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Abstract

Brain-Computer Interfaces (BCIs) are real-time computer-based systems that translate brain 

signals into useful commands. To date most applications have been demonstrations of proof-of-

principle; widespread use by people who could benefit from this technology requires further 

development. Improvements in current EEG recording technology are needed. Better sensors 

would be easier to apply, more confortable for the user, and produce higher quality and more 

stable signals. Although considerable effort has been devoted to evaluating classifiers using public 

datasets, more attention to real-time signal processing issues and to optimizing the mutually 

adaptive interaction between the brain and the BCI are essential for improving BCI performance. 

Further development of applications is also needed, particularly applications of BCI technology to 

rehabilitation. The design of rehabilitation applications hinges on the nature of BCI control and 

how it might be used to induce and guide beneficial plasticity in the brain.

Introduction

A Brain-Computer Interface (BCI) is a computer-based system that acquires, analyzes, and 

translates brain signals into output commands in real-time. The term BCI can be traced to 

Jacques Vidal who devised a BCI system in the 1970s that used visual evoked-potentials [1]. 

Since that time, the impressive advances in computer technology, machine learning, and 

neuroscience have enabled the development of a wide variety of BCI systems [2]. Many BCI 

systems use electroencephalographic (EEG) signals [2]; others use alternative recording 

modalities such as magnetoencephalography (MEG), electrocorticography (ECoG), 

intracortical microelectrode recording of single neuron action potentials or local field 

potentials, functional magnetic resonance imaging (fMRI), or functional near-infrared 

spectroscopy (fNIR) [3].

Most BCI studies have focused on using them to restore communication and control to 

people paralyzed by chronic neuromuscular disorders, such as amyotrophic lateral sclerosis 

(ALS), brainstem stroke, or high-level spinal cord injury. To date, these studies have been 

mainly demonstrations of proof-of-principle: actual long-term BCI use by individuals who 
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need them has been limited to a handful of case studies [e.g., 4]. More recently, investigators 

have become interested in other applications of BCI technology, particularly the possibility 

that they might enhance neurorehabilitation for people with strokes and other chronic 

disorders [5].

Some issues relating to invasive methods will be considered. However this brief review 

focuses on key issues related to noninvasive EEG-based BCIs; they are the most widely 

researched due to their minimal risk and the relative convenience of conducting studies and 

recruiting participants, and they have the greatest immediate promise for rehabilitation 

applications. First, it reviews the major categories of EEGbased BCIs. Second, it addresses 

the current state of EEG recording methodologies. Third, it outlines the key issues involved 

in BCI-related signal analysis. Finally, it reviews the currently most exciting and promising 

area of BCI research and development: BCIs for neurorehabilitation.

EEG-Based BCIs

Farwell and Donchin [6] reported the first use of a P300-based BCI, in which a positive 

potential in the EEG about 300 msec after an attended target stimulus serves as the control 

signal. The P300 is elicited by a stimulus that has special significance; it is detected by 

averaging the EEG responses to relatively rare presentations of the target stimulus 

interspersed with many non-target stimuli [7]. Their subjects viewed a 6 × 6 matrix of items 

(letters and other symbols) and attended to a target item as the rows and columns of the 

matrix flashed repeatedly in random order. The average response to the flash of the target 

item differed from the average responses to the other items; the BCI detected this difference 

and thereby determined which item the subject wanted to select. With this BCI, a subject 

could spell words. The fact that the P300 potential reflects attention, rather than simply gaze 

direction, implies that this BCI could be used by people who lack eye-movement control [8]. 

Many research groups are further developing P300-based BCIs [9]. Several groups have 

explored BCIs that use auditory rather than visual stimuli; these would be useful for people 

with visual impairments [10].

Wolpaw et al. [11] reported the first use of sensorimotor rhythms (SMRs) for BCI control. 

SMRs are oscillations (i.e., mu (8-12 Hz) and beta (18-30 Hz)) recorded over sensorimotor 

cortices that change in amplitude with movement, imagined movement, or preparation for 

movement [12]. People can learn to control SMR amplitudes to move a cursor to hit targets 

on a video screen or perform other computer-based tasks. SMR amplitude is measured by 

spectral analysis; the subject learns to increase or decrease it as needed to move the cursor 

toward the target. The rapid bidirectional nature of this BCI control paradigm [11] 

distinguished it from prior studies that sought to produce long-term unidirectional changes 

in brain rhythms for therapeutic purpose [e.g., 13]. Subsequent studies by several groups 

have further developed this BCI method. Subjects can learn to use SMR amplitudes to 

control movement in multiple dimensions simultaneously and to support sequential mouse-

like control [14-16].

Many efforts to develop SMR-based BCIs ask the user to generate specific mental states 

through motor imagery [16]. Different BCI commands are often linked to different imagery 
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(e.g., imagine hand movement to move the cursor up and foot movement to move it down). 

However, as the user’s SMR control improves, and particularly when users advance to 

controlling multiple dimensions, imagery tends to disappear [14,15]. While motor imagery 

may provide a logical and effective starting point for user training, it becomes unnecessary 

and may even be an impediment as training progresses. Kober et al. [18] found that those 

subjects who reported using no specific mental strategy after ten SMR training sessions 

showed improved performance. In contrast, subjects reporting various mental strategies after 

ten training sessions showed no improvement. Such results suggest that successful SMR 

control after extended training involves implicit learning mechanisms. Thus, SMR-based 

BCI control after extended training resembles typical motor performance in that it tends to 

become automatic (i.e., implicit) with practice. Viewing SMR control as similar to other 

forms of motor control suggests using principles of motor learning for task design. Motor 

learning involves both explicit and implicit processes which have differing characteristics 

[19]. Explicit instructions can interfere with implicit processes, particularly in well-trained 

people [20].

Another type of BCI uses steady-state visual evoked potentials (SSVEPs) recorded over 

occipital cortex in response to lights that flash repeatedly [21]. In this approach, a subject 

views several lights that each flash at a different frequency. When the subject focuses 

attention on one particular light, EEG spectral analysis shows increased power at its 

frequency band; the BCI detects this and performs the action represented by that light. 

SSVEP-based BCIs can support high rates of information transfer [22].

In principle, an EEG-based BCI system comprises four modular subsystems; the first 

acquires the EEG signals; the second processes these signals to derive specific signal 

frequencies (e.g., SMR amplitudes) and translates these features into output commands that 

control an application; the third is the application itself (e.g., a spelling program or robotic 

arm); and the fourth is the protocol that specifies overall system operation (e.g., when 

stimuli occur) [23,3]. Each of these modular subsystems presents significant design 

problems. To be useful for a wide variety of users, EEG recording sensors and amplifiers 

need to provide reliable high quality signals and be comfortable and easy to apply and use 

for individuals who are not technically sophisticated [24]. Signal processing needs to extract 

the relevant signal features reliably and translate them accurately into output commands [2]. 

The next sections address these two critical areas of BCI development. Each presents 

engineering challenges, and at the same time provides opportunities for improving BCI 

performance.

Recording Methods

Effective BCI systems require reliable robust high-quality EEG recording. Standard 

recording uses wet electrodes; a conductive gel maintains good electrode contact with the 

scalp. While wet electrodes can provide excellent EEG recording, they are less than optimal, 

particularly for long-term daily use by people in their homes. Many find them inconvenient 

to use: they require careful application; the gel is sometimes messy and needs periodic 

replenishment; the cap or other apparatus the holds them in position on the head may be 

uncomfortable, awkward, or unattractive [25]. If the electrode density is too great, bridging 
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can occur (i.e., two or more sensors are electrically coupled). In addition, surface electrodes 

are susceptible to a variety of artifacts due to non-brain activity (e.g., electromyographic 

(EMG) signals), bodily movements, or nearby electrical equipment, particularly if electrode 

impedance increases. While Ferree et al [26] suggest that high electrode impedance has little 

effect beyond powerline noise that can be easily filtered out, Kappenman & Luck [27] 

showed that it increases EEG noise primarily at lower frequencies and reduces the signal-to-

noise ratio of the P300 response.

Several alternative wet electrode designs have appeared in recent years. The EPOC system 

(Emotive) uses moistened felt pads and a semi-rigid support that enables faster electrode 

placement but is less accurate than conventional placement methods and largely restricts 

placements to sites on the scalp perimeter, which are more susceptible to EMG 

contamination [28]. The g.SAHARA dry electrode (g.tec) consists of a set of 8 gold-plated 

pins; these electrodes are mounted in a conventional cap that does not limit electrode 

locations and is reported to provide P300-based BCI results similar to those provide by wet 

electrodes [29]. Both the EPOC and g.SAHARA electrodes rely on low impedance resistive 

contact with the scalp. In contrast, the dry electrode developed by QUASAR and Wearable 

Sensing uses a hybrid combination of high-impedance resistive and capacitive contact with 

the scalp [30].

The device that holds the recording electrodes on the scalp is extremely important, 

particularly for longterm home use. Ideally, this device allows electrodes to be accurately 

positioned anywhere on the scalp and keeps them firmly yet comfortably in place, readily 

accommodates differently sized and shaped heads, neither interferes with nor is disturbed by 

head positioning (e.g., on a headrest or pillow), and is reasonably inobtrusive and cosmetic. 

Insecure electrode placement can lead to noise due to sudden changes in impedance 

(“electrode pops”) and variable placement can increase day-to-day variations in the EEG 

features used by a BCI.

Nijboer et al [31] reported that a 32-channel Biosemi system produced higher P300-based 

BCI accuracy than an 8-channel g.Sahara or 14-channel EPOC systems; however, the 

BioSemi system and the g.Sahara system were comparable when their performances using 

the same eight electrode sites were compared. Hariston et al. [32] compared the EPOC, 

QUASAR, and B-Alert X-10 (Advanced Brain Monitoring) systems with the BioSemi 

system, which they considered the gold standard. While they did not evaluate signal quality 

or system performance, they found that only the BioSemi system accommodated variations 

in both head size and shape. They rated the B-Alert system next in terms of accommodation. 

The EPOC and QUASAR systems could produce uncomfortable pressure points and 

movement artifacts. Dry electrodes can be more difficult to secure to the scalp; this may 

create a trade-off between comfort and recording quality. At the same time, the recent advent 

of dry electrode systems (e.g., Wearable Sensing) that provide EEG signals comparable to 

those from wet-electrode systems is an exciting and important advance toward the 

realization of practical widely-used EEG-based BCI systems.

BCI methods that use epidural or subdural electrodes [33] or intracortical microelectrodes 

[34] offer more secure placement and better spatial resolution than EEG. On the other hand, 
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it is not yet clear to what extent and for what purposes their invasive nature and increased 

cost is justified as non-invasive methods can produce comparable target acquisition times 

[15]. In addition, these invasive recording methods, particularly those using intracortical 

electrodes, have not yet demonstrated reliable longterm (i.e., years) recording stability [34]. 

Future advances in materials and techniques may achieve longterm stability and 

performance sufficient to justify implanted BCI systems [35].

EEG Analysis for BCIs

Communication and control applications depend on ongoing interaction between the user 

and the BCI system; the user observes the results of his or her intentions and adjusts the 

ongoing output in order to maintain good performance and correct mistakes. Thus, BCIs 

must operate in real time and provide feedback to their users. Many of the initial BCI studies 

satisfied this real-time requirement [2]. However, more recent studies are often based on 

offline analyses of pre-recorded data. For example, the Lotte et al. [36] review of studies 

evaluating BCI signal-classification algorithms found that most used offline analyses. 

Indeed, the current popularity of BCI research is doubtless due in part to the ease with which 

offline analyses can be performed on publicly available data sets. While such offline studies 

can help guide actual online BCI studies, there is no guarantee that offline results will 

generalize to online performance. When the algorithm that extracts EEG and translates them 

into outputs is changed, it changes the ongoing results that are fed back to the user; thus, it is 

likely to change the user’s subsequent EEG signals. The ultimate test of any new BCI design 

is comprehensive online testing; offline analysis is not in itself sufficient.

The two steps in EEG analysis for BCIs are feature extraction and feature translation [2]. A 

variety of spatial and temporal filtering methods have been applied to feature extraction. 

These include interest in currently popular algorithms such as convolutional neural networks 

[37]. Many recent studies have used data-driven spatial filtering methods such as common 

spatial patterns [38] and source imaging methods [39]. Recent interest in network models of 

CNS function has prompted studies exploring the use of phase information. Indeed, the 

success of the surface Laplacian for amplitude-based features may be due to inclusion of 

phase effects [40]. Phase effects may also be involved in amplitude-based common spatial 

patterns and other data-driven spatial filtering methods [41]. At the same time, the inclusion 

of phase complicates neurobiological interpretation of these complex multivariate models of 

scalp EEG activity.

Physiological and anatomical understanding of the features used by BCI systems is 

important for designing signal processing methods as well as for detecting and eliminating 

the impact of artifacts (e.g., non-brain activity such as EMG, EOG (electrooculographic 

activity)). In reviewing the literature on artifact detection and removal, Islam et al [42] 

concluded that none of the existing methods is a perfect solution. One problem is that it is 

often difficult to evaluate the effectiveness of the methods because completely 

uncontaminated data may not be available. Furthermore, the results of methods such as 

independent components analysis may be difficult to connect to specific underlying brain or 

non-brain (i.e., artifactual) events. They may also require some level of human intervention, 
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which rules out their use in real-time systems unless generalization to novel data can be 

verified.

Perhaps the most common type of BCI study evaluates alternative feature translation 

algorithms [36], often using archival data from healthy subjects [e.g., 43]. Many of these 

data sets do not include data from more than one session; many were acquired during actual 

muscle-based control; and many did not provide online feedback to the user. Thus, many of 

these data sets do not closely approximate data from the individuals most likely to benefit 

from BCI-based communication and control. These individuals have severe neuromuscular 

disorders (e.g., ALS) that curtail their movements and/or may affect their EEG activity; and 

their data are often gathered under complicated and highly variable circumstances (e.g., 

home settings). Finally, when alternative translation algorithms are submitted to offline 

testing using the same data set, their differences in performance are often minimal [44].

Because effective BCIs must function reliably from moment to moment and day to day, and 

brain signals change continually on multiple time scales, EEG feature extraction and 

translation methods that require large amounts of training data are problematic. For example, 

Rasmussen et al [45] report that the directional tuning of neurons in the primary motor 

cortex of monkeys changed between two BCI tasks. They suggest that motor units show 

dynamic range adaptation in a manner analogous to that commonly seen in sensory neurons. 

Sussillo et al [46] suggest that robust BCI translation algorithms can be tuned by using data 

from a wide variety of recording conditions. An alternative approach would use continual 

adaption of parameters [47]. The importance of adaption may vary with the neural signal. 

For example, adaptive updating of feature weights improves SMR-based performance but 

not P300-based performance [47]. Thus, these two BCI signals have different characteristics 

that require alternative approaches to real-time signal processing. In general, the importance 

of ongoing adaptive changes by BCI algorithms favors use of simple algorithms that have 

relatively few parameters to adapt.

BCIs for Neurorehabilitation

Over the past decade, the possibility that BCIs might enhance rehabilitation for people with 

strokes or other CNS trauma or disease has generated steadily increasing interest for several 

reasons. Effective BCI-bsed rehabilitation could help many millions of people around the 

world. Furthermore, unlike BCIs for critical communication and control applications, BCIs 

for rehabilitation do not have to have near-perfect performance, they need only to be 

effective, that is, to enhance recovery of function beyond that achieved by standard 

rehabilitation therapies alone.

In theory, a BCI might contribute to functional recovery in several different ways [5]. 

Dobkin [48] suggested that practical BCI systems could be used as a tool to reinforce the use 

of spared neural representations or to insure that subjects were optimally prepared to execute 

a particular movement. Daly and Wolpaw [49] suggested two possible strategies. The first 

uses BCI-based feedback to normalize relevant brain activity with the expectation that this 

will be accompanied by improved motor function; the second strategy uses brain activity to 

enable practice of more normal neuromuscular control with the expectation that the more 
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normal sensory input produced by better movement will induce plasticity that improves 

neuromuscular control. Prasad et al. [50] suggested that BCI technologies could be used to 

enhance motor imagery in individuals with stroke. Donati et al. [51] report that simply using 

a BCIcontroled exoskeleton over an extended period improves walking in patients with 

spinal cord injury. To date there have been a number of studies providing proof of principle, 

but only a few that provide clear evidence of efficacy (e.g., [52]).

The rationale for using BCI-facilitated motor imagery for rehabilitation is that it is likely to 

activate some of the same neural systems important in actual movement; thus it might be an 

effective therapy for stroke-related dysfunction. Given that brain lesions can impair imagery, 

methods to facilitate imagery might enhance recovery. In one such method, a BCI provides 

feedback based on sensorimotor rhythms (SMRs) while the patient imagines movement of 

the affected limbs [53]. SMR training is used to enhance motor imagery. Thus, these EEG 

features are employed as an index of a cognitive task, the rehearsal of which facilitates 

recovery from motor deficits following stroke.

Using BCI-based movement to reduce stroke-related motor deficits closes the sensorimotor 

loop [54]. With this paradigm, SMR desynchronization (i.e., decrease) is rewarded by the 

activation of an orthosis that moves the affected limb. This strategy assumes that the 

proprioceptive feedback produced by limb movement will activate motor cortex. Several 

alternative explanations have been provided for the effects of closing the sensorimotor loop, 

including Hebbian learning and priming of subsequent physical therapy [54].

BCI technology has also been used to train users to produce brain states that improve 

movement preparation [55,56]. In this paradigm, users learn to modulate SMRs in advance 

of the motor task to be practiced. This approach assumes that better preparation facilitates 

subsequent motor performance. Therapeutic benefit can then result from the correct 

performance of the facilitated motor behavior and also from the user’s learning of task-

appropriate preparatory responses.

The goal of imagery enhancement is to reinforce weak imagery [51]. Closing the 

sensorimotor loop strives to associate intention with haptic feedback [53]. Improving 

preparation seeks to insure optimal preparation for the task [55,56]. These different 

approaches to BCI-based rehabilitation have the same basic goal – improved motor 

performance. The growing pace of BCI-based rehabilitation research ensures that in the 

coming years these approaches and others as well will be extensively tested. It is likely that 

BCI technology will soon complement other rehabilitation methods and enhance functional 

recovery for people with strokes and other chronic neuromuscular disorders.

Conclusions

Most EEG-based BCIs use the P300 evoked potential, sensorimotor rhythms (SMRs), or the 

steady-state visual evoked potential (SSVEP). All three BCI types can help to restore basic 

communication and control to people with severe neuromuscular disabilities. At present, 

their capabilities are limited. Improved EEG recording methods that can provide stable high-

quality signals in all environments, are comfortable, and are easy to use are needed. New 
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dry-electrode systems have considerable promise. Improved signal analysis algorithms that 

can consistently maintain accurate performance are also required. While much algorithmic 

development to date has relied on offline analyses of archival data, actual online testing of 

new algorithms is essential because it takes into account the crucial ongoing adaptive 

interactions between the user and the BCI. BCIs, particularly SMR-based BCIs, also show 

promise as new methods for enhancing functional recovery for people with strokes or other 

chronic disorders. Several strategies for using BCIs to induce beneficial plasticity are under 

study. Evidence that these methods can enhance recovery beyond that achieved by 

conventional methods alone is just beginning to emerge.
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HIGHLIGHTS

• Most EEG-based BCIs use P300 evoked potentials, sensorimotor rhythms 

(SMRs), or the steady-state visual evoked potential (SSVEP) to restore 

communication and control to people with severe disabilities.

• Improved recording and signal processing are needed to increase BCI 

practicality.

• Online evaluation of new algorithms is essential because it takes into account 

the crucial ongoing adaptive interactions between the user and the BCI.

• BCIs, particularly SMR-based BCIs, also show promise as new methods for 

enhancing functional recovery for people with strokes or other chronic 

disorders.
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Figure. 
Basic design and operation of a brain-computer interface (BCI) system. The BCI is shown in 

green. Electrical signals produced by brain activity are recorded from the scalp, from the 

cortical surface, or from within the brain. They are analyzed to measure specific features 

(e.g., amplitudes of EEG rhythms or firing rates of single neurons) that reflect the BCI user’s 

intent. These features are translated into commands that operate applications that replace, 

restore, enhance, supplement, or improve natural (i.e., neuromuscular) CNS outputs. (From 

[3]).
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