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Abstract

The neuroendocrine brain or hypothalamus has emerged as one of the most highly sexually 

dimorphic brain regions in mammals, and specifically in rodents. It is not surprising that 

hypothalamic nuclei play a pivotal role in controlling sex-dependent physiology. This brain region 

functions as a chief executive officer or master regulator of homeostatic physiological systems to 

integrate both external and internal signals. In this review, we describe sex differences in energy 

homeostasis that arise in one area of the hypothalamus, the ventrolateral subregion of the 

ventromedial hypothalamus (VMHvl) with a focus on how male and female neurons function in 

metabolic and behavioral aspects. Because other chapters within this book provide details on 

signaling pathways in the VMH that contribute to sex differences in metabolism, our discussion 

will be limited to how the sexually dimorphic VMHvl develops and what key regulators are 

thought to control the many functional and physiological endpoints attributed to this region. In the 

last decade, several exciting new studies using state-of-the-art genetic and molecular tools are 

beginning to provide some understanding as to how specific neurons contribute to the coordinated 

physiological responses needed by male and females. New technology that combines 

intersectional spatial and genetic approaches is now allowing further refinement in how we 

describe, probe, and manipulate critical male and female neurocircuits involved in metabolism.

Introduction

If one asks the general question as to why sex differences are needed in metabolic circuits, 

the obvious answer is to preserve and enhance reproductive capacity. Embedded in this 

conclusion is the overall objective in terms of evolutionary pressure on males and females to 

reproduce. This topic was recently reviewed by Torre and Maggi (Della Torre and Maggi 

2017), which describes how in females, but not males, evolutionary pressure in a changing 

environment is needed to optimize energy intake and expenditure with reproduction. This 

pressure is evident in invertebrates as reviewed by (Mccall 2004), with demands increasing 

in placental and lactating vertebrates. Over the last two decades, works from several labs 

have created an overall narrative as to how neurons in the VMHvl help to control the 

sexually dimorphic male and female behavioral and metabolic responses (Fig. 1). The 
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VMHvl is one of the many brain regions that expresses a major detector of the sex steroid 

estrogen, estrogen receptor alpha (ERα, encoded by Esr1), where expression increases in 

females postnatally (Fig. 2a). Other ERα-expressing regions within the medial basal 

hypothalamus (MBH) include the nearby arcuate nucleus (ARC), as well as the medial 

preoptic area (MPOA), and the bed nucleus of the stria terminalis (BnST) (Brock et al. 

2015). In the VMHvl, this nuclear receptor is predominantly nuclear, and thus, one can 

reasonably assume that nearly all estrogen signaling in the VMHvl occurs through genomic 

rather than non-genomic actions. One of the striking features of ERα is the sexually distinct 

pattern in rodents (Koch 1990), with both transcripts and protein levels much higher in the 

female VMHvl; refer to (Correa et al. 2015) and references within. Contribution by the two 

other estrogen receptors is assumed to be minimal as evidenced by the exceeding low 

transcript levels for both estrogen receptor beta (ERβ) and the 7-transmembrane G-protein-

coupled estrogen receptor 1 (GPER-1), formerly referred to as GPR30 (Chimento et al. 

2014; Prossnitz et al. 2008). Indeed, expression of ERβ (Zuloaga et al. 2014) and GPER 

(Brailoiu et al. 2007) is sparse or undetectable in the adult VMHvl. The VMHvl also 

expresses Cyp19A1 that encodes aromatase, an essential enzyme needed for local 

conversion of androgens to estrogens (Stanic et al. 2014; Wu et al. 2009). In males, 

expression of aromatase in the VMHvl region is thought to be critical for the early 

masculinization of the male brain via estrogen, as reviewed in (Yang and Shah 2014). 

Indeed, the loss of aromatase in males impairs aggression as measured by the frequency and 

duration of attacks in a standard resident/intruder assays.

Another nuclear receptor, the progesterone receptor (PR), is also expressed in the VMHvl. 

The PR gene is a well-established transcriptional target of ERα. Interestingly, while PR has 

emerged as one of the sexually dimorphic transcripts detected in the adult VMHvl (Yang et 

al. 2013), at earlier stages prenatally, PR expression is not confined to the VMHvl but 

instead is unrestricted and found throughout the entire VMH (Correa et al. 2015). Thus, its 

pattern of expression in the VMH is not necessarily identical to that of ERα at all 

developmental stages. Indeed, while one observes a clear sex-dependent pattern of ERα 
expression beginning postnatally, the same cannot be said for PR. In this instance, PR 

transcripts are not differentially expressed until adulthood (Hagihara et al. 1992; Simerly et 

al. 1990).

