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SUMMARY

Advance in the exome-wide sequencing analysis contributes to identifying hundreds of
genes that are associated with early-onset epileptic encephalopathy and neurodevel-
opmental disorders. On the basis of massive sequencing data, functional interactions
among different genes are suggested to explain the common molecular pathway
underlying the pathogenic process of these disorders. However, the relevance of such
interactions with the phenotypic severity or variety in an affected individual remains
elusive. In this report, we present a 45-year-old woman with neurofibromatosis type |
(NF1), infantile-onset epileptic encephalopathy, and severe developmental delay.
Whole-exome sequencing identified de novo pathogenic mutations in NFI and the
Schaaf-Yang syndrome-associated gene, MAGEL2. Literature-curated interaction data
predicted that NFI and MAGEL2 proteins were closely connected in this network via
their common interacting proteins. Direct conversion of fibroblasts into neurons
Department of in vitro showed that neuronal cells from 9 patients with NFI expressed significantly
Pediatrics, Graduate lower levels of MAGEL2 (54%, p = 0.0047) than those from healthy individuals. These
School of Medical data provide the first evidence that pathogenic mutations of NFI deregulate the
expression of other neurodevelopmental disease-associated genes. De novo mutations
in multiple genes may lead to severe developmental phenotypes through their cumula-
tive effects or synergistic interactions.
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Neurofibromatosis type 1 (NF1) is a neurocutaneous
syndrome with autosomal dominant patterns of inheri-
tance.! Affected individuals show characteristic skin
lesions of café-au-lait spots, multiple tumors, and variable
degree of mental disability with or without autistic fea-
tures. The NFI gene is located at chromosome 17q11.2,
encoding 2,839 amino acid protein neurofibromin.” NF1
mutations cause the hyperactive extracellular signal-regu-
lated kinase (ERK) pathway, thereby leading to accelerated
cell growth and tumor formation.” Hyperactive signals in
synaptic ERK pathways are associated with both epilepsy
and mental development in childhood.* Previous studies
demonstrated that the prevalence (0.76%) of infantile
spasm (IS) or early-onset epileptic encephalopathy (EOEE)
in NF1 has been reported to be higher than those (0.02-
0.05%) in general populations.” Neuroimaging studies also
revealed that cortical and subcortical lesions were occa-
sionally found in NF1 patients. However, specific brain
lesions or genetic backgrounds have not been disclosed for
NF1 in the majority of cases with IS/EOEE. We experi-
enced a case of a 45-year-old female with NF1, EOEE, and
severe developmental delay. Atypical phenotypes in the
present case were studied on the basis of genetic as well as
biological backgrounds.

MATERIALS AND METHODS

This study was approved by the Institutional Review
Board at Kyushu University (#461-00). Written informed
consent was obtained from the parents. Experiments were
conducted under a stringent compliance to the institutional
guideline and our experimental protocol (23-53). Case
report and experimental procedures for whole-exome
sequencing (WES), in vitro conversion of neurons, quantita-
tive polymerase chain reactions (PCR), and bioinformatics
are presented in Appendix S1 and Figs. S1, S2).

RESULTS
De novo mutations in NF1 and MAGEL?2
De novo mutations in NFI (NM001042492.2:

c.4835 + 1G>T) and MAGEL2 (NM019066.2: ¢.219C>G,
c.224delC) were validated with Sanger sequencing
(Figs. 1A,B). The former mutation occurred at the splicing
junction of exon 36 in NFI, disrupting the functional
expression of neurofibromin. The latter was mapped to the
coding region of MAGEL?2 and was considered to produce a
truncated form of MAGEL2. We further investigated
whether the mutated allele was located on the paternal
allele.” Methylation-sensitive digestion with Smal followed
by PCR amplification and direct sequencing of the flanking
region revealed that the mutated allele remained intact after
the Smal digestion (Fig. 1B). We thus confirmed that the de
novo MAGEL2 mutation occurred at the maternal allele,
which was fully methylated in lymphocytes. Microarray-
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based comparative genome hybridization (CMA ver. 8.1 at
Baylor MGL; data not shown) excluded that this case car-
ried pathogenic copy number variants (CNVs).

