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Abstract

APOE-ε4 is the strongest genetic risk factor for Alzheimer’s disease (AD), and is associated with 

an increase in the levels of amyloid deposition and an early age of onset. Recent data demonstrate 

that AD pathological changes occur decades before clinical symptoms, raising questions about the 

precise onset of the disease. Now a convergence of approaches in mice and humans has 

demonstrated that APOE-ε4 affects normal brain function even very early in life in the absence of 

gross AD pathological changes. Normal mice expressing APOE4 have task-specific spatial 

learning deficits, as well as reduced NMDAR-dependent signaling and structural changes to 

presynaptic and postsynaptic compartments in neurons, particularly in hippocampal regions. 

Young humans possessing APOE-ε4 are more adept than APOE-ε4 negative individuals at some 

behavioral tasks, and functional magnetic resonance imaging has shown that inheritance of APOE-

ε4 has specific effects on medial temporal brain activities. These findings suggest that inheritance 

of APOE-ε4 causes life long changes to the brain that may be related to the late risk of AD. 

Several possible mechanisms of how APOE-ε4 could affect brain neurochemistry, structure, and 

function are reviewed.
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1. INTRODUCTION

The neuropathological processes of Alzheimer’s disease (AD) occur up to twenty years 

before clinical symptoms of the disease. Analysis of brain amyloid imaging and 

cerebrospinal fluid (CSF) biomarkers demonstrate early deposition of amyloid in individuals 

with causative genetic mutations in the amyloid precursor protein (APP), presenilin 1 or 

presenilin 2 [1], as well as those with the APOE-ε4 genetic risk factor [2]. These findings 

raise the possibility of preventing clinical symptoms of AD after recognition that amyloid 

accumulation has occurred [3].
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In addition, these findings highlight the idea that AD processes occur slowly and that the 

onset of disease may begin even before it is recognized by amyloid accumulation. Carriers 

of the presenilin 1 mutation show higher levels of CSF Aβ42 in childhood, as well as 

functional and structural changes in the brain [4]. Young APOE-ε4 individuals (reviewed 

below) show medial temporal lobe changes well before ages of overt amyloid deposition. 

These early differences in brain structure and function may reflect processes that allow the 

earlier amyloid accumulation to occur. In this review, we will consider the data from mice 

and humans that APOE genotype has effects on brain structure and function in the absence 

of amyloid. These effects could help identify new biomarkers of AD risk, complementing 

existing biomarkers based on AD pathological processes.

2. APOE GENOTYPE EFFECTS ON ALZHEIMER’S DISEASE

The greatest genetic risk for late onset Alzheimer’s disease is associated with alleles of the 

apolipoprotein E (APOE) gene. APOE encodes for three isoforms of a secreted 299 amino 

acid protein (apoE2, apoE3, apoE4) that differ in amino acid sequence at positions 112 and 

158 [5]. With an allele frequency of 14%, APOE-ε4 is present in approximately 25% of the 

US population and associated with increased risk of Alzheimer’s Disease [2]; APOE-ε2 is 

present in about 14% of US individuals and has protective effects [6]. APOE-ε4 individuals 

have an earlier average age of AD onset by 10–15 years per allele [2]. Most of the genetic 

effect on age of onset of AD is accounted for by inheritance of APOE alleles [7]. 

Inexpensive genome sequencing and genomic testing now allow individuals to easily know 

their APOE genotype and its implied AD risk early in life, although there remains no clear 

treatments to lower risk associated with APOE-ε4.

In addition to raising disease risk, the APOE-ε4 allele also exacerbates brain changes 

associated with AD, increasing amyloid deposition and dysfunction of the medial temporal 

lobe. The APOE-ε4 allele is associated with increased brain amyloid in mild cognitive 

impairment and the early [8; 9] and late stages of AD (defined in post-mortem APOE-ε4 AD 

brains [10–12] or pre-mortem PET amyloid imaging [13]). This association of APOE-ε4 

allele with increased amyloid is also observed in animal models of AD [12; 14; 15]. 