The VMH Mediates Sex Differences in Energy Expenditure

This chapter will focus primarily on estrogen effects on the VMHvl, with emphasis on 

female metabolism. Others have reviewed some of the more recent work on the VMHvl in 

male sexual behavior (Yang and Shah 2014). When appropriate, we will highlight general 

statements inferred from studies in both rats and mice. Much of the differences noted for 

females emerged over a century ago with the seminal observations by Strominger. Using 

methods of the day and challenged by their limited access to reagents post-WWII, they 

noticed a tight correlation between the estrus cycle and peaks of activity concomitant with 

decreased food intake (Brobeck et al. 1947). If we fast forward to the next century, genetic 

manipulations achieved by either SiRNA- or Cre-mediated disruption of estrogen signaling 

clearly highlight the VMHvl as a center for sex differences in female metabolism. Indeed, 

ShRNA knockdown of ERα in the rat VMH increases food intake and decreases diet-
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induced thermogenesis and physical activity, resulting in obesity (Musatov et al. 2007). 

Conditional knockout of ERα in the VMH using Sf1Cre also lowers brown adipose tissue 

(BAT) thermogenesis in female mice and yields a mild transient weight gain in females due 

to increased size of gonadal fat pads (Xu et al. 2011). It should be mentioned that some of 

the earlier work using stereotaxic delivery of SiRNA directed against ERα to the entire 

VMH region showed pronounced increase in food intake (Musatov et al. 2007). However, 

three different genetic models generated to date using different Cre drivers, including 

Esr1Sf1-Cre, Esr1Nkx2–1Cre, and Nkx2-1Sf1-Cre, fail to support the notion that estrogen 

signaling in the murine VMHvl directly controls food intake (Xu et al. 2011, Correa et al. 

2015), and unpublished data H.A.I.). It is worth noting that within the VMHvl, the Cre-

based recombination efficiency is substantially higher using Nkx2-1Cre versus Sf1Cre, with 

the former effecively eliminating all ERα in this hypothalamic subregion. Table 1 lists the 

phenotypes for these three different mouse models that eliminate ERα in the VMHvl.

VMHvl Development

VMH projections are visible as early as embryonic day (E) 10.5 when few postmitotic 

neurons have been born, suggesting that formation of VMH circuitry begins at the onset of 

neurogenesis (Cheung et al. 2013) and also reviewed in (McClallan et al. 2006). One can 

follow in time the original migration from the ventricular zone to the VMHvl by BrdU 

labeling (Tran et al. 2003). One of the earliest molecular markers expressed throughout the 

VMH is the nuclear receptor steroidogenic factor 1 (SF-1, NR5A1), which appears at E9 

(Ikeda et al. 2001). Although SF-1 is not required for the initial organization and migration 

of neurons in the developing VMH nucleus (Ikeda et al. 1995; Tran et al. 2003), this 

transcription factor is essential for terminal differentiation and maintenance of VMH 

neuronal populations (Davis et al. 2004; McClallan et al. 2006). The loss of SF-1 also results 

in diminished efferent projections to the amygdala (Tran et al. 2003) and altered afferent 

projections from the preoptic area to the VMH (Budefeld et al. 2011).

Earlier descriptive studies based on immunofluorescence staining and in situ hybridization 

of SF-1 protein and transcripts, respectively, supported the idea that SF-1 marks all 

embryonic neurons that would give rise to the VMH proper. However, comparison of the 

VMH neurons derived from the SF-1 lineage versus those that express SF-1 shows that the 

cluster of VMHvl neurons and, by association, ERα neurons in the VMH evolve into a 

distinct neuronal subpopulation within the VMH (Cheung et al. 2013).

Specifically, two approaches that exploit the widespread expression of SF-1 in the VMH 

were used to trace SF-1 expression and the major VMH axonal projections during 

embryonic and postnatal stages (Fig. 2b). The first relied on tandem reporters, the wheat 

germ agglutinin (WGA) (Braz et al. 2002) and tau-green fluorescent protein (tauGFP), 

knocked into the 3′-untranslated region (UTR) of the Sf-1 (Nr5a1) locus. In this knockin 

line, referred to as Sf-1TauGFP, WGA and GFP are under the control of intact regulatory 

elements and are thus coexpressed and coregulated with SF-1 expression. In the second, 

more standard Cre-mediated labeling line, the transgenic Sf1:Cre mouse was crossed with a 

Z/EG reporter mouse, referred to as Z/EGSf1:Cre, which results in constitutive expression of 

eGFP (enhanced GFP) after Cre-mediated recombination (Dhillon et al. 2006). One 
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conclusion from this work was that SF-1 neurons appear in the presumptive VMH area by 

E10.5 but only begin to coalesce into the conventional oval-shaped nucleus later in the 

development at E14.5. Even at this very early developmental stage, prominent neuronal 

VMH projections are evident. Further, while it has been generally assumed that SF-1 marks 

the entire VMH because of its early and broad expression, striking differences were 

observed if neurons are marked by the endogenous SF-1 promoter or instead marked by Cre 

recombination (Cheung et al. 2013). By directly comparing GFP+ labeling in all subregions 

of the VMH in the Sf-1TauGFP and Z/EGSf1-Cre lines, one can conclude that SF-1 is 

transiently expressed at early embryonic stages and then silenced in neurons that populate 

the VMHvl. These findings imply that developmental signals must exist to silence SF-1 

expression in the VMHvl prior to E14.5. By this developmental point, ERα expression has 

already begun (Brock et al. 2015; Correa et al. 2015), but the interplay between SF-1 and 

ERα transcriptional response remains undefined at this juncture. Transcriptome profiling has 

only been done at later stages or using the entire VMH (Kurrasch et al. 2007), and the field 

is still awaiting data from comprehensive single cell sequencing. Ultimately, this detailed 

transcriptome profiling of both male and female VMHvl should provide a glimpse into the 

molecular complexity that exists in the VMHvl. Currently, based on different phenotypic 

outcomes, it is assumed that unique molecular modules will help constitute distinct neural 

circuits that result in different physiological endpoints. It should be noted that there are a 

limited number of ERα neurons in the vicinity of the VMHvl that do coexpress SF-1; this is 

especially true for cell bodies more dorsal to the VMHvl proper. That the VMHvl has a 

unique molecular signature from the other two subregions of the VMH, the central and 

dorsal medial, fits well with the notion that distinct SF-1-negative neurons in the VMHvl are 

dedicated to elaborating sex-dependent physiological and behavioral responses.

Sex Differences in Energy Expenditure

Recent studies show that aside from BAT thermogenesis, physical activity or locomotion is 

mediated by estrogen-responsive neurons in the VMHvl. This was discovered by 

manipulating a prominent developmental factor, the homeobox transcription factor Nkx2-1, 

which is required for proper development of several major organs, including the pancreas, 

lung, thyroid, and brain. NKX2-1 is also required for patterning in many brain regions 

including the rostroventral hypothalamus (Kimura et al. 1996; Marin et al. 2002; Shimamura 

and Rubenstein 1997), which gives rise to the VMH. In adult male and female mice, 

Nkx2-1, as with ERα, is highly restricted to the VMHvl (Davis et al. 2004; Tran et al. 2003) 

and Fig. 2c. However, not all NKX2-1 neurons in the VMHvl express ERα. Earlier in 

development, NKX2-1 is expressed throughout the presumptive MBH (Marin et al. 2002; 

Shimamura and Rubenstein 1997; Yee et al. 2009) and appears earlier and is more broadly 

expressed than SF-1 as judged by immunofluorescence (Correa et al. 2015) and by detailed 

lineage tracing using the Nkx2-1Cre and the reporter mouse (Salvatierra et al. 2014). Global 

deletion of NKX2-1 impairs the development of the VMH and other hypothalamic nuclei 

leading to diabetes (Sussel et al. 1998, 1999). However, if NKX2-1 is eliminated late in 

development (E9-10) using the Sf1-Cre, the VMH remains largely intact. A similar result is 

observed if Synapsin-Cre is used to delete NKX2-1 (Mastronardi et al. 2006). From these 

and other birthdating studies, it is concluded that NKX2-1 marks the earliest born or oldest 
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neurons in the VMH, with the majority of these cells eventually residing in the VMHvl with 

ERα-expressing neurons. Further, conditional deletion of NKX2-1 in the VMHvl eliminates 

a sizable fraction (30 %) of ERα-expressing VMHvl neurons (Correa et al. 2015). These 

data are consistent with the fact that development or migration of some but not all estrogen-

responsive neurons in the VMHvl depends on NKX2-1.

