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Abstract

RNA-seq and mass-spectrometry proteomics combined with growing data repositories have 

greatly increased the capacity to identify candidate proteins or protein sequence variants that share 

properties of ideal therapy targets, which include being abundant in cancer cells, absent or rare in 

adult organs (especially vital organs), and shared by many patient tumors. RNA-seq and fixed 

content arrays can identify genes that are over-expressed or mis-expressed in cancer. RNA-seq is 

uniquely suited to identifying-cancer specific sequence variants. We review factors relevant for 

determining whether products of genes that are abundant or differentially abundant in RNA-seq 

are concordant or discordant with proteins that are identified as abundant or differentially 

abundant in mass-spectrometry proteomics assays.

Introduction

Progress on immunotherapy has been slowed in part by a lack of viable cancer-specific 

proteins that can serve as viable immunotherapy targets. Ideal targets are simultaneously 

prevalent (i.e., expressed in many different patients), highly immunogenic, and preferably 

shared by cancers in multiple organ sites. RNA-seq technologies have great potential to 

identify new classes of immunogenic targets because they are high-throughput, unbiased, 

sensitive and specific, relatively insensitive to tissue preparation, can identify targets that 

derive from over-expression, mis-expression and that derive from sequence variants that 

arise from point mutations, rearrangements, altered splicing or RNA editing. Thus RNA-seq 

may allow identification of novel targets that have been missed by other approaches. For 

example, serologic expression cloning (SEREX) is biased against less abundant proteins that 

may be commonly encoded by low to middle abundance transcripts and it is not practical in 

large-scale studies1. Fixed content array technologies or workflows that collapse RNA-seq 

data to gene-level summaries are by definition unable to identify antigens that arise from 

variation in sequence, rearrangements, splicing or RNA editing. Proteomic approaches based 

on mass spectrometry (MS) have limited ability to identify therapeutically accessible protein 
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sequence variants because of their limited sensitivity and coverage2 and can only identify 

variants that reside in derived databases3.

There has been an ongoing debate regarding the strength of relationship between RNA 

abundance and protein abundance which may call into question whether RNA-seq can serve 

as a viable strategy to identify abundant proteins. Low correlation of RNA and protein has 

reported for populations of yeast and other cells4–7 and for solid tumors, most recently in 

three reports from the National Cancer Institute (NCI) Cancer Proteomics Technology 

Analysis Consortia (CPTAC)8–10 which concluded that there is a limited concordance 

between protein and RNA abundance in ovary, colon and breast tumors8–10, although the 

overall concordance consists of a spectrum from low to high in different groups of proteins, 

and was especially low with proteins involved in ribosomes and in immune mediators in 

each of the disease sites.

The CPTAC conclusions regarding the association between RNA and protein abundances 

were based on correlating mass spectrometry (MS) estimates of protein abundance with 

RNA-seq estimates of RNA abundance. Low correlations were taken as evidence that 

proteins and RNA abundances were dysregulated and that low correlations among specific 

protein subgroups were taken as evidence that those specific pathways are implicated in 

properties of the disease. We will review properties of MS and RNA-seq assays and use 

criteria that emphasizes measures of concordance over correlation when re interpreting a 

subset of the CPTAC data sets in each disease site. The CTPAC sites were focussed in 

etiological questions, but our interpretations will be focussed on evaluating whether relying 

on RNA-seq to identify abundant or differentially abundant proteins is reasonable relative to 

an alternative which uses MS assays.

Selected properties of MS and RNA-seq assays

RNA-seq data sets familiar to most researchers profile the subset of polyAdenylated RNA, 

which is largely mRNA, although other types of RNA-seq assays also exist.11,12 PolyA RNA 

is most commonly captured from whole cell RNA using OligoDT which removes ribosomal 

RNA which constitutes over 90% of all cellular RNA and most of which is not 

polyAdenylated. mRNA is then fragmented into 300–500 nucleotides (nt) lengths and 

~50-100nt (12-33 codons) from each end, or ~100-200nt (25 to 66 codons) total, are 

sequenced. Read-ends are aligned to a reference genome or transcriptome using one of a 

variety of available algorithms. See13,14 and others. One or both ends may align with high 

fidelity to a known transcript isoform, to an intronic region or to an intergenic region outside 

of a known locus. Some reads that originate from homologous gene families or regions will 

align to multiple possible locations (ambiguous alignment), or may not align at all. Gene-

expression is quantified by counting the number of reads that are mapped to a known exon 

of each gene divided by the gene length then again by the number of mappable reads in the 

tumor (termed reads-per-kilobase-of modelled exon, or RPKM).

Discovery-based MS assays most commonly use tandem MS technologies but compared to 

RNA-seq workflows have a far larger variety of choices for sample processing, 

instrumentation and settings, and data processing schemes15. In most tandem MS workflows 
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whole tissue protein lysates are first digested, usually with trypsin which enriches peptide C-

termini for basic residues (lysine and arginine) that tend to hold multiple positive charges 

and are necessary for fragmenting the peptide by collision induced dissociation (CID). 

Peptide identities are inferred from the CID spectra by comparing the observed fragment 

masses to masses predicted from in-silico digest and fragmentation of a protein sequence 

database. CID spectra will match to a predicted spectra with varying degrees of fidelity and 

a variety of open-source and commercial tools exist to select peptides that match with low 

overall error rates.16–20

Peptides are then associated to a protein. Proteins are declared identified using either a 

formal protein-inference algorithm18,21 or by thoughtful heuristics which commonly 

requires two confident peptides per protein. Almost all proteins have peptides that map to 

only a small number of its peptides, and some peptides will match to multiple different 

proteins, especially those that derive from members of homologous gene families. Protein 

inference algorithms may differ greatly on whether and how they use information from these 

ambiguous peptides. Some, including those used to identify proteins in the CPTAC colon 

cancer paper,18,21 will assign ambiguous peptides to multiple proteins but with fractional 

weight, or assign those peptides with fractional weight to only those proteins that also have 

an unambiguous peptide. The former practice can inflate the number of proteins identified, 

and especially increase the numbers of proteins that reside in homologous gene groups. The 

latter practice will not inflate the number of proteins but will affect their abundance 

estimates (described below).

In MS proteins can be quantified using either a label-free approach such as spectral counting 

(SC), which was used by the CPTAC to profile colon cancer8, or by relative quantitation, 

which was used to profile breast and ovary tumors9,10. SC counts the number of times the 

MS instrument sampled any peptide that was assigned to a specific protein, with either full 

or fractional weight of ambiguous peptides were retained. Thus a protein will tend to have 

higher SC than another of equal molarity if it is more abundant, but other factors also affect 

the SC which will make two proteins of equal molarity have very different SC values. The 

SC will increase if it the protein has large numbers of tryptic peptides, if it’s peptides ionize 

better than others, or if it contains posttranslational modifications which render the peptides 

not identifiable by MS, including glycosylation. The association with protein composition 

can be reduced but not eliminated by adjusting the SC by the number of observable tryptic 

peptides in a protein, a process analogous to calculating RPKM for RNA-seq. This will be 

termed the adjusted spectral count, or ASC.

With relative quantification22 peptides are quantified by the ratio of their ion intensity in 

cancer to that observed in a reference sample, and so its value does depend on protein 

composition, but it also does not provide absolute measures of protein abundance as does the 

ASC. With relative quantitation proteins are quantified by aggregating the ratios of each 

peptide assigned to it to the protein.
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What, if anything, is measured when two different types of assays are 

correlated?

Assays are compared using a measure of agreement, and CPTAC sites emphasized the 

Spearman correlation, or simply correlation, for quantitative data comparisons. The 

following illustrates why this measure is inadequate for comparing results from two different 

technologies. Consider four labs - A, B, C and D - that interrogate materials derived from the 

same tumor samples. All labs use the same MS platform (sample processing, instruments 

and settings) and agree to use the same sample processing protocols except that the Lab C 

leader was concerned about circulating blood contamination in the tumor, and so she 

depleted abundant blood proteins (Albumin and other proteins23) from the lysate before 

digestion and downstream processing24. Lab D uses RNA-seq.

Data are acquired and at first they are processed separately within each lab, but Labs B and 

C use the same algorithms which are different than Lab A. It should not be surprising to find 

that shared idiosyncrasies of Labs B and C platforms (the algorithms) artificially inflates 

their correlation compared to Lab A. Thus, to eliminate shared idiosyncrasies the labs then 

process the data using the same algorithms.

Proteins in each lab are then separately ranked by average abundance or relative abundance 

(a within-tumor analysis) and co-varying sets of proteins are identified by hierarchical 

clustering (a between tumor analysis). It should not be surprising to find that Labs A and B, 

who use identical protocols, have higher correlation with each other (say, r=0.8 for mean 

abundances) than to Lab C (say, R=0.7) or Lab D (say, r=0.6). It should also not be 

surprising to find that Lab D agrees more closely with Lab C (say, r=0.75) than to A and B 

because RNA-seq is insensitive to blood protein infiltration.

Should these results justify claims by Labs A and B that proteins do not correlate with RNA, 

or that disease-specific pathways defined by RNA and protein are different, simply because 

they agree more with each other than with Lab D? If so, then they should also conclude that 

proteins do not correlate proteins based on their lower correlation with Lab C. It is evident 

that the latter conclusion does not hold, and thus neither does the former, a priori. If that 

conclusion does not hold, then one can also not conclude that the MS platforms (Labs A-C) 

are better than RNA-seq (Lab D) purely because their correlations are higher among them as 

higher correlations can occur because platforms share idiosyncrasies (i.e., shared data 

processing algorithms) or biases.

Correlation and concordance of RNA-seq and MS abundance measures

Determining which if any platform should be preferred to another in the absence of a gold 

standard (e.g., antibody-based assays) requires that one go beyond quantitative metrics and 

interpret the data. We will not seek to identify whether one platform is superior to another in 

an absolute sense, as it is an ill-defined problem and one that is not relevant to therapeutics 

research. We will identify the extent to which results when using one platform or the other 

lead to discordant findings, then assess properties of those discordances. To demonstrate 

how concordance can come to different conclusions from correlation we re-interpreted 
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protein abundances in 57 colon cancers8 estimated CPTAC using MS and ASC (adjusted 

spectral counting). The MS data integrated by CPTAC with matched RNA-seq data from the 

TCGA8 were downloaded and used without any further processing.

The MS abundances in two samples is associated in Fig. 1A. Each point reflects the log ASC 

measured in each patient tumor. The grey points are proteins identified in these two samples 

but not in all samples. The colored points are the subset of proteins used in most CPTAC 

analyses; the 1920 proteins identified in all 57 samples. Colors reflect the average log(ASC) 

abundance of each protein in those 1920 proteins (yellow=high ASC, red=low ASC). As can 

be seen here reproducibility is highest among the abundant proteins.

The correlation between RNA-seq and MS for one of the samples is shown in Fig. 1B. 

Genes or proteins observed in one platform but not in another are indicated; ~11K 

transcripts were observed by RNA-seq that do not have an associated MS identification. 

Most of the proteins unique to MS (noted at bottom) are members of homologous gene 

families that are difficult to infer without ambiguity by MS.

This correlations demonstrated in Fig. 1A is lower than in Fig. 1B, and represents the type of 

evidence that was used to conclude that “… protein abundance cannot be reliably predicted 

from DNA- or RNA-level measurements”.8 However, in their analyses the grey points and 

black points in Fig. 1B were omitted when they evaluated overall correlations. The effect of 

eliminating them is demonstrated in Fig. 1C which associates RNA-seq data sets from the 

two samples. Protein abundance by ASC is indicated by color. As can be seen the lowest 

abundant proteins (ASC=0, black) are associated with the lowest abundant transcripts, then 

the next lowest set of proteins (grey, with ASC=0 in some samples, then red=lowest average 

among 1920 proteins) are associated transcripts that are intermediate abundance, and the 

most abundant transcripts are associated with the most abundant proteins (yellow).

The demonstration in Fig. 1C shows that abundant proteins largely derive from abundant 

transcripts and abundant transcripts largely derive from abundant proteins. Calculating a 

correlation may be problematic when including proteins not identified by MS, but the 

correlation may not be relevant for selecting abundant proteins as for most proteins both MS 

and RNA-seq agree; most abundant proteins and abundant transcripts reside above the 

dashed line in Fig. 1C although there are many proteins identified by RNA-seq that are 

missed by MS, and some proteins are identified by MS that were missed by RNA-seq.

Properties of proteins that are discordant in RNA-seq and MS assays

We next evaluated properties of transcripts and proteins identified in only one platform. The 

discordant observations are displayed in Fig. 2 which relates the mean MS and mean RNA-

seq abundances calculated across all 57 samples. Discordant points are these observed in 

only one platform or that deviate signifacantly from the cloud of points. Points were colored 

based on some observed shard properties; black=unique to RNA-seq, green indicates 

ribosomes, blue circles indicate proteins that are known marker-genes for immune-response 

cells and other immune response regulatory proteins, and red indicates a protein identified 
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by two or more unique peptides in a large-scale serum proteomics study of cancer free 

women (n~1000 proteins total)25.

Transcripts unique to RNA-seq are largely derived from genes that encode modified proteins 

or proteins that are short and have small numbers of tryptic peptides, and are thus difficult to 

observe by MS. If products of those genes are relevant to a therapeutic modality then RNA-

seq may be considered superior, depending on the quality of proteins identified by MS that 

are not identified by RNA-seq.

Blood associated proteins and immune response cells accounted for a large portion of all 

observations unique to MS. These proteins and a subset ribosomal proteins account for the 

lion share of discordant observations that are shared by the platforms. Ribosomes are 

commonly recycled so their higher abundance in RNA-seq is not likely a property of 

dysregulation.

Blood-associated transcripts and proteins can originate from two sources; blood protein and 

nucleated blood cells from residual blood in the tumor, and products of tumor infiltrating 

immune-response cells which may be naturally considered part of the tumor 

microenvironment but not of the malignant component. Nucleated cells will contribute to 

both MS and RNA-seq but blood proteins will contribute to only MS, and those can be 

expected to be higher in or unique to MS, which is seen here.

Thus differences in ribosomes and blood proteins can be attributed to known idiosyncrasies 

of each assay which may make MS data sets more similar. These proteins also share 

membership in well defined functional groups, including ribosome processing and of 

inflammation or immune-regulation both of which were implicated by all CPTAC sites as 

important sources of dysregulation in cancer that can be observed only in MS data sets. We 

have not reproduced their analyses, but it is plausible that their findings can be attributed at 

least in part to properties of the assays and sample quality rather than to biological properties 

of the malignant component of cells. Thus, based on this analysis and that above we 

conclude that RNA-seq and MS data sets are largely concordant, and discordant findings 

may be not be relevant for measuring properties of a tumor’s malignant component.

Potential influence of blood infiltration on patient subgroup and pathway 

identification

The analysis above examined discordance relevant for identifying abundant proteins. Here 

we look at discordances that may arise when evaluating cross-sample differences in protein 

abundance. All CPTAC manuscripts reported a discordance between MS and RNA-seq when 

evaluating patient subgroups or differentially activated pathways, which are identified by 

clustering changes in protein concentration across samples. To evaluate this we used CPTAC 

ovarian cancer data, which was obtained in two laboratories. For 32 samples MS data sets 

were obtained in both laboratories and we restricted attention to these samples.

As is common practice CPTAC sites selected a subset of proteins with the highest cross-

sample standard deviation. We mimicked this process by selecting an informative subset of 
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proteins from the 4680 proteins identified in all 32 samples by both labs. The SD calculated 

separately at each lab was highly correlated, indicating a high degree of precision in each 

lab. See Fig. 3. Points above the dotted line denote 1000 informative proteins selected based 

on their average cross-sample SD.

Blood proteins were found significantly enriched among blood proteins. Although overall 

<3% of proteins identified were blood-associated they represented 24% of the informative 

proteins selected in Fig. 2. This finding, which shows that blood-associated proteins are 

among the most-variable proteins, is meaningfully different than shown in colon cancer, 

which showed that they are also among the most abundant proteins.