Anatomically, APOE-ε4 is associated with decreased hippocampal volumes in AD patients 

[16], and cognitively, APOE-ε4 is associated with greater memory impairment in AD [17]. 

Thus, late in life, APOE genotype preferentially has effects on amyloid accumulation and 

medial temporal lobe dysfunction.

However, the effects of APOE genotype are not limited to effects on AD pathological 

processes late in life. Throughout life, the apoE protein is important in brain lipid 

homeostasis [18] and synapse formation [19]. Complete knock-out of APOE causes 

profound alterations in serum lipoprotein types and levels [20; 21], although it does not have 

a strong effect on cognition or brain structure [22]. In order to define the effects of APOE 

genotype on normal healthy brains, data need to be generated from brains in the absence of 

AD pathological changes. In mice, this means analyzing mouse models that have not been 

developed to study AD pathological changes (i.e., mice not transgenic for APP). Any 

cognitive differences based on APOE genotype would not be due to amyloid accumulation, 

but rather to the effects of APOE genotype on other processes. In humans, this means 
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analyzing behavior in individuals with negative amyloid PET scans, or in populations too 

young to contain amyloid-positive individuals (i.e., within the first few decades of life). 

Thus, normal healthy subjects are defined here as those that have not been clinically 

diagnosed with cognitive impairment and do not exhibit AD-like pathology.

3. APOE GENOTYPE EFFECTS ON THE NORMAL BRAIN

3.1 APOE genotype effects on normal brain function in mice

Several models have been created to define the effects of APOE in mice, including APOE 

knock-out animals [23; 24] and animals with APOE expressed as part of a human bacterial 

artificial chromosome [25]. However, the simplest model is one in which the human APOE 

alleles have replaced the murine APOE, known as APOE Targeted Replacement (APOE TR) 

mice [26], which have a normal expression pattern of apoE [27]. The specific effects of 

APOE4 in brain have been investigated by comparing APOE4 TR mice with APOE3 and 

APOE2 TR mice. APOE4 TR mice have no gross AD pathology, such as amyloid plaques 

and neurofibrillary tangles [28], although there is evidence of intraneuronal Aβ42 and 

phospho-tau in hippocampal subfields [29]. Thus, APOE TR mice are a good in vivo model 

to study the effects of APOE alleles in the normal brain lacking classical AD pathological 

changes.

3.1.1 Effects of APOE genotype on mouse behavior—Given the interest in the 

effects of APOE on AD, studies have generally focused more on the effects of APOE 

genotype on hippocampal-based behaviors. APOE4 TR mice have deficits in spatial learning 

as measured by the Barnes Maze [30] and the Morris Water Maze [31], as well as retention 

deficits in other spatial memory and passive avoidance tasks [32]. Female APOE4 TR mice 

are more vulnerable to memory and behavioral deficits than the male mice [32–35]. These 

studies support the conclusion that APOE4 TR mice have relatively subtle but measurable 

impairments in behavior dependent on the hippocampus.

3.1.2 Effects of APOE genotype on mouse brain structure—Neuronal structure 

has been investigated in APOE TR mice with biocytin filling of neurons, Golgi staining, and 

immunohistochemistry. These studies have revealed that neurons from young APOE4 TR 

mice (one to seven months of age) have simpler structures compared to APOE3 TR mice in 

the amygdala [28], cortical layers II/III [36], and the entorhinal cortex [30], including less 

dendritic branching, reduced spine density, and shorter dendritic spines. In older mice (16 

months), APOE4 TR mice have fewer inhibitory neurons in the hippocampal hilus [37]. The 

reduced neuronal complexity may be related to spatial learning and memory impairments 

compared to APOE2 and APOE3 TR mice (section 3.1.1). Together, these data show that 

APOE4 is associated with gross changes to neuronal morphology throughout the brain.