Ablating NKX2-1 in this VMHvl subpopulation (Nkx2-1Sf1-Cre) results in a sex-specific 

decrease in spontaneous physical activity without affecting BAT thermogenesis or fertility, 

resulting in female-specific obesity independent of diet (Fig. 3 and Table 1). Recall that 

eliminating some but not all ERα in the VMH using the Esr1Sf1-Cre has a minimal effect on 

activity but does impair BAT thermogenesis and reproduction. In both models, male mice 

fail to show any signs of metabolic or reproductive deficits. As is true with many Cre lines, it 

is rare that they exhibit the temporal and spatial specificity that one would desire. In fact, 

this is the case for the Sf1-Cre transgenic line, which is active in peripheral endocrine organs 

as well as the VMH. Indeed, SF-1 is robustly expressed in the adrenal, the anterior pituitary, 

the gonads, and the spleen beginning early in development (Ikeda et al. 1994). Given that 

SF1-Cre will alter expression in the early primordial bipotential gonad and the adult ovary 

(Ikeda et al. 1994; Ingraham et al. 1994; Shen et al. 1994), it remains possible that the sex-

dependent phenotypes described in these mouse models may partially result from a 

disruption of feedback loops in the hypothalamic-pituitary-gonadal axis.

To circumvent the limited spatial specificity of the Cre-Lox system and more definitively 

demonstrate the role of VMH neurons in promoting locomotion, viral vectors carrying 

designer receptors exclusively activated by designer drugs (DREADDs) were expressed in 

the VMH by stereotaxic delivery. Indeed, ERα is required for the full increase in 

pharmacogenetic-mediated or DREADD-induced locomotion (Correa et al. 2015). Male 

mice fail to show the same DREADD-induced responses with respect to locomotion (Fig. 3) 

but do exhibit a modest increase in oxygen consumption. Although increased oxygen 

consumption was not associated with higher locomotion or heat generation, we cannot 

exclude the possibility that VMHvl neurons play a minor role in male locomotion. Indeed, 

pharmacologic activation in the VMHvl induces running in male rats (Narita et al. 1993). 

DREADD-induced activation of locomotion in females appears much more sensitive when 

compared to DREADD- or ChR-induced activation of behaviors in males (Lee et al. 2014; 

Silva et al. 2013). Indeed, increased movement is observed in females even after unilateral or 

limited infection of DREADDs into VMHvl neurons. The ability to blunt DREADD-

induced movement by genetic deletion of ERα, as shown here, establishes that ERα 
signaling is the main mediator of hormone-induced movement, as previously reported for 

female sexual behavior (Musatov et al. 2006, Lunahn et al. 1993). As mentioned above, 

hormone dependency has yet to be shown for experimentally induced male behaviors, 

including social fear, mating, and aggression (Lee et al. 2014, Silva et al. 2013).

One limitation with mouse models is the difficulty in showing a tight link between hormonal 

variation in cycling females and changes in energy expenditures. DREADD-induced 

locomotion in female mice appears to be insensitive to normal fluctuations in estrogen. Only 

after eliminating all gonadal hormones or all ERα signaling does one observe the dramatic 

influence of estrogen signaling on DREADD-induced locomotion. These findings are 
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consistent with little to no effect of the estrous cycle on locomotion in mice (Kopp et al. 

2006) and imply that the estrous cycle on physical activity is far stronger in rats than in 

mice. These and other data (Prendergast et al. 2014) also show that the assumption that the 

estrus cycle has a dramatic and robust effect on measured parameters in female mice is 

highly overstated, thus directly challenging the historical aversion to the use of both sexes.

The striking phenotypic differences in reproduction and metabolism observed between 

Nkx2-1Sf-1-Cre and Esr1Sf-1-Cre mouse models are instructive for dissecting out the complex 

and coordinated metabolic and reproductive functions of the VMHvl in females. One would 

like to define the signaling events and targets of ERα in the VMHvl that ultimately drive 

sex-dependent physiological endpoints. Within the VMHvl, there is a subpopulation of 

NKX2-1-positive VMHvl neurons coexpressing ERα and Tac1, which appears important for 

female activity (Fig. 3), is enriched in females compared to males, and is largely absent in 

Nkx2-1Sf1-Cre mutant females. Tac1 is enriched in the VMHvl, as previously reported for 

rats (Dornan et al. 1990). Eliminating ERα neurons results in diminished Tac1 transcripts in 

Nkx2-1Sf1-Cre mice, suggesting that this neuropeptide might participate in mediating female-

specific physiology. However, Tac1 is not directly regulated by ERα (Correa et al. 2015). It 

is possible that these ERα+, Tac1+ VMH neurons may project to MPOA neurons, which 

have been linked to estrogen-induced running in rats (Spiteri et al. 2012; Fahrbach et al. 

1985). Other VMH projections relevant to locomotion might include those to the 

subthalamic and mesencephalic locomotor regions (Cheung et al. 2012), areas that when 

activated increase controlled movement in rats (Skinner and Garciarill 1984) or when 

lesioned in humans lead to deficits in locomotion (Hathout and Bhidayasiri 2005). Given 

that the neuropeptide-encoding gene Tachykinin 1 (Tac1) is associated with estrogen-

responsive VMHvl neurons and is enriched in females raises the question as to its role in 

mediating sex-dependent behaviors. Unfortunately, while mice deleted globally for Tac1, as 

well as its receptor (NK-1), exhibit improved glucose homeostasis (Karagiannides et al. 

2011a) and resistance to diet-induced obesity (Karagiannides et al. 2011b), both studies only 

report data from male mice. Nonetheless, this might suggest that neurokinin A (formerly 

substance P), encoded by Tac1, normally counteracts estrogen, opposing a negative energy 

state.

Excitatory Activity in VMH Neurons and Sex Differences

Nearly all VMH neurons express two markers, steroidogenic factor 1 (SF-1 encoded by 

Nr5a1) and vesicular glutamate transporter 2 (VGLUT2 encoded by Slc17a6). The 

prominent expression of Vglut2 in the VMH (Ziegler et al. 2002; Fremeau et al. 2001) 

suggests that excitatory, glutamatergic neurotransmission mediates multiple aspects of VMH 

function, including those associated with the sexually dimorphic VMHvl (Fig. 4). In both 

males and females, expression of the glutamate decarboxylase (Gad67) that marks inhibitory 

neurons is for the most part completely excluded from the entire VMH as well as the 

VMHvl. Prior studies might predict that disrupting VMH excitatory neurotransmission 

would alter food intake and susceptibility to diet-induced obesity, especially given the 

established glutamatergic connections between the VMH and other metabolic brain centers, 

such as the arcuate nucleus (Fu and Van Den Pol 2008; Sternson et al. 2005). The initial 

work by Tong et al. examined this question by generating the VMH knockout of Vglut2 
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using Sf1-Cre (Vglut2Sf1-Cre), which for future reference was done in a mixed genetic 

background (Tong et al. 2007). Despite the fact that the VMHvl should be targeted using this 

approach, no sex-dependent metabolic changes were noted in their published work. 

However, they did detect lowered serum glucose in the fasted but not fed state in both sexes, 

suggesting that the VMH excitatory output is needed for the counterregulatory response to 

hypoglycemia. This was recently reexamined in a pure C57BL/6 background (Cheung et al. 

2015): a strain with increased DIO induced weight gain and hyperglycemia (Montgomery et 

al. 2013; Collins et al. 2004). In this pure strain setting, sex differences emerged. When 

compared to Vglut2fl/fl controls, weight gain in Vglut2Sf1-Cre females was notably lower 

when placed on high-fat diet (HFD) at 10 weeks of age, whereas C57BL/6 mutant males 

showed no body weight differences (Cheung et al. 2015). Consistent with the female-

specific resistance to DIO, glucose homeostasis was improved in Vglut2Sf1-Cre females as 

measured by an intraperitoneal glucose tolerance test (IP GTT). This result is somewhat at 

odds with the report that Vglut2Sf1-Cre males and females are heavier when fed a high-fat, 

high-sucrose diet (Tong et al. 2007), perhaps reflecting strain and dietary differences.

The reduced body weight in the female Vglut2Sf1-Cre mice, whose origins remain unclear, 

mimics the metabolic consequence of elevated estrogen signaling. In other words, the loss of 

excitatory output from the VMHvl has a negative effect on energy balance, rather than a 

positive effect. This result undermines the simple assumption that estrogen signaling 

potentiates VMH neurotransmitter output, suggesting instead that ERα signaling inhibits 

circuits that otherwise promote energy storage (Fig. 4). Because this brain region is tightly 

linked to reproductive behavior (Ogawa et al. 1998), one might speculate that in females, 

regulation of glutamatergic VMH neurons by estrogen maximizes fuel reserves in states of 

overnutrition (HFD), to ultimately improve reproductive fitness in times of undernutrition.

Interestingly, behavioral sex differences are also apparent after the loss of all excitatory 

output. Indeed, while both male and female Vglut2Sf1-Cre mice exhibit less anxiety in 

standard assays such as open field or elevated maze, mutant Vglut2Sf1-Cre males do exhibit 

greater exploratory drive (Cheung et al. 2015). As predicted from prior literature cited 

above, male resident Vglut2Sf1-Cre mice are less aggressive and attack far less frequently 

than Vglut2fl/fl controls. In summary, the phenotypes exhibited by Vglut2Sf1-Cre mice are 

consistent with emerging evidence that the VMHvl regulates sex-dependent metabolic 

responses and social behaviors. The ability to specifically target the excitatory output of 

different molecular modules in the VMHvl will be important to dissect and map the circuitry 

that controls male and female metabolic and behavioral endpoints.

Future Directions

One of the most critical and pressing questions raised by current data is how steroid 

signaling regulates the behavioral or physiological outputs between male and female ERα 
neurons. Thus, while it is clear in murine models that estrogen signaling impacts energy 

expenditure in females, connecting the dots between estrogen and neuronal output remains 

obscure. This dependency on steroid signaling is perhaps the largest and most important 

difference between the male and female VMHvl. As mentioned above, to fully understand 

how these sex-dependent endpoints are established within different VMHvl modules 
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requires the application of newer methods that allow a more granular view and finer genetic 

manipulation of the VMHvl. This task could be made more challenging if key factors in 

estrogen-responsive VMHvl neurons needed for neuronal output are not themselves direct 

downstream targets of ERα. Lastly, we have yet to define how well new findings in rodent 

models translate to humans, which is especially important if we are to appreciate the full 

metabolic benefits of estrogen in women’s health.
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Fig. 1. 
Sex-dependent VMH functions are mediated by ERα-expressing VMHvl neurons. Within 

the hypothalamus, the VMH (red-shaded region) controls multiple aspects of metabolism 

and behavior. Whereas leptin receptor (LEPR) and insulin receptor (IR) expression overlap 

with SF-1 and regulate metabolism in both males and females, sex-dependent functions of 

the VMH are mediated by ERα-expressing VMH neurons (Nissl-stained image adapted 

from the Allen Brain Atlas)
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Fig. 2. 
Development of the VMHvl module that modulates energy homeostasis in females. a) ERα 
immunostaining demonstrates that expression is restricted to the VMHvl in female mice as 

well as the arcute nucleus (ARC). Fewer VMHERα neurons are born in the Nkx2-1Sf1-Cre 

mutant females (Mutant) compared to Nkx2-1fl/fl control females (WT), as described in text. 

Third ventricle (3V). b) VMHvl neurons do not express SF-1, as illustrated by the lack of 

GFP-positive neurons using a knock-in reporter (Sf-1)TauGFP. However, Cre-mediated 

lineage tracing (Z/EG)Sf1:Cre reveals that most VMHvl neurons derive from SF1-expressing 

precursors. c) Postnatal NKX2-1 expression is largely restricted to ERα-positive and SF-1-

negative VMHvl neurons
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Fig. 3. 
A molecularly distinct subset of VMHERα neurons are necessary and sufficient to drive 

physical activity in female mice. Chemogenetic activation of VMHvl neurons increases 

energy expenditure via physical activity in females and requires ERα and TAC1 (left panel). 

In contrast, reducing the number of VMHERα,TAC1 neurons decreases physical activity and 

results in female-specific obesity (right panel)
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Fig. 4. 
Silencing glutamatergic VMH neurons promotes negative energy balance in females. 

Summary of the relative distribution of VMHVGLUT2 and VMHERα,VGLUT2 neurons and the 

metabolic consequences resulting from genetic knockout of either ERα or VGLUT2. 

Opposing metabolic phenotypes observed in mutant female mice following deletion of ERα 
or VGLUT2 in the VMH suggest that ERα signaling reduces rather than enhances 

glutamaterigic output from the VMHvl
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Table 1

Comparison of mouse models that eliminate ERα in the VMHvl

Phenotype Nkx2-1Sf1-Cre Esr1Sf1-Cre Esr1Nkx2-1Cre

ERα expression ++ + −

Tac1 expression ++ +++ +++

# of VMHvl neurons ++ +++ +++

Reproduction Fertile Infertile Infertile

Body weight (chow) Increase Transient increase No change

BAT thermogenesis Normal Lower Lower

Food intake Normal Normal Normal

Locomotion Decreased Trends lower Decreased

+++
= Wild-type levels. References for the table: Xu et al. (2011), Correa et al. (2015) and unpublished data (H.A.I)
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