study closely matching eating gestures included wiping the face 

with a napkin, scratching the head, and assuming a resting position by supporting the head 

and chin with the instrumented hand and wrist. Because of the semi-controlled nature of our 

laboratory study, these movements occurred naturally during sessions, and did not have to be 

scripted.

Based on our results, shown in the the confusion matrix in Table 5, we found that one of the 

most challenging activities to discriminate from eating was ‘Chat’. This is because when 

people are having a conversation, they typically gesticulate. This effect varies in intensity 

amongst individuals but it was significant enough across all participants in the laboratory 

study that between 7.5% and 10% of each eating intake class (Eat FK, Eat FS, Eat Hand) 

was misclassified as ‘Chat’.

In Table 5, it is also possible to see false positives originating from the ‘Phone‘, ‘Comb‘, and 

‘Brush‘ activities. In the context of the lab study this is not surprising since these activities 

were specifically included to induce misclassifications. Common to these non-eating 

activities gestures was a movement bringing the hand close to the head; the temporality of 

subsequent movements was one of the key characteristic differentiating them. In the ‘Phone’ 

activity, the hand stayed up holding the phone close to the ear; in effect there is no 

subsequent gesture in this case. For the ‘Comb’ activity, the hand was lifted up and remained 

in motion, moving slowly in a pattern that depended on the hairstyle of the participant. The 

‘Brush’ activity pattern was distinguished by quick-moving hand gestures while holding a 

toothbrush. We believe we can lower the rate of false positives by incorporating time-

dependent features that can better characterize these types of non-eating activities.

Intra-Class Diversity

We observed a large amount of variability in participants’ eating styles. Some held a 

sandwich with two hands, others with one hand, sometimes alternating between them. A 

minority of participants took bites of their food at regular intervals (P4 in Figure 10). Others 

were not so regular; they gesticulated more while talking and eating (P5 in Figure 10).

When using utensils, and in the short intervals between bites, some participants kept mixing 

their food in a regular pattern. This could be attributed to an individual’s own eating style or 
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an attempt to cool off the food, for example. There was significant variation in the way 

participants ate smaller foods as well. Several participants held several kernels of popcorn in 

hand and ate them continuously until they were gone. Others liked to eat more than one 

popcorn at a time.

While many participants performed the “traditional” food intake gesture of bringing food to 

the mouth using utensils, hands, or by lifting a bowl, we noticed that many participants did 

the opposite; they bent over their plate, brought their head close to the food and then moved 

their arm in a modified, shorter and subtler version of the traditional intake gesture. This was 

particularly common when participants were trying to avoid food spillage (P1 in Figure 10).

In this study we did not create a separate model for each observed eating style; all intake 

gestures were given one label: “eating”. Without any question, this posed an additional 

challenge to the classification task. Fitting a model to user-specific data might be the most 

effective way to address intra-class diversity, and we hope to explore this in future work. 

Also, face-mounted wearable computing systems like Google Glass are becoming more 

popular; these devices offer the opportunity to capture inertial sensing data reflecting head 

movements, which might contribute significantly to the identification of eating and chewing 

activities despite individual differences.

Instrumentation

We provided participants with one wrist-worn device, a smartwatch, and placed it on their 

dominant hand. There are two key reasons why we decided on a strategy of minimal 

instrumentation. Firstly, in real-world settings, people wear only one smartwatch at a time. 

In this context, with an eye towards the practical applicability of this research, we were 

interested in the extent to which eating moments can be estimated with just one sensor data 

capture device. Secondly, we felt that asking participants to wear one additional device 

would be unnatural, and thus result in a level of discomfort that could compromise the 

validity of the data.

We chose participants’ dominant hand because it is the one that is typically used in food 

intake gestures. However, the dominant hand might play different roles while eating, such as 

cutting with a knife, and this has an effect in modeling intake gestures; it is possible to 

observe in Table 4 that the “eating with a fork and knife” class was misclassified as “eating 

with fork or spoon only”, and with “eating with hand”. This is inconsequential if the goal is 

to identify “whether” eating is taking place, but it presents modeling opportunities for 

characterizing “what” is being eaten.

Ecological Validity

Our evaluation results demonstrate the promise of a minimally-instrumented approach to 

eating moment detection. However, it is important to situate our findings in light of our 

study design and aspects of our system implementation. An issue that might arise in practice 

while collecting data with only one device is that certain eating gestures might not get 

captured. For instance, a person might be wearing a smartwatch on the non-dominant hand 

while eating with a fork held by the dominant hand. Although this scenario represents a 

challenge, we believe it can be addressed in two ways: by modeling non-eating gestures 
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performed by the non-dominant hand during eating, and by leveraging additional modalities 

such as ambient sounds. In future work, we plan to explore the combination of these two 

different paths.

With regards to the validity of our results, the types of foods that we served participants and 

the enforcement of which utensils they were allowed to use, if any, were in line with current 

western eating traditions. We aimed for a representative sample of eating activities and styles 

by picking foods such as rice, popcorn, and sandwiches apples but our scientific claims do 

not and cannot generalize to all populations and cultures. For instance, none of participants 

in the study ate with chopsticks.

Practical Applications

Despite the importance of high precision and recall measures for both benchmarking and 

practical applications, our experiments showed that since there are usually many intake 

gestures within one eating moment, a slightly lower recall in food intake gesture 

classification does not have a large affect in the results. In contrast, consecutive false 

positives have a direct effect in the misclassification of eating moments. With respect to the 

applications we envision leveraging this work, there are two paths to consider. In a system 

designed to facilitate food journaling, lower precision means that individuals might be 

frequently prompted to provide details about meals that did not occur, which is undesirable. 

However, as a tool for health researchers to determine when individuals eat meals, what is 

critically important is to not miss any eating activities. In this case, false positives are 

preferable to false negatives.

Battery Performance

Our data capture setup employed a Pebble smartwatch and an iPhone 4S. Smartwatch 

accelerometer data was captured at 25Hz and transmitted to the smartphone every second 

using Bluetooth. For the laboratory study, the sensor data was saved locally on the phone 

and retrieved at the end of each session. Sessions in the lab lasted 31 minutes and 21 seconds 

on average, and battery performance was never a concern.

On the other hand, the in-the-wild studies posed a significant challenge in terms of power 

consumption. In this context, the smartphone played three roles. Worn on a lanyard, it was 

programmed to take snapshots automatically every 60 seconds. This was necessary to obtain 

a measure of ground truth of participants’ activities over the course of their day. Secondly, 

the smartphone continued to serve as an end-point buffer for all the incoming smartwatch 

sensor data over Bluetooth. Finally, the phone uploaded the sensor data to a server using a 

cellular connection every minute, and thus in near real-time.

Starting on a full charge, the smartphone was able to perform all these tasks for an average 

of 5 hours and 42 minutes, which determined the duration of our one-day in-the-wild 

studies. For the 31-day in-the-wild study, the same instrumentation was used but with the 

addition of one 15,000mAh battery pack connected to the phone. Carrying the battery pack 

proved to be an additional inconvenience, but it allowed data collection to take place for the 

entire day.
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Throughout the studies, the smartwatch, the smartphone and the battery pack were restored 

to full charge overnight and used again the following day. The Pebble watch never 

represented a limiting factor in data collection. We attribute its low power consumption to its 

e-ink display and lack of a more sophisticated inertial measurement unit (IMU).

FUTURE WORK

Technically, there are numerous opportunities to extend this work. In the near term, our goal 

is to continue to improve our eating gesture detection by experimenting with methods such 

as Dynamic Time Warping (DTW) and new feature representations.

One area we believe is particularly promising in the context of eating moment recognition is 

personalization. Eating styles vary from person to person to a large degree (Figure 10), and 

we intend to investigate the effect of a truly personalized model on performance results.

Finally, we are interested in fusing on-body inertial sensing with additional sensing 

modalities for eating moment recognition, such as location, and continuing to explore 

approaches for identifying not only when individuals are eating but also what they are 

consuming.

CONCLUSIONS

We describe the implementation and evaluation of an approach that identifies eating 

moments using 3-axis accelerometer sensor data from an off-the-shelf smartwatch. An 

eating moment classifier trained with participants in a semi-controlled lab setting was able to 

recognize eating moments in two in-the-wild studies with F-scores of 76.1% (66.7% 

Precision, 88.8% Recall), and 71.3% (65.2% Precision, 78.6% Recall).

These results are promising for three main reasons. Firstly, they represent a baseline for 

practical eating detection; we anticipate performance gains when employing additional 

inertial sensing modalities. As a means of comparison, Amft et al. obtained 84% recall and 

94% precision with accelerometer and gyroscope in drinking gesture spotting [1]. Secondly, 

our studies explored one type of sensing modality, and many other contextual cues could be 

utilized to improve eating moment detection, such as location and perhaps even ambient 

sounds [32]. Thirdly, and more broadly, this work suggests that it might be possible to build 

ecologically valid models of complex human behaviors while minimizing the costly 

acquisition of annotated data in real-world conditions; the dataset we compiled and used in 

our analysis is being made public so that others can validate our results and build upon our 

work.

Building a truly generalizable system for eating moment detection, and automatic food 

intake monitoring in general, represents a significant challenge. We believe such a system 

could provide the foundation for a new class of practical applications, benefiting individuals 

and health researchers. Despite limitations and opportunities for improvement, we believe 

this work provides compelling evidence that a practical solution around commodity sensing 

can play an important role towards this vision.
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Figure 1. 
We estimated ground truth by recording each study session with a video camera and then 

coding the data with the ChronoViz tool.
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Figure 2. 
Participants of the in-the-wild study wore a wearable camera that captured photos 

automatically every minute. After the study, participants were asked to review the 

photographs and label all eating moments using a web tool specifically designed for this 

purpose.
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Figure 3. 
The data processing pipeline of our eating moment detection system. In our approach, food 

intake gestures are firstly identified from sensor data, and eating moments are subsequently 

estimated by clustering intake gestures over time.
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Figure 4. 
Going from bottom to top, the first step to eating moment recognition involves recognizing 

eating gestures (1). These are clustered temporally to identify eating moments (2). Finally, 

estimated eating moments are compared against ground truth in terms of precision and recall 

measurements at the level of time segments ranging from 3 to 60 minutes (3).
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Figure 5. 
We evaluated the person-dependent performance of three food intake gesture classifiers with 

respect to window size. Each classifier was trained with a different learning algorithm: 

Random Forest, SVM (RBF kernel), and 3-NN. We achieved best results with the Random 

Forest classifier.
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Figure 6. 
We performed a leave-one-participant-out (LOPO) evaluation of the food intake gesture 

classifier trained with the Random Forest learning method. The figure shows its sensitivity 

to window size.
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Figure 7. 
F-score results for a model trained with lab data (Lab-20 dataset) and tested with in-the-wild 

data, Wild-7 (red), and Wild-Long (blue). The x-axis correspond to time segment size, in 

minutes.
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Figure 8. 
F-score results for estimating eating moments given a time segment of 60 minutes as a 

function of DBSCAN parameters (minPts, and eps). Tested on theWild-7 dataset, eating 

moments can be estimated with an F-score of up to 76.1% when minPts=2 and eps=80 (at 

least 2 intake gestures that are within 80 seconds from another intake gesture).
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Figure 9. 
F-score results for estimating eating moments given a time segment of 60 minutes as a 

function of DBSCAN parameters (minPts, and eps). Tested on the Wild-Long dataset, eating 

moments can be estimated with an F-score of up to 71.3% when minPts=3 and eps=40 (at 

least 3 intake gestures that are within 40 seconds from another intake gesture).
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Figure 10. 
The accelerometer data (x-axis) of three participants as they ate a serving of lasagna depicts 

personal variation in eating styles and makes intra-class diversity evident. The red dots are 

intake gesture markers.
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Table 1

To evaluate our system, we conducted laboratory and in-the-wild studies that resulted in three datasets. The 

duration for the Lab-20 and Wild-7 datasets above represent average duration across all participants.

Dataset # Participants Avg Duration % Eating

Lab-20 20 31m 21s 48%

Wild-7 7 5hrs 42m 6.7%

Wild-Long 1 31 days 3.7%
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Table 2

In the laboratory study, participants were assigned to one of two activity groups. Some of the activities 

involved eating different types of food items while others required participants to perform non-eating tasks. 

The food eating activities were categorized according to eating style, and utensil type.

P1–P12 P13–P21

Eat (Fork & Knife) Lasagna -

Eat (Hand) Popcorn Popcorn, Sandwich

Eat (Spoon) Breakfast Cereal Rice & Beans

Non-Eating Watch Trailer

Conversation

Take a Walk

Place Phone Call

Watch Trailer

Conversation

Take a Walk

Brush Teeth

Comb Hair

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2018 March 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thomaz et al. Page 30

Table 3

This table is showing the average duration of each activity in our laboratory user study across all participants.

Activity Avg Duration

Eat (Fork & Knife) 5m 1s

Eat (Fork/Spoon) 5m 48s

Eat (Hand) 5m 54s

Watch Movie Trailer 3m 47s

Chat 5m 3s

Take a Walk 2m 18s

Place Phone Call 1m 28s

Brush Teeth 3m 54s

Comb Hair 39s
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Table 4

Feature definitions used for food intake gesture classification

Feature Description Definition

1 mean average value of the samples of signal x

2 variance power of values of signal x with its mean removed

3 skewness measure of (lack of) symmetry in data distribution

4 kurtosis measure of the shape of the data distribution

5 RMS square root of the average power of signal x

, where 
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Table 5

Confusion matrix showing the percentage of actual vs. predicted activities by the Random Forest model. The 

FK and FS acronyms refer to eating activities employing fork and knife, and fork or spoon, respectively.
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