3.1.3 Effects of APOE genotype on mouse brain function—The behavioral and 

structural differences observed in APOE4 TR mice also have molecular and biochemical 

correlates in the brain. Post-synaptically, middle-aged APOE4 TR mice have reduced 

spontaneous excitatory postsynaptic currents in the amygdala [28], but increased excitatory 

activity at old age [38]. APOE TR mice show alterations in long-term potentiation (LTP) in 
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different subregions of the hippocampus related to the NMDA glutamate receptor 

(NMDAR)-dependent signaling pathway: APOE4 TR mice show increased LTP in the 

mossy fibers compared to APOE2 TR mice [39], while APOE4 TR and APOE2 TR mice 

have reduced LTP compared to APOE3 TR mice in the dentate gyrus [40]. In addition, the 

hippocampi of the APOE4 TR mice show an increase in NMDAR-related signaling [39] and 

an age dependent difference in levels of a phosphorylated NMDAR subunit [41]. This latter 

effect may be due to differences in levels of the apoE receptor LRP1 [41].

Studies also demonstrate pre-synaptic differences based on APOE genotype. Compared to 

APOE2 and APOE3 TR mice, APOE4 TR mice have altered levels of the vesicular 

glutamate transporter, VGLUT1 [29; 42]. These effects are related to the diet of the animals, 

such that a diet high in fat results in APOE4 TR mice with lowered VGLUT1 levels [29; 43], 

while APOE4 TR mice fed a normal diet have increased VGLUT1 levels [42]. Since apoE is 

a lipid transporter, fat content in the diet may alter the pathological effects of APOE4 [43]. 

APOE4 TR mice also have increased brain glutamine levels and decreased levels of 

glutaminase, the enzyme responsible for the conversion of glutamine to glutamate [42]. 

Interestingly, several of the pre-synaptic differences observed are related to the glutamate 

cycle, suggesting that APOE4 may be disrupting the normal cycling of glutamate prior to 

AD onset [44].

Together, the studies of APOE4 TR mice show that, at an early age, APOE4 is associated 

with an altered brain biochemistry, reduced dendritic spine density, and deficits in behavior 

related to hippocampal functions.

3.2 APOE genotype effects on normal brain function in humans

Although the APOE knock-in mice allow easy analysis of brains homozygous for specific 

APOE alleles, human studies of the effects of APOE genotype have relied mostly on APOE-

ε4 heterozygotes. While APOE-ε4/ε4 homozygotes are common in AD populations 

(approximately one tenth of AD patients in research studies [45]), they comprise less than 

two percent of control populations [46]. APOE-ε3/ε3 homozygotes comprise 50–75% of 

control populations [46], and are commonly used as a control sample.

3.2.1 Effects of APOE genotype on human behavior—There have been few studies 

on the effects of APOE genotype on behavior in humans ([47–50], with somewhat 

inconsistent results, perhaps due to confounding effects of age and sex. APOE genotype has 

no effect on measures of intelligence [51–54], or ability to perform Memory Island, mental 

rotation, and spatial span tasks [50]. However, for some measures, APOE-ε4 is associated 

with behavioral deficits: APOE-ε4-positive children have poorer immediate and delayed 

recall on the Family Pictures test and worse spatial memory retention on the Memory Island 

test, when sex is taken into account [47]. In several behavioral tasks, APOE-ε4 confers an 

advantage: college-aged APOE-ε4 carriers perform better in executive attention, verbal 

fluency, and memory tasks [55–58]. This positive effect at a young age of a characteristic 

that is detrimental in old age is known as an antagonistic pleiotropy hypothesis [58; 59]. An 

advantage of APOE-ε4 at a young age could help explain its persistence in the human 

population despite slightly negative effects on risk of coronary heart disease [60].

DiBattista et al. Page 4

Curr Alzheimer Res. Author manuscript; available in PMC 2018 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Any behavioral advantages of APOE-ε4 seem to disappear by middle age, with even greater 

impairment in old age; these effects may be due to the early accumulation of amyloid in 

APOE-ε4 subjects [2]. APOE-ε4-positive elderly subjects score lower on the NINL and 

Novel Location tests, suggesting that APOE-ε4 impairs object recognition and spatial 

memory [48]. In addition, APOE-ε4 carriers show poorer performance in a measure of 

executive function [51]. APOE may also affect the risk of seizures prior to the development 

of AD. Seizures are common early in the process of cognitive decline or the development of 

AD, and the onset of seizures is associated with earlier onset of dementia [61]. Inheritance 

of APOE-ε4 may lead to earlier onset of chronic seizures [62] and increase the risk of 

epilepsy after traumatic brain injury [63]. Thus, behavioral performance differences between 

cognitively normal APOE-ε4 carriers in published studies may be due to the age of subjects; 

specifically, older APOE-ε4 carriers may have accumulated underlying pathology with age 

impairing performance compared to non-APOE-ε4 carriers.

3.2.2 Effects of APOE genotype on human brain structure—Consistent with the 

more extensive data in mouse brains, hippocampal neurons from APOE-ε3/ε4 humans in 

their eighties without post-mortem evidence of AD pathology have lower dendritic spine 

density [64]. APOE-ε4 carriers at birth have reduced grey matter volume in temporal areas 

and increased grey matter volume in frontal areas, suggesting early developmental 

differences in brain structure dependent on APOE genotype [65; 66]. In young healthy 

APOE-ε4 carriers (average age of 20–25 years), white and grey matter volumes in the 

medial temporal lobe (MTL) were reported to be either larger [67], unchanged [56; 68–70] 

or smaller [71; 72]. There are no differences, however, in the temporal cortex or 

hippocampus of middle-aged adults, although APOE-ε4 carriers had thinner frontal cortices, 

while APOE-ε2 carriers had thicker parahippocampal cortices [73; 74]. As the average age 

of subjects increase from 40 to 65 years of age, MTL volumes in APOE-ε4 carriers decrease 

compared to non APOE-ε4 carriers [74–76]. In later ages, APOE-ε4 is associated with 

accelerated brain atrophy in the MTL with AD [77–79]. Overall, these data suggest that the 

MTL develops differently in APOE-ε4 carriers from birth, and any subtle differences in the 

MTL disappear as more dramatic APOE effects on AD pathology and MTL volume develop 

later in life.

3.2.3 Effects of APOE genotype on human brain function—Like behavior, brain 

function in APOE-ε4 carriers may also be altered prior to AD symptom onset. FDG-PET 

studies in healthy individuals show reduced glucose utilization in APOE-ε4 positive 

individuals [80–82]. In college-aged APOE-ε4 carriers, H2
15O PET uptake is decreased in 

the left right superior temporal and left fusiform gyri, but increased in the left middle 

temporal and right transverse temporal gyri during a non-verbal memory task [83]. As aging 

progresses, these increases disappear. Subjects 50–63 years of age with a family history of 

AD have a decline in glucose metabolism in the temporal cortex and parahippocampal gyrus 

when imaged before and after a 2 year interval [81]. During a non-verbal memory task, 

cognitively intact elderly APOE-ε4 carriers have altered temporal lobe activation as 

measured by H2
15O PET [82]. In a study of cognitively normal subjects of 30–95 years of 

age, APOE-ε4 carriers have a lower uptake of FDG-PET several brain regions, including the 

temporal lobe [80]. However, APOE-ε4 carriers who were highly active and exercised 
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regularly have greater temporal lobe activation when compared to sedentary carriers [84], 

implying that behavior and lifestyle influence effects of APOE genotype. Overall, brain 

activation may be increased in select brain areas in young APOE-ε4 carriers, but decreased 

in healthy older APOE-ε4 carriers, perhaps due to underlying age-related pathology.

Functional MRI (fMRI) studies found an increased level of brain activity in the default mode 

network in APOE-ε4 individuals at 20–35 years old in the MTL [85]. This study also found 

that there is more activation in the hippocampus in APOE-ε4 carriers during an encoding 

task [85]; other studies showed differences in MTL activation by APOE genotype during 

diverse behavioral tasks [57; 86; 87]. In cognitively normal healthy young adults, APOE4 

carriers had reduced grid-cell-like representations in the entorhinal cortex, an area of the 

MTL affected early in AD, but increased hippocampal activation [88]. Similar to the 

findings with PET imaging, it appears that brain activation may be increased in select brain 

areas in APOE4 carriers, perhaps as a compensatory response for low activation other brain 

areas [88]. It is hypothesized that MTL activation may be increased in younger APOE-ε4 

carriers but decreased in older APOE-ε4 carriers [89], and that this activity is dependent on 

task difficulty: healthy middle-aged APOE-ε4 carriers have more instances of higher 

activation compared to non-carriers in a low demand working memory task, but not in 

moderate to high demand tasks [90].

These studies support a model of APOE-ε4 in young adults being associated with higher 

MTL activity and equal or improved cognition, but that with aging (and development of AD 

pathological changes), MTL activity and cognitive performance decreases. This model could 

be tested in analysis of APOE4 mouse models over time, or it could be addressed in humans 

with more in depth analysis of MTL-related behaviors and brain activity at different ages. 

The phenotypes associated with APOE-ε4 also could be studied in future work on young 

adults to investigate whether socioeconomic and environmental effects interact with APOE-

ε4 to alter cognition and brain function. In addition, studies with more participants using 

uniform methods and exclusion criteria would also further clarify conflicting results from 

existing studies. Together, these studies suggest that APOE4 may predispose the brain to AD 

pathology later in life by increasing MTL activity over decades. Further investigation of 

differences in brain activity associated with APOE genotype may aid in identifying new 

biomarkers of AD risk, allowing development of preventative approaches aimed at 

modifying these biomarkers.

4. MECHANISMS OF EFFECTS OF APOE GENOTYPE EFFECTS

The consistent findings in studies of mouse models and young humans have lead to the 

development of several hypotheses of how APOE genotype may affect normal brain 

function. Four considered here are that APOE genotype affects levels of apoE, lipidation of 

apoE, brain inflammation, and neuronal hyperexcitability.

4.1 Levels of apoE isoforms

In mice, the apoE4 protein is reproducibly found at lower levels in the brain and blood 

compared to apoE3 or apoE2 [41; 91; 92], although levels of APOE mRNA are unaffected 

[92]. Lower apoE4 levels may be due to impaired folding and increased degradation of 
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apoE4 in astrocytes compared to apoE2 and apoE3 [93]. In humans, APOE-ε4 is associated 

with lower apoE levels and APOE-ε2 with higher apoE levels both in CSF [94], and in 

plasma [94; 95]. Levels of CSF and plasma apoE did not correlate well with each other, but 

CSF apoE levels are correlated to CSF Aβ42 levels [94]. In a large prospective study, low 

plasma apoE levels correlate with increased risk of AD, controlling for APOE genotype 

[96]. These studies suggest that APOE-ε4 may contribute to increased AD risk by reducing 

total apoE levels. Decreased apoE would diminish the normal apoE functions, and could be 

responsible for reductions in synaptic density and the associated behavioral deficits [19]

4.2 ApoE lipidation

The overall level of apoE may not be as important is its form in lipoproteins. Brain apoE is 

secreted by astrocytes [97] as part of discoidal lipoproteins [98], which mature into high 

density lipoproteins in the CSF [99]. Secreted apoE is lipidated through interactions with the 

ABCA1 transporter [100]. Studies of viral expression of APOE show that brain apoE4 is 

lipidated significantly less than apoE2 [101]. Activation of apoE production and lipidation 

can occur through the LXR/RXR system, which induces expression of both APOE and 

ABCA1 [102]. Treatment of AD mouse models with LXR agonists reduces Aβ levels and 

improves cognition [103–105]. Treatment with the RXR agonist bexarotene also improves 

Aβ clearance and cognition [106], in a manner dependent on the presence of both APOE 

[106] and ABCA1 [107]. Other treatments to improve apoE4 lipidation (e.g., microRNA-33 

induction [108], retinoic acid [109]) could prove useful in preventing brain phenotypes 

associated with APOE4 and neurodegeneration.

4.3 Neuroinflammation

Functional apoE could also protect the brain from inflammatory processes. ApoE reduces 

the inflammatory responses of macrophages [110; 111] and microglia [112] in vitro, and 

APOE4 TR mice are susceptible to brain damage related to inflammatory processes such as 

experimental autoinflammatory encephalitis [113], traumatic brain injury [114], and 

lipopolysaccharide (LPS) exposure [111; 115]. After LPS exposure, the APOE4 genotype in 

mice is associated with higher levels of pro-inflammatory cytokines [116], enhanced NF-kB 

signaling [117] and increased loss of synaptic markers [115]. Chronic low-level brain 

inflammation in the presence of apoE4 could leave the brain more susceptible to injuries that 

accumulate with aging [111; 118]. This hypothesis would suggest that anti-inflammatory 

approaches may be more effective in protecting humans with APOE-ε4 from brain damages. 

Indeed, the protective effects of non-steroidal anti-inflammatory drugs (NSAIDs) against 

risk of AD are limited to individuals with APOE-ε4 [119].

4.4 Hyperexcitability

The alterations of pre- and post-synaptic molecules associated with APOE genotype could 

lead to aberrant hippocampal function. APOE4 TR mice have higher levels of excitatory 

synaptic activity in amygdala neurons compared to other APOE genotypes [38]. APOE4 TR 

mice show an increased risk of seizures and synchronous hippocampal neurons firing, as 

well as a greater sensitivity to treatment with a drug to induce seizures [120]. Treatment with 

an RXR agonist reduced epileptiform spiking seen in mouse models of AD and epilepsy 

unrelated to APOE genotype [121]. Aged female APOE4 mice have fewer interneurons in 
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the hippocampal hilus [37], also altering the excitability of the dentate gyrus. 

Hyperexcitability associated with APOE-ε4 could lead to hippocampal damage, 

predisposing to AD and thus, anti-seizure approaches could prove useful in preventing AD 

associated with inheritance of APOE-ε4.

5. CONCLUSION

APOE genotype is recognized as the strongest genetic risk factor of AD [122; 123]. The 

recent studies outlined here support the hypothesis that APOE genotype is also associated 

with differences in normal brain function early in life before brain amyloid accumulates. 

Animal studies have demonstrated that while APOE4 TR mice lack classical AD 

pathological changes, they have impairments in behaviors dependent on the hippocampus, 

and show gross changes to neuronal morphology and brain biochemistry. Human studies 

have shown that the brain develops differently in APOE-ε4 carriers from birth, such that 

brain activation may be increased in select brain areas in young APOE-ε4 carriers. As 

APOE-ε4 carriers reach ages of amyloid accumulation, decreases in glucose utilization, 

brain activity and gray matter occur. These brain differences associated with APOE 

genotype may arise from effects on apoE levels, apoE lipidation, brain inflammation, or 

hippocampal hyperexcitability prior to the development of AD pathological changes. 

Whether these early effects of APOE are related to the later development of AD is unknown, 

but, importantly, several of them have been shown to be altered by diet or drugs. Studies of 

APOE-ε4 positive individuals early in life could lead to the identification of new biomarkers 

of AD risk not associated with AD pathological changes, and these biomarkers would allow 

very early preventative therapies to be tested in APOE-ε4 positive individuals.
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