The number of blood proteins and their magnitude of variation creates a risk that subgroup 

definitions will be dominated by tumor to tumor variation in infiltrating blood which are not 

relevant for inferring molecular mechanisms in the tumors malignant component or for 

classifying patients on those factors; i.e., patients with significant blood infiltration will tend 

to cluster together rather than patients that share a molecular alteration. To demonstrate this 

potential we correlated a single sample across two labs, first using all proteins identified in 

that sample, which found a low correlation (r=0.62 in Fig. 4A). Correlation increased 

significantly when proteins were restricted those shared in all 32 samples (r=0.72 in Fig. 

4B). Correlation was highest among the blood proteins observed in all samples (r=0.85 in 

Fig. 4C). When restricted to the 1000 informative proteins the correlation was comparable to 

blood only (r=0.78 in Fig. 4D).

The correlations in Fig. 4D have several implications. The higher correlation observed in the 

informative subset, being dominated by factors not observable in RNA-seq, can serve as an 

idiosyncrasy shared by MS platforms that will make their correlations high for reasons 

unrelated to the correlation of RNA and protein. The enrichment of blood proteins among 

their informative sets means that their clusters may also be defined for by factors unrelated 

to properties of the malignant cells.

These results conclude that differences in subgroups and pathways that are discordant 

between RNA-seq and MS are not related to properties important for therapeutics. Although 

all CPTAC sites implicated immune-regulatory processes (or inflammation), which are 

important for therapeutics, blood proteins share memberships in these pathways, and thus 

those conclusions are plausibly a consequence of blood infiltration.

Global properties of proteome measures across multiple assays

The analyses above show that MS and RNA-seq abundance estimates can vary for reasons 

unrelated to their abundance in a tissue or a cell, and can vary across samples for reasons 

unrelated to their regulation in malignant cells. Some variation will derive from changes in 

tumor composition, but a variety of biochemical properties of proteins can affect MS assays 

in ways that are unrelated to their abundance and which may create discordance between 

RNA-seq and MS. Properties that affect estimated abundances, like may often be shared by 

members of well-defined biological pathways which risks false attribution of those 

biological pathways to tumors. MS assays including antibody mediated proteomics assays 
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may be particularly susceptible to influence from such groups of proteins because they are 

restricted to high-abundant proteins that derive from specific cellular processes, many of 

which share a variety of posttranslational modifications that can affect their results.

We demonstrate the potential scale of this problem by integrating CPTAC breast cancer MS 

data, including RNA-seq data and results from antibody-based Reversed Phase Protein 

Arrays (RPPA) data9. Analysis was restricted to the 1000 most variable breast cancer 

proteins identified by MS. Samples and proteins were clustered using MS assays and then 

annotated for properties. See Fig. 5.

Four distinct protein groups accounted for the majority of the informative proteins identified. 

These included three groups with properties that are common in blood-derived proteins or 

immune-cells (top group), and tightly correlated proteins derived from members of highly 

homologous gene groups (Zinc-fingers). A group of cytoskeletal proteins are also observed. 

Zinc-fingers, cation binding and other proteins form the largest group. Large numbers of 

proteins from this family are identified with very similar abundances.

Samples cluster into two major groups (defined by combined Zinc-finger expression and low 

content of blood-associated proteins. This grouping may suggest that their biological 

functions have been altered relative to other tissues, and their abundances may define an 

important subpopulation. However, properties of the assays may also account for some or all 

of this observation. The close similarity of their abundances could be at least in part a 

product of ambiguous peptide assignments among members of the group. It is also possible 

that tumors that Zinc fingers and other proteins are observable in samples that have low 

volumes of blood infiltration, which will effectively increase the ability of the assay to 

identify lower abundant proteins.

Four major sub-groups are also defined by MS (See Column headings of MS cluster). While 

the correlation with RNA-seq or with RPPA for individual samples is not strong (see 

Column headings), two clusters with relatively low level of blood-associated proteins are 

concordant with PAM50 and RPPA-based Luminal and Basal subtypes respectively. RNA-

seq and RPPA both measure a sizable number of regulatory gene products (mRNA or 

protein). MS assays appear to be dominated by identifications to abundant cytoskeletal or 

extracellular proteins, blood-associated proteins. Another group of tumors with high level of 

cytoskeleton or extracellular matrix genes are tightly co-clustered with the normal breast 

samples. Significant lower correlation with RNA-seq data was observed for these samples. 