Functional interaction between NF1 and MAGEL?2

The de novo MAGEL?2 mutation in this case was unlikely
a primary cause of the patient’s developmental phenotypes.
We considered the double mutations of NFI and MAGEL?2
as an extremely rare genetic event® (Table 1). We alterna-
tively interpreted this event to be possibly relevant with the
unusual NF1 phenotype of this case. To explore whether
NF1 and MAGEL2 might work as genetic modifiers for
each other, we used STRING, a protein-protein interaction
database (http://string-db.org/). This open database pre-
dicted that NF1 and MAGEL2 were directly or indirectly
connected via common binding proteins in a functional net-
work consisting of 35 proteins (nodes) and 84 interactions
(edges) (Fig. S2A). Given the number of edges expected to
be 48, these 35 proteins were considered to have 1.8-fold
enriched protein-protein interactions (p = 2.25 x 107°).
Thus, this network was suggested to have functional enrich-
ment in certain molecular pathways. Indeed, the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) analyses showed that signaling molecules
associated with “chromatin binding (GO:0003682),” “RNA
polymerase (GO:0003899 and KEGG:3020),” and “RAS
signaling pathways (KEGG:4014)” were enriched in this
network (Figs. S2B,C).

Altered expression of MAGEL2 in NF1 patient-derived
neurons

To validate the possible functional interplays between
NF1 and MAGEL2, we examined whether pathogenic
mutations in NFI might influence neuronal expression of
MAGEL2. We determined the transcriptional activation of
NFI and MAGEL? using the direct conversion system of
fibroblast into neuron in vitro. Quantitative analyses on
mRNA expression showed that MAGEL2 expressions in
fibroblasts did not differ between the patients and controls.
The neuronal conversion induced robust increase in the
MAGEL?2 expression (Fig. 1C). Notably, the neuronal
expression of MAGEL2 was decreased to 54% of that in
healthy controls (n =9 for each group, p = 0.0047, Stu-
dent’s t test; Fig. 1C). The neuronal expression of MAGEL2
in the present case was 41% of that in healthy controls
(p = 0.0189, Student’s t test; data not shown). Neuronal
conversion also induced higher expressions of imprinted
genes (UBE3A and CYFIPI) at the chromosome 15p11.2
region than those in fibroblasts (Fig. 1D). However,
induced neurons from NF1 patients and healthy controls
expressed these genes at comparable levels. These data con-
firmed the epistatic regulation of MAGEL?2 expression by
NF1 and illustrated the specific effects of the NF 1 mutations
on transcriptional activation of MAGEL2 during the neu-
ronal conversion.
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Figure 1.

De novo mutations identified in the present case and functional interaction between NFI and MAGEL2. (A) De novo mutation at the splic-
ing junction of exon 36 in NFI. The sequence chromatograms of father, mother, and the patient are shown. Red arrow indicates that this
mutation occurred at chr17:29592358 (NM_001042492.2:c.4835 + |G>T). Boxed letters above the sequencing data denote exonic
sequences. (B) MAGEL2 mutation in the present case. Aligned data illustrate that the mutation occurred de novo in this patient at
chr15:23892666, 23892671 (NM_019066.4:c.219C>G, c.224delC). Sequencing results before (Smal~) and after the Smal digestion
(Smal™) indicate that this mutation occurred at the methylated (or maternally inherited) allele. (C) MAGEL2 mRNA expression before and
after neuronal induction. White and black bar plots represent the relative expression levels in indicated cells from healthy controls
(n = 9) and NFI patients (n = 9), respectively. (D) CYFIP| and UBE3A expressions in fibroblasts and induced neurons. The gene expres-
sion profiles were quantitated in vitro using the cells from healthy controls and NF| patients (n = 9 for each group). Values in C and D
are shown as mean £ SD of each group. Asterisk indicates the p value of less than 0.05 (Student’s t test).
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To test whether NF'/ mutations might affect other genes  fibroblasts and induced neurons (Fig. S3). As expected,
associated with EOEE, we randomly selected 6 EOEE-asso-  in vitro conversion of fibroblasts into neurons resulted in 2-
ciated genes (CDKLS5, CHD2, ARX, KCNTI, SCNIA, and to 5-fold higher expression of these six genes than those in
TRIMS8)* ™3 and assessed their expression profiles in both  fibroblasts. When we compared their expression levels in
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Table I. Clinical features of the present case in
comparison with those of neurofibromatosis type | and
Schaaf-Yang syndrome
Present  Neurofibromatosis  Schaaf-Yang
case type | syndrome
Mutated gene NFI, NFI MAGEL2
MAGEL2
(Band Locus) (17q11.2) (15ql1.2)
Phacomatosis and
associated lesion
Café-au-lait spots + + -
Neurofibroma + + —
Lisch nodules of iris - + -
Dysmorphism
Bitemporal narrowing — — +
of facial appearance
Almond-shaped — — +
palpebral fissures
Small hands + — +
Joint contractures - - +
Tumorigenesis and
skeletal problem
Brain tumor
Abnormal MRl signal + + —
Bone fracture - + -
Neurological sign
Feeding problem — - +
Hypotonia + + +
Developmental delay + + +
Autism spectrum + + +
disorder
Seizure + + -

neurons, only KCNTI was expressed at a significantly lower
level (69%) in NF1 neurons than that in healthy controls
(p = 0.011, Student’s t test; Fig. S3). All the other genes
were expressed in neurons from NF1 patients at similar
levels to those in controls. These data suggested that NF
mutation attenuated the expression of a subset of EOEE-
associated genes.

DiScuUSSION

We presented a Japanese woman who had dysmorphic
appearance, severe intellectual disability, and intractable
epilepsy with a history of infantile-onset seizures. This is
the first case of NF1 carrying another de novo mutation in a
gene that is known to cause different neurodevelopmental
disorders. Previous studies demonstrated that NF1 patients
are susceptible to the onset of epileptic encephalopathy,
such as IS and EOEE.'*

The WES and subsequent analyses led us to the following
two discussions: First, the severe phenotypes of this patient
resulted solely from the NFI mutation regardless of the
MAGEL?2 mutation. Second, the double mutations in NF/
and MAGEL? exerted cumulative or synergistic effects to
produce more severe phenotypes than those expected for
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individuals with a single gene mutation in either NF/ or
MAGEL?2.

The first perspective might be valid taking the allele-spe-
cific expression of MAGEL?2 into account. Indeed, truncat-
ing MAGEL2 mutations proved to be critical for
dysmorphic appearance and hypothalamic dysfunctions
exclusively when the mutations occurred in the paternal
alleles.” Despite these facts, experimental studies have
shown that MAGEL?2 was widely expressed in embryonic as
well as in the adult brains.'> Moreover, allele-specific
expression of imprinted genes varies over time and by
region in neuronal subpopulations.'> Recent studies have
shown that MAGEL2 and NFI were expressed from the
maternal allele in embryonic tissues under certain condi-
tions, suggesting that Prader-Willi syndrome—associated
genes in the chromosomal region at 15q11—q13 have epige-
netic flexibility.'®!” With our findings of lower expression
of MAGEL? in neurons from NF1 patients, we considered
that the MAGEL2 mutation on the maternal allele caused
only negligible effects on neuronal phenotype, whereas it
could reach the pathogenic level when the additional muta-
tion in NFI coincided. Therefore, it cannot be safely con-
cluded that the MAGEL2 mutation in the maternal allele
was irrelevant to the neurodevelopmental phenotypes in this
case.

MAGEL2 protein belongs to a family of melanoma-asso-
ciated antigen (MAGE) domain-containing molecules,
which has been characterized as highly expressed genes/
proteins in various types of tumors.'® Among MAGE family
proteins, NRAGE was shown to interact with p75 neu-
rotrophin receptor and to promote nerve growth factor
(NGF)-dependent apoptosis, suggesting that NRAGE could
be a component of intracellular signaling pathways."® Simi-
larly, NFI is involved in the NGF-dependent survival of
embryonic sensory and sympathetic neurons.”® These data
supported our hypothesis that MAGE family proteins and
NF1 may cooperatively regulate the maturation of neurons
under certain molecular pathways, as the network in this
study illustrated.

The interaction database and subsequent bioinformatics
analysis revealed that the NF1- and MAGEL2-containing
network was significantly enriched in the proteins associ-
ated with particular cellular functions, such as RAS signal-
ing. Although physiological functions of MAGEL2 in
neurons remain unknown, this result raised a new possibility
that MAGEL2 may regulate the RAS signals cooperatively
with NF1 in the developing brain. Thus, the hypomorphic
mutations in the two genes may cause more profound effects
on neuronal dysfunctions than those resulting from the
mutation in either gene.

According to the protein interaction database, NF1 and
MAGEL?2 were unlikely to constitute a protein complex.
Rather, our experimental data supported evidence that NF1
acts as an epistatic regulator of MAGEL?2 expression. In line
with these data, we conceptualized that the de novo
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mutation of MAGEL2 exaggerated neuronal dysfunctions
owing to the NF/ mutation and hyperactive RAS-ERK sig-
naling. Thus, the severe neurological phenotype of our case
can be regarded as an extended model of digenic inheritance
or the transheterozygote at two loci.?"** To determine their
additive or synergistic effects on RAS signaling and neuro-
logical deficits, more studies using genetically engineered
mice will be necessary.

Missing pieces are left for our future study to investigate
whether and how recessive mutations inherited from the
patient’s parents could modify the phenotypes of other cases
with atypical phenotypes of NF1. Accumulation of genome-
wide analysis data for NF1 patients with IS and EOEE will
clarify these issues.
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Additional Supporting Information may be found in the
online version of this article:

Figure S1. Dysmorphic appearance of the present case.

Figure S2. Bioinformatics analyses on interaction
between NF1 and MAGEL2.

Figure S3. Expression of epileptic encephalopathy-asso-
ciated genes in fibroblasts and induced neurons.

Appendix S1. Materials and methods.
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