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Abstract

Objective—The development of artificial pancreas (AP) technology for deployment in low-

energy, embedded devices is contingent upon selecting an efficient control algorithm for regulating 

glucose in people with type 1 diabetes mellitus (T1DM). In this paper, we aim to lower the energy 

consumption of the AP by reducing controller updates, that is, the number of times the decision-

making algorithm is invoked to compute an appropriate insulin dose.

Methods—Physiological insights into glucose management are leveraged to design an event-

triggered model predictive controller (MPC) that operates efficiently, without compromising 

patient safety. The proposed event-triggered MPC is deployed on a wearable platform. Its 

robustness to latent hypoglycemia, model mismatch and meal misinformation is tested, with and 

without meal announcement, on the full version of the US-FDA accepted UVA/Padova metabolic 

simulator.

Results—The event-based controller remains on for 18h of 41h in closed-loop with unannounced 

meals, while maintaining glucose in 70–180 mg/dL for 25h, compared to 27h for a standard MPC 

controller. With meal announcement, the time in 70–180 mg/dL is almost identical, with the 

controller operating a mere 25.88% of the time in comparison with a standard MPC.

Conclusions—A novel control architecture for AP systems enables safe glycemic regulation 

with reduced processor computations.

Significance—Our proposed framework integrated seamlessly with a wide variety of popular 

MPC variants reported in AP research, customizes trade-off between glycemic regulation and 

efficacy according to prior design specifications, and eliminates judicious prior selection of 

controller sampling times.
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I. Introduction

Although the effectiveness of an automated artificial pancreas (AP) in the regulation of 

blood glucose in people with Type 1 Diabetes Mellitus (T1DM) is widely recognized, there 

is an imminent need to design wearable or implantable AP systems operating with low 

energy costs.

Multiple effective approaches have been reported for implementing the AP on dedicated 

mobile platforms. For example, a control algorithm for bi-hormonal therapy that was 

clinically evaluated in an outpatient study of pre-adolescent children with T1DM [1] is 

implemented on an iPhone 4S. A model predictive control (MPC) algorithm implemented on 

a smartphone was evaluated in a hybrid-closed-loop clinical trial of adolescents with T1DM 

under free-living conditions [2]. Another smartphone implementation of a hybrid-closed-

loop insulin delivery system was evaluated in a supervised outpatient study [3]. A pilot ‘at-

home’ clinical study was conducted to evaluate the performance of a wearable device that 

integrates a Continuous Glucose Monitor (CGM), a Continuous Subcutaneous Insulin 

Infusion (CSII), a glucagon pump, the control algorithm and the wireless transmitters [4]. 

An AP system implemented on a miniature silicon microchip within a portable hand-held 

device is evaluated in [5]. The Medtronic hybrid closed-loop (HCL) system leverages a PID 

with insulin feedback (IFB) algorithm to automate basal insulin delivery while no meal is 

consumed. It is the first system to incorporate the control algorithm into the insulin pump 

and to operate as a fully integrated system with the continuous glucose sensor. The safety 

and efficacy of this system was evaluated in several clinical studies [6]–[8].

In the next-generation of AP technology, we envision further miniaturization and eventual 

implantation within the body. To this end, it is imperative to consider the factors involved in 

increasing the life expectancy of the device, since frequent alteration of hardware 

components such as the battery is undesirable, unsafe, and expensive. We have identified 

three main power drains on an embedded AP. First, there is the communication power for 

receiving CGM data and communicating with the pump and a display interface for user 

interaction, both of which are done via Bluetooth Low Energy in modern CGMs/pumps, 

thereby consumes low energy. Second is the idle power of the device as it is in sleep mode 

over most of the sampling time τ minutes. This can be minimized by optimized design of 

application-specific integrated circuits for the AP problem: that is, a prioritized design 

constraint could be to minimize idle current loss. Thirdly, and most importantly from this 

paper’s viewpoint, is the energy consumed by the processor. Although all three of these 

power ratings are extremely system dependent, a universal fact is that the MPC algorithm 

requires iterative solutions, and curtailing the number of iterations required implies that the 

time the processor on is lower and thus, energy is saved.

Multiple control algorithms have been computationally and clinically evaluated for current 

AP systems, including: Proportional-Integral-Derivative (PID) [6], Fuzzy-Logic [9] and 

MPC [10]–[12] with a hardware-in-the-loop implementation in [13]. Of these strategies, 

MPC generates a high computational burden in spite of demonstrating excellent closed-loop 

clinical performance [14]. Low-complexity MPC algorithms such as explicit, multi-

parametric, and embeddable variants of MPC are well-established; see [15]–[18]. A 
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common feature that is revealed in MPC-based control in T1DM is that the number of 

controller updates can be reduced by observing, predicting, and exploiting future insulin-

glucose dynamics.