These results suggests tumor composition is a major factor that drives the discordant 

subgroup definitions in MS and RNA-seq.

Summary

Ideal immunotherapy targets are proteins that are abundant, prevalent, immunogenic and 

expressed by malignant cells rather than infiltrating cells. We have reviewed properties of 

two high-throughput approaches, RNA-seq and MS, that may need to be taken into account 

when interpreting experiments that are intended to identify such targets or to identify 

properties of pathways or patient subpopulations that may benefit from them. Based on a 
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reinterpretation of recently published data sets we do not find evidence to support claims 

that investigators using RNA-seq as a surrogate for protein abundance will be harmed 

relative to using MS. Overall we find a high degree of concordance between the two assays, 

and differences in them suggest that MS may be inferior if blood infiltrating proteins are not 

relevant for the question at hand, or if proteins of interest reside among those that are not 

generally identifiable by MS because of their abundance, peptide composition, or post-

translational modifications.

Our analyses demonstrated that quantitative metrics are not sufficient to draw conclusions. 

Data sets must be interpreted and properties of the assays must play a role in those 

interpretations to make a confident attribution. We also advocate for evaluating technologies 

based on their discordances, not their agreements, which necessarily requires defining an 

experimental estimand. Our focus was using these techniques to identify proteins that are 

abundant, that vary significantly across samples, and likely derive from malignant cells or 

possibly tumor infiltrating cells. We come to different conclusions regarding the strengths 

and weaknesses of MS and RNA-seq compared to CPTAC manuscripts based on these 

considerations. Our analyses suggest that the properties shared by MS assays but absent 

from RNA-seq assays lead (shared idiosyncrasies and biases from blood contamination) 

create correlations are higher than justified by their precision in estimating protein 

abundances or differential abundances. This was illustrated in Fig. 3 which showed that 

when among all proteins replicate MS assays correlate by 0.62 (comparable to RNA-seq MS 

correlations reported by CPTAC sites) and increases to 0.78 when calculated using proteins 

that are enriched only in those assays.

The analyses above are for illustrative purposes only. We did not repeat CPTAC analyses, 

used only a subset of their MS data sets, and we did not use the non-MS data sets that were 

used in each CPTAC sites. We also did not focus in etiological questions, which was the 

focus of the CPTAC studies. Thus we do not believe that any of our conclusions serve as 

evidence to refute their major conclusions, many of which were not reliant solely on MS and 

RNA-seq. We also recognize that MS workflows are available, including workflows that 

target specific protein subsets26 with greater sensitivity, and others that can quantify 

abundances of proteins that reside on the cell surface or that have been secreted and which 

may play a vital role in therapy design27. RNA-seq and MS assays may also be useful when 

combined. Together they may have direct advantages for coping with blood infiltration, 

which will also bring in nucleated cells that will alter both RNA-seq and MS. Because only 

MS data sets can identify proteins known to be exclusively derived from blood (e.g., 

albumun) together blood protein variation may be useful as an instrument28 to remove the 

contribution from cells that derive from the contamination but leave the contribution from 

cells that are in-fact interacting in the tumor microenvironment.
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Fig. 1. Correlations within and between CPTAC colon cancer MS and RNA-seq data sets
In all figures grey points represent proteins observed by MS only in only some samples, 

black points represent proteins not observed by MS but observed by RNA-seq, and colored 

points represent one of ~1,900 proteins observed in all 57 samples (yellow = high mean 

spectral count, red=1 spectral count). A. Association between MS spectral count in two 

different colon tumors showing a higher correlation among proteins that are abundant 

(yellow) than those that are not abundant (red and grey). B. Association between MS 

spectral count (horizontal axis) and RNA-seq abundance estimates (vertical) within a single 

sample. Products of over 13K genes were identified by RNA-seq (black). Proteins observed 

only in MS are largely derived from members of homologous gene families that are difficult 

to infer individually with sparse peptide coverage provided by MS. C. Correlation of RNA-

seq in the two samples. Colored points correspond to one of the genes whose protein product 
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was identified in all samples. Most of the observed proteins are derived from among the 

most abundant 20% of transcripts, and the most abundant proteins are derived from the most 

abundant transcripts, showing that overall abundant transcripts encode abundant proteins and 

abundant proteins derive from abundant transcripts. The dotted line represents the potential 

selection of abundant transcripts, which also selects the abundant proteins. CPTAC analyses 

omitted grey points and black points from their assessment.
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Fig. 2. Blood derived proteins in CPTAC colon cancer as a potential source for apparent 
discordance between RNA-seq and MS data sets
Each point represents the average RNA-seq (vertical) and average MS abundance (horizontal 

axis) calculated across all 57 colon cancer tumors. As in Fig. 1 black points are observed 

only by RNA-seq and grey points are observed in only some tissues. Red points indicate 

proteins identified by two peptides or more in blood of cancer free individuals (blood 

associated proteins), blue are immune-response cell marker proteins and green points 

represent ribosomal proteins. Discordant proteins, those that lie furthest from the cloud of 

points, are significantly enriched for blood proteins, including albumin, which are expected 

to derive from blood infiltration of the tumor and which may vary dramatically between 

tumors. Many blood proteins reside in immune response or inflammatory pathways which 

were identified as pertinent in all CPTAC data sets. Ribosome processing was also identified 

as pertinent. Blood infiltration includes proteins, non-nucleated and nucleated cells, and only 

the latter will contribute to RNA-seq data sets, and thus the discordance may be attributed to 
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sample properties and differences in the assays rather than to biological processes in 

malignant cells that dysregulated RNA and protein abundances.
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Fig. 3. Blood proteins in CPTAC ovarian cancer tissues are enriched among the proteins that are 
most variable across tumors
The standard deviation of 4680 proteins identified at both CPTA laboratories was calculated 

separately using data from each of thirty-two (32) ovarian cancer tissues measured in both 

laboratories. Each point represents the standard deviation observed in each pair of labs. 

Blood associated proteins are red. Points above the dotted line are the 1000 proteins that 

have highest standard deviation averaged across both labs and represent those that may be 

selected for clustering subgroups or for identifying differentially active pathways. The high 

correlation indicates a high degree of reproducibility of the assay across the labs. Blood 

associated proteins account <3% of all proteins identified they represent over 24% of the 

most abundant proteins that would be selected for clustering for to identify associations 

among proteins that may point to regulatory pathways of importance. The large fraction of 

blood associated proteins among this group risks such analyses being dominated by qualities 
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that are unrelated to malignant cells and tumor infiltrating cells which may be operative in 

the tumor microenvironment.
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Fig. 4. Correlation of MS data between two ovarian cancer samples for different subsets of 
proteins
Each figure associate’s log(tumor-reference protein abundance ratio) estimated in the two 

CPTAC labs for a single ovarian cancer sample. The set of panels show how the correlations 

between the two labs can change dramatically when subsetting on different subgroups of 

proteins. A. Correlation of 0.62 for all 7119 proteins measured in the sample at both sites. B. 

Correlation increases to 0.72 when limited to 4680 proteins that were observed in all 32 

samples. This correlation includes 511 (~10%) blood-associated proteins. C. Correlation 

among the blood-derived proteins only (r=0.82). D. Correlation when restricted to the 1000 

proteins that are most variable across all samples. The higher correlation among blood 

derived proteins is reflective of their larger overall range of relative abundances within a 

sample compared to other proteins.
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Fig. 5. Global MS, RNA-seq and RPPA expression patterns among 1000 most variable protein 
abundances in CPTAC breast cancer
Breast cancer proteome was profiled in 77 tumor samples and 3 biological replicates with 

high-quality MS data and 3 normal breast samples. Breast cancer proteins were selected 

based on cross-sample standard deviation. Heatmap indicates relative expression. Samples 

are annotated based on MS versus RNA-seq, MS versus RPPA, and other factors, and on 

RPPA cluster identities.
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