In this paper, we offer an efficacious event-triggered MPC [19] as an alternative to the 

standard MPC that computes optimal insulin doses at each time step (referred to as ‘time-

triggered’ MPC). In event-triggered MPC, the sampling-period of the controller actions and 

the model used for predicting future glucose variations are rendered independent. That is, 

the optimal MPC action is computed only when specific events are triggered (or not 

triggered). A multitude of event-based strategies have been reported in the literature for 

various applications. Event-triggering mechanisms include: the difference between the 

estimated state and the system state exceeding a specified threshold [20]–[22], violation of a 

Lyapunov function decay rate [23], and migrating between critical regions in linear MPC 

[24].

For our application, we propose an event-triggering method that exploits physiological 

phenomena in conjunction with control-theoretic constructs to significantly lower the 

number of controller updates and processor runtime, while respecting constraints arising 

from a clinical safety perspective. The proposed method is tested with rigorous hardware-in-

the-loop simulation studies that constitute a pre-clinical assessment of the algorithm’s safety 

and efficacy to be further evaluated in a clinical study setting. The contributions of this 
paper are:

i. the proposal of a novel T1DM-specific efficient event-triggering strategy that can 

be seamlessly integrated with any variant of the MPC for decision-making in the 

AP;

ii. demonstration of significantly reduced processor runtime and energy 

consumption with good glycemic regulation performance in spite of large 

announced and unannounced meals;

iii. investigating systematic design of trade-off parameters in the event-triggering 

algorithm; and

iv. collection of preliminary power and controller update numbers using a hardware-

in-the-loop simulation.

The rest of the paper is organized as follows. In Section II, we discuss a general MPC 

framework used in typical artificial pancreas systems. In Section III, we propose an event-

triggering strategy amenable to any general MPC formalism, tractable on low-complexity 

devices. A case study of event-triggering with the periodic zone MPC described in [25] is 

presented in Section IV, and the efficacy of our method is demonstrated via hardware-in-the-

loop simulations in Section V. We draw conclusions and discuss future work in Section VI.

II. Model Predictive Control Framework for the Artificial Pancreas

In this section, we provide a brief overview of general MPC strategies used in the artificial 

pancreas, along with constraints enforced for clinical safety.
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A. Using predictive models to compute insulin doses

A CGM sensor provides an estimate  of the subject’s blood glucose (BG) 

concentration. To regulate the BG, predictive control strategies employ models of the form

(1a)

(1b)

Here k denotes the time index, xk ∈ ℝn denotes the patient state, and the scalar yk denotes an 

estimate of  computed via a measurement model. Let τ denote the sampling-period of 

the system; then the scalar  denotes the actual insulin infusion rate in units (U) per τ 

minutes. This actual insulin infusion rate has two components: , where uk is the 

control action (deviation from basal), and  denotes the time-varying, subject-specific, 

basal insulin infusion rate. General nonlinear functions f and h are presented in the 

predictive model formulation (1); these subsume widely used insulin-glucose models such as 

linear discrete-time models [26], nonlinear models [27], [28], and input-output 

autoregressive models [29].

The standard implementation of an MPC is via state-feedback. Therefore, it is necessary to 

design an estimator to procure the state xk of the system (1) based on the current CGM value 

, or other available information at time k (for example: previous control actions, CGM 

measurements, estimated glucose values). Popular estimation algorithms in the AP literature 

include: linear observers [30], moving horizon estimators [31], [32], or Kalman filters [33], 

[34]. Let Ny and Nu be the prediction and control horizon of the MPC, respectively. Let

denote a sequence of control actions from time step k + 1 to k +Nu. For any pair of integers 

a, b satisfying a < b, suppose . Then the optimal MPC control 

sequence is computed by solving
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(2)

where  is a cost function designed for glycemic regulation, and ,  are artificial variables 

used to denote open-loop states and control actions (deviations from basal), respectively. The 

framework in (2) captures commonly used MPC methods such as set-point MPC [36], 

adaptive set-point MPC [37], zone MPC [38], periodic zone MPC [30], and other MPC 

variants such as those reported in [33], [39], [40].

In addition to a positivity constraint (the drug infusion rate  cannot be negative), the 

control action must also satisfy a time-varying upper bound umax,k. Widely used umax,k 

include mechanical constraints such as the maximum infusion rate of the pump, 

physiological constraints such as the insulin-on-board constraint, and safety constraints such 

as limitations on insulin infusion post-exercise, limits on glucose and insulin velocity; see 

[35], [41], [42].

An additional constraint on the insulin output is the insulin-on-board (IOB) upper bound, 

denoted . The IOB, described in [35], accounts for the administered insulin history 

and computes the remaining active insulin in the body based on clearance rates in the human 

endocrine system. Therefore, the quantity  indicates how much insulin above the basal 

insulin rate  can be administered safely (from a clinical perspective) at the current time 

step k.

It is standard practice in time-triggered MPC to implement only the first element  of the 

sequence , and discard the tail . However, we will demonstrate in the following 

section that the information contained in the tail of the control sequence, if implemented 

carefully, provides an avenue for reducing the number of controller updates required, and 

therefore enhancing the efficacy of the design.

III. Event-Triggered MPC for an embeddable AP

In this section, we develop physiological conditions for event-triggering. Note that these 

event-triggers can be integrated with any MPC variant, or any control algorithm that 

leverages design models characterized in the form (1) for predicting future system behavior.

A. Predictive pump suspension

The highest priority in terms of clinical safety is to prevent sustained hypoglycemia (BG < 

70 mg/dL). To this end, pump suspension algorithms such as low-glucose predictors have 
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been devised in, for example, [43]. In this paper, we employ a linear predictor to estimate the 

BG level r ∈ ℕ samples into the future, that is,

When the predicted BG level ŷk+r is dangerously low, we suspend the pump until the BG 

levels return to the clinically safe region of 70–180 mg/dL. This event can be written as

where ξk ∈ ℝ is a design variable that enables the clinician or user to customize the 

predicted BG level below which they wish to suspend the pump; the dependence on the time 

step k implies that this variable can be altered when necessary. For example, users fearing 

nocturnal hypoglycemia can raise the value of ξk to enforce early pump suspension.

Remark 1—If a pump suspension is required, the control module need not be switched on, 

since the appropriate control action is . ■

Remark 2—We suggest using a linear predictor to predict future BG values instead of the 

design model (1). This is primarily to reduce computational effort, since this conditional 

statement is checked each time a new CGM value is available. To prevent frequent pump 

suspension due to inaccuracies inherent to linear extrapolation, the design parameter r is 

selected to be a small integer. ■

B. Exploiting insulin-on-board constraints

If the predicted CGM value does not warrant suspension, we choose our event-triggering 

variable to be , the IOB upper bound. From a physiological perspective, when 

= 0, the optimal MPC action lies in the set [ , 0]. Additionally, taking into account 

insulin pump quantizations, the cardinality of the set of allowable infusions in the range 

[ , 0] is very limited. Instead of invoking the optimal MPC action within this limited 

range, we infuse basal insulin if the predicted glucose trajectory is not low (in which case E1 

will trigger, and the pump will suspend). We exploit this insight to formulate the condition

If the previous two events (pump suspension and  saturation) are not triggered, we use 

the following event-triggered variant of the MPC.

C. Using the tail of the control sequence

Recall that the control horizon of the MPC is denoted by Nu, and that τ signifies the sample-

period of the system. We define the output estimation error as
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(3)

This is the difference between the CGM value and the estimated BG value at time step k. 

Suppose we solve (2) to derive an optimal MPC sequence  at time k. Instead of 

implementing only the first control action , in this event-triggering step, we apply the 

control actions in the tail of the control sequence  until either:

i. events E1 or E2 are triggered;

ii. the output estimation error norm |Δyk| exceeds a pre-specified threshold εobs; or,

iii.
the first ℓmax control actions in  are implemented.

Note that the exploitation of the tail of the control based on output estimation errors is 

adapted from [20]. The tail of the control sequence is applied only if the estimated BG and 

actual CGM values are in close proximity. If this happens, we expect the open-loop BG 

predictions to be sufficiently accurate estimates of the actual BG. This condition is written 

as: where denotes a counter initialized at one.

where ℓ denotes a counter initialized at one.

The selection of εobs is inextricably linked to the regulatory performance of the controller. If 

εobs is large, solving for the optimal MPC trajectory is not required until the estimation error 

Δyk is large, which may result in larger variability of BG values during glycemic regulation. 

The advantage of larger εobs is that the microprocessor is operated less often, as the system 

can rely on the stored tail of the control sequence to administer future insulin doses. 

Conversely, a small εobs results in tighter control but more frequent controller updates. Note 

that choosing εobs = 0 generalizes to the standard time-triggered approach with pump 

suspension.

The design parameter ℓmax signifies at most how many control actions in the tail 

could be actuated before recomputing an optimal MPC action trajectory (assuming that E1 

and E2 have not triggered). The relation between ℓmax and the regulatory performance of the 

MPC is similar to εobs: namely, if ℓmax is small, the energy drain is large, but the control 
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performance is tighter. Without a highly accurate model of the insulin-glucose dynamics, a 

large ℓmax (at most Nu) is expected to result in controller performance degradation.

If none of the conditions E1, E2 and E3 are satisfied, the control module is switched on and 

the optimization problem (2) is solved. That is,

Remark 3—This protocol requires  problem (2) is solved. The tail of the control 

sequence can therefore be subsequently withdrawn from the memory, rather than resolving 

the optimization problem at each time-step. ■

Remark 4—From an embedded implementation perspective, a concern is that packets are 

dropped during CGM or pump transmissions. Therefore, it is critical to build robustness 

around the control algorithm. In case of multiple missing CGM measurements or if 

communication with the pump or CGM is not established within a predefined time, we 

switch the AP to open-loop mode or infuse basal insulin for safety. ■

A flowchart representation of the safety constrained event-triggered AP is presented in Fig. 

1.

D. Prioritization for safe glycemic regulation

We will now address why it is important to prioritize the events in the afore-mentioned order 

through some illustrative scenarios.

Suppose the event-triggered MPC has higher priority than the pump suspension. Then, at 

low estimated BG levels it tends to be unlikely that control action other than suspension is 

useful, and thus it is generally wasteful to invoke expensive computations. Furthermore, 

even in cases where a non-suspension would be useful, for example, when BG is low and 

rising quickly, a suspension that is continued a short time longer than had MPC been 

invoked is not significantly deleterious to subjects’ health. Thus, this rule is computationally 

cost effective and safe.

Event E1 has higher priority than E2 for the following reasons. Recall that uk denotes the 

insulin infusion recommended above the basal rate. Hence, uk = 0 implies that the actual 

infusion is the basal, u⋆. When , event E2 will be triggered and basal insulin will be 

supplied instead of computing optimal MPC actions. If E1 has lower priority than E2, then 

one could be supplying basal insulin even if the optimal MPC action uk < 0, which would 

result in controller-induced hypoglycemia. To avoid this, we predictively suspend the pump, 

making E1 higher priority.
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IV. Case Study: Event-Triggered Periodic Zone Model Predictive Control

In this section, we begin with an overview of the zone MPC (ZMPC) formulation proposed 

in [38], and the improved periodic zone MPC framework reported in [30]. The objective of 

this section is to illustrate how our event-triggering methodology integrates seamlessly with 

the periodic ZMPC.

A. Insulin-Glucose Model

A 3-dimensional linear discrete-time model, proposed in [26], is used as a design model. 

The model has a sampling time τ = 5 min. It is important to note that the model is linearized 

around a steady-state glucose value of y⋆ = 110 mg/dL with a time-varying basal insulin rate 

. The model is personalized with respect to each subject with T1DM via the insulin to 

carbohydrate ratio, total daily insulin amount, and basal insulin profile, and has been 

clinically validated in [30], [44] for demonstrating accurate predictive behavior.

The transfer function representation of the measurement output y and the control input u is 

given by

(4)

where z−1 is the backward shift operator, p1 = 0.98 and p2 = 0.95 are the poles, F = 1.5 is a 

safety factor determined by clinicians, uTDI denotes an admissible subject-specific total daily 

insulin amount, and c ≔ −60(1 − p1)(1 − p2)2 is a constant required for unit conversion, 

whose units depends on the units used in data for the design of the poles of the model. The 

state-space representation of the discrete-time transfer function model (4) has the form

(5)

where k is denotes the discrete time index, xk is the subject state at the kth time instant, uk is 

the control action, and yk is the output of the design model, with matrices

and  Clearly, this model conforms to the representation (1) with f ≔ Ax + 

Bu and h ≔ Cx.

The state xk of the system (5) is computed based on the current CGM value  using a 

linear observer of the form
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(6)

where L is the observer gain matrix, and  is an estimate of the current 

state based on the previously estimated state xk−1 and the (known) previous control action 

uk−1.

B. Constraints for safe glucose variation

The control objective is to regulate the subject’s glucose level  to within a time-

dependent periodic zone of safe glucose values. As hypothesized in [25] and clinically 

validated in [30], [44], employing a periodic zone as a glucose target rather than a fixed set 

point offers various clinical advantages such as reduction of nocturnal hypoglycemic events. 

Furthermore, the ZMPC leads to reduced actuation; our proposed event-triggering algorithm 

further reduces the actuation via prioritized, event-based conditional constructs.

A periodic zone is represented mathematically as

(7)

where the lower and upper bounds are given by

(8a)

and

respectively. For a, b ∈ ℝ, the map ψ(a, b) denotes a smooth transition between a and b; in 

this work, we choose ψ to be a cosine function. The positive scalars , , , and 

 are design parameters which are determined after discussion with endocrinologists.

Remark 5—If the designer wishes to implement a fixed target glucose level (commonly 

referred to as a set-point MPC), this can be modeled as a zone with identical upper and 

lower bounds, that is, when . ■
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C. Constraints for safe insulin delivery

As discussed before, the active insulin content in the body is formulated as the IOB 

constraint, which restricts the allowable magnitude of insulin infused. Empirical clinically-

validated insulin action curves are used to compute the current IOB value. These discretized 

curves are sampled every τ min and represent the fraction of insulin that remains active after 

2, 4, 6 and 8 hours. We denote these curves by Θℓhr ∈ ℝ8/(τ/60), where ℓ ∈ {2, 4, 6, 8}. In 

order to estimate the current IOB value, we first select the correct IOB curve based on the 

current CGM value  and the following heuristic:

(9)

Let Uk−95:k ∈ ℝ96 and  denote the vector of insulin infusions and meal-

induced manual insulin boluses administered over the past 8 hours, respectively. Then the 

estimated current IOB value is given by

With an estimate of the current IOB, we compute the IOB upper bound as:

(10)

where Cf [(mg/dL)/U] is a patient-specific clinical parameter, called the ‘correction factor’. 

With the above constraints, we are now ready to formulate the optimization problem that 

yields appropriate insulin doses for safe glycemic regulation.

D. Computing insulin doses

An important ingredient required for the optimization formulation is the so-called ‘zone-

excursion function’

where  and  have been previously defined in (8).

Let Ny and Nu denote the prediction and control horizon of the ZMPC, and let U1:Nu|k 

denote a sequence of control actions from time step k + 1 to k + Nu. Then the optimal 

control sequence is computed by solving
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(11)

subject to:

Although we compute the optimal ZMPC control sequence , we only apply the first 

action  of the sequence.

Remark 6—Since this optimized control action is derived with respect to the linearized 

model, the actual insulin dose administered is given by . ■

E. Event-triggered ZMPC parameters for simulation

Parameters for the ZMPC have been clinically validated in [30], [44]. We select a predictive 

horizon of Ny = 9 (45 min), and control horizon Nu = 5 (25 min) for the ZMPC. The 

periodic zone is parameterized by , , and 

. The weights are selected as Q = 1,  and .

For the event E1, the linear predictor horizon is chosen to be r = 5 samples (25 min), and the 

pump suspend threshold ξk is selected to be 80 mg/dL in the morning (7 AM–11 PM), and 

raised to 100 mg/dL at night (11 PM–7 AM) to prevent nocturnal hypoglycemia. For event 

E2, we compute  as in (10). For E3, we have a choice of 1 ≤ ℓmax ≤ Nu. We ℓmax = 3 

because the linear model (5) typically stabilizes to the zone  within three 

samples, and the rest of the control trajectory degrades to the basal insulin rate 

Another design parameter for E3 is εobs: this scalar is strongly correlated with the trade-off 

between regulatory performance and controller update frequency. Thus, in the following 

section, we investigate the efficiency and regulatory performance trade-off with multiple 

εobs. To choose a viable range of εobs, we construct a histogram of absolute glucose 

deviations |Δyk| from a previous clinical study [14] using data from N = 17 subjects. This 
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histogram is provided in Fig. 3, along with the median and interquartile ranges. Since the 

median is found to be 3 mg/dL, we restrict εobs = 1, 2, 3 mg/dL.

V. Simulated Hardware-in-the-Loop Experiments

We report the clinical scenario, hardware platform, and results of the simulation study on 

111 subjects: 100 from the full version of the FDA-accepted UVA/Padova simulator [45], 10 

from the freely available version of the simulator, and a subject constructed by averaging the 

parameters of the 110 other subjects. We begin by testing the performance of the event-

triggered ZMPC (ET-ZMPC) with multiple εobs both with and without meal announcement 

to determine a satisfactory value. Fixing this value of εobs, we verify the robustness of the 

ET-ZMPC with respect to incorrect basal infusion rates and erroneously estimated 

carbohydrate levels in announced meals.

A. Clinical Scenario and Challenges

The clinical scenario used to test the proposed controller is presented in Fig. 2. Five meals in 

total are consumed within 41 simulated hours of closed-loop control. A 70 g meal of 

carbohydrates is consumed at 6 PM, after 2 hours of closed-loop initiation, followed by a 

snack of 40 g of carbohydrates at 9 PM. The system is challenged at 2 AM with an 

undetected insulin bolus to represent a sudden, nocturnal hypoglycemic episode that is a 

major concern for patients with T1DM. The following morning, a 70 g breakfast is provided 

at 8 AM, a 70 g lunch at 1 PM, and a dinner of 70 g of carbohydrates at 9 PM. Two cases are 

considered to evaluate the performance of the ET-ZMPC algorithm;

i. all meals are unannounced and the controller is responsible for computing 

appropriate insulin doses in a completely automated manner; and,

ii. all meals are announced and a manual insulin bolus is administered based on a 

patient-specific carbohydrate/insulin ratio; the controller is expected to regulate 

the basal insulin satisfactorily in the pre- and postprandial time ranges.

The challenge for the event-based controller is to perform comparably to the time-triggered 

ZMPC (TT-ZMPC), in a safe manner, with fewer controller updates. The safety of the event-

triggering mechanism is tested by assessing its ability to prevent severe nocturnal 

hypoglycemia induced by an undetected insulin bolus (representing manual overbolusing, 

latent exercise effects, or heightened insulin sensitivity due to collateral illness) of 2 U 

magnitude at 2 AM on the first night.

B. Hardware-in-the-Loop-Simulation Studies

The periodic ZMPC control action sequences, observer, IOB computation, and the event-

triggering mechanism are deployed on a single-board computer known as Raspberry Pi 3 

Model B (https://www.raspberrypi.org/). A 32GB microSD card is used as the flash memory 

of the entire system. The board contains a 64-bit quad-core ARMv8 central processing unit 

(CPU) that operates on up to 1.2GHz clock speed. The Raspberry Pi emulates an embedded 

AP: it communicates with MATLAB via Ethernet to receive virtual CGM data from the 

Simulator and wirelessly transmits the computed control action back to the Simulator. All 

code for the Raspberry Pi is written in Python 2.7 and the quadratic programming problem 
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inherent to the MPC is solved using the CVXOPT toolbox [46]. The rationale behind 

deploying the AP as an embedded system is to collect realistic power numbers and 

demonstrate the feasibility of implementing the event-based ZMPC algorithm on a 

miniaturized device. An overview of the hardware-in-the-loop (HIL) simulation protocol and 

the components used therein is provided in Fig. 4.

C. Results and Discussion

The following results are obtained by testing the TT-ZMPC and ET-ZMPC on 111 in-silico 
subjects, obtained as follows: 100 subjects from the full version of the UVA/Padova 

simulator, 10 subjects from the short version of the UVA/Padova testbed, and 1 subject 

whose dynamics are generated by averaging the model parameters of the afore-mentioned 

110 subjects.

1) Comparing TT-ZMPC and ET-ZMPC—We test the performance of the ET-ZMPC 

with εobs = 1, 2, 3 mg/dL and compare with the standard TT-ZMPC for both announced and 

unannounced meals. For this comparative study, we report BG performance metrics (as 

recommended in [47]) in Table I for the overall study and overnight periods (12 AM to 8 

AM; depicted with gray rows). To determine the efficacy of the proposed control strategy, 

we provide the percentage of controller updates required for each variant of the ET-ZMPC, 

along with power consumed in mAh over the simulation time. A DROK USB 2.0 digital 

multimeter is used to measure the current (in mA) flowing into the Raspberry Pi during the 

simulation time period. The average current value is then multiplied by the total time (in 

hour) required by the control module to solve the quadratic program (11) to yield a first-

order estimate of the total energy consumed. An implicit assumption is made in this 

estimation of the energy consumption: that the Raspberry Pi can be switched on/off 

instantaneously upon concluding communications with Simulink, and the idle current is 

negligible. Although this is not strictly true for the Raspberry Pi, we envision that future 

embedded AP technology would employ application-specific hardware, the operation of 

which can be tightly tailored to the task of being energy-efficient, thereby minimizing idle 

current loss.

For unannounced meals, we note from Table I[A] that increasing εobs results in a decrease of 

time spent with BG less than 70 mg/dL both overall and overnight. This is primarily due to 

anticipatory pump suspension: as expected, this results in (statistically significant) increased 

time spent above 180 mg/dL. The time spent in the euglycemic range, along with the median 

BG concentration, decreases with increasing εobs. This can be explained by recalling the 

condition for event E3: as εobs increases, previously optimal, but currently suboptimal, 

control actions are employed with higher discrepancy between the CGM value and the 

estimated BG level. This suboptimality of controller decisions, coupled with the discrepancy 

in BG estimates, results in less tighter regulation of BG. However, this slight compromise (≈ 
10% decrease of time in euglycemic range) in regulatory performance comes at an excellent 

trade-off: a 40–60% reduction in controller updates with less than half the energy consumed 

for overnight simulations (in comparison with the standard time-triggered controller), 

without a significant alteration of time in with BG <70 mg/dL.
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The energy-saving capabilities of the proposed ET-ZMPC is more pronounced with meal 

announcement. We deduce from Table I[B] that the time in the BG ranges vary less than 2% 

for the ET-ZMPC versus the TT-ZMPC, while the controller updates are reduced by 67–80% 

and the energy consumed is less than half. At night, the ET-ZMPC maintains the subjects’ 

BG in the euglycemic range more than 96% of the time in spite of the undetected 2U insulin 

bolus with the controller in sleep mode for over 4 hours each night in spite of a sizable 

undetected insulin bolus (emulating a sudden, nocturnal hypoglycemic event).

A crucial question that remains unanswered is how to select a specific value of εobs utilizing 

the above data collected for εobs = {1, 2, 3}. This is the topic of the next subsection.

2) Selection of εobs—We propose the following systematic method of exploiting trade-off 

curves to select a particular value of εobs within the range εobs = {1, 2, 3}. Note that a fully 

automated AP should be capable of handling the case when meals are unannounced. Thus, 

from a safety perspective, it is important to leverage the controller performance data for 

unannounced meals to select εobs. We begin, therefore, by choosing trade-off metrics based 

on Table I[A]. Specifically, we select time in the 70–180 mg/dL range as the metric for 

glucose regulation performance, and the average controller update frequency for each εobs as 

the efficacy performance. Of course, the designer could choose other metrics (e.g. time in 

80–140 mg/dL) of performance as prioritized by their specific investigation. Next, we 

construct the trade-off curves by polynomial regression for the chosen metrics; this is 

illustrated in Fig. 5. The Pareto-optimal nature of the metrics are evident from the trade-off 

curve (black dash-dot line). The next step involves formulating an admissible design space: 

for example, we specify that for overall performance, we require at least a 40% reduction in 

controller update frequency, and at least 60% time in the euglycemic range. Additionally, we 

require that, overnight, we require at least 60% of sleep time for the controller, and 

maintenance at least 80% of the time in the euglycemic region in spite of the onset of latent 

nocturnal hypoglycemia. Leveraging our regression-based trade-off curve and these 

controller specifications, we construct the admissible design space shown by shaded yellow 

boxes in Fig. 5. Noting that the TT-ZMPC is equivalent to an ET-ZMPC with εobs = 0 

having predictive pump suspension, we assume a linear variation of εobs from 0 to 3 along 

the trade-off curve, as depicted by the thick black line at the bottom of Fig. 5. Then the 

intersection of the admissible design spaces are projected onto the range of εobs line (shown 

using red dashed arrows) to obtain an admissible range of εobs in [1.53, 2.47]. For low-

complexity/embedded implementation, the value εobs = 2 is chosen as it offers a specific 

engineering advantage. Namely, it is represented using two-bits and therefore can be 

compared easily rather than using single precision and complicated multiplexers or 

combination of multiplexers. Comparing against εobs = 2 can be done more efficiently by 

shifting right |Δyk| bitwise to the right (division by 2) and comparing with a single bit: that 

is, checking whether |Δyk|/2 ≤ 1 instead of |Δyk|≤ 2. This indicates that simple hardware 

components can be used to implement a swift comparison if εobs = 2, as chosen for this 

exemplar design.

3) Resilience against model mismatch/misinformation—To verify the controller 

performance and controller update reduction with εobs = 2 mg/dL in a challenging simulated 
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setting, we test the TT-ZMPC and ET-ZMPC with the following (sizable) model mismatch: 

(i) a random perturbation of ±20% on the TDI value, (ii) ±50% additive uncertainty on the 

basal insulin infusion rate, and (iii) for announced meals, incorrect estimation up to ±25% of 

the carbohydrate ratio. The objective of introducing these uncertainties is to estimate the 

controller performance in spite of temporal variations in these parameters, and to take into 

account inaccuracy in model fitting. The user also misinforms the controller by ±25% of the 

estimated carbohydrate content in the meal: this is a very common occurrence, although we 

selected a high misinformation magnitude of 25% to challenge the controller and ensure 

operational safety in clinically adverse scenarios.

The results of this robustness analysis are presented in Fig. 6 for unannounced meals 

(subplots [A]–[C]), and meal announcement (subplots [D]–[F]). Fig. 6[A] and [D] depicts 

the median of the event that was triggered at each time step. Both subplots show similar 

trends. The pump suspension E1 (black shade) closely follows the nocturnal injection of 2U 

of undetected insulin when the subjects enter the hypoglycemic range or when (in case of 

the announced meals) the meal size is incorrectly estimated leading to overbolusing of 

insulin. As expected, the event E2 (dark green shade) triggers postprandially, when the 

infused insulin drives the IOB upper bound to zero; this is more pronounced in the case of 

meal announcements since a large impulsive bolus is applied, so the duration for which 

 is longer. Since the subplots [A] and [D] depict the median of the events, the white 

regions (illustrating controller updates) is mostly limited in case of announced meals, since 

the critical decision making during a meal is handled via manual bolusing, and thus, the 

MPC does not need to be invoked often. This is in contrast to the plentiful presence of 

controller updates in the case of unannounced meals, since the controller is solely 

responsible for decision making at the onset of a meal. We also draw attention to the fact 

that in the second night, when there is no latent hypoglycemia, and the IOB constraint is 

non-zero, the subplots [A] and [D] show that E3 is triggered. This can be explained from 

subplots [B] and [E], respectively. We observe that the BG levels are in the euglycemic zone 

without sharp variations between the estimated BG and CGM values; even with model 

mismatch, the controller does not require updating for more than half of the night. Subplots 

[B]–[F] testify that in spite of non-trivial mismatch and misinformation, the event-triggering 

strategies are robust and perform safely without frequent controller updates, and the time in 

the euglycemic range are quite similar.

We provide a detailed illustration of controller update frequency in the presence of 

mismatch/misinformation in Fig. 7. We verify that our design specifications during the 

selection of εobs = 2 are satisfied: indeed, the controller is idle 55% of the time (median) 

overall, and around 65% of the time at night when meals are unannounced: the time no 

controller updates are required improves to 71% and 77%, respectively, when meals are 

announced. Furthermore, the time in the euglycemic range is 62% overall, and 80% 

overnight for unannounced meals. For announced meals, these numbers are 86% and 92%, 

respectively.
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D. Testing on clinical data

To estimate the performance of our proposed algorithm with sensor noise and glucose 

variability, we test the algorithm with εobs = 1, 2, 3 mg/dL on clinical data* obtained in a 

randomized, crossover trial with 17 people with T1D in closed loop with MPC [14]. We 

evaluate our proposed algorithm on the CGM trace and compute the percentage time the 

processor implementing the ET-ZMPC can remain idle. We use the same MPC parameters 

as in the previous section, which differs from those used in the clinical study. In Fig. 8, the 

mean insulin traces over 17 patients are compared with the actual MPC control obtained in 

the clinical study.

Based on clinical data from a closed loop study that used the Dexcom G4 with the 505 

algorithm (Dexcom, San Diego, CA), the percentage savings in controller updates for our 

proposed controller is statistically significant in all three cases (p < 0.001) based on a 

Wilcoxon rank sum test, and the percent updates required decrease consistently with 

increasing εobs. Specifically, the median percent updates required are 48.60, 40.36 and 34.64 

for the ET-ZMPC tested on this data for εobs = 1, 2, 3 mg/dL, respectively. This can be 

deduced from the increasing density of the blue shades in Fig. 8. Albeit with limited 

updates, the control actions of the ET-ZMPC and the clinical ZMPC exhibit statistically 

similar trends, with total insulin infused being slightly lower: specifically, clinical: 39.64 

± 12.14 U, εobs = 1 mg/dL: 36.79 ± 8.83 U (p = 0.58), εobs = 2 mg/dL: 35.97 ± 8.65 U (p = 

0.39), εobs = 3 mg/dL: 35.33 ± 8.56 U (p = 0.27).

Although the total insulin used is lower the mean insulin delivered (shown in Fig. 8) exhibits 

a dispersion of announced meal boluses around 16:00 and 19:00, and a slight rise of insulin 

following a meal. These phenomena can be explained as follows. In the clinical study, 

announced meals were provided shortly before/after 16:00 and 19:00 but not exactly at those 

times: this is why we see a dispersion in the announced bolus timings. The slight rise of the 

ET-ZMPC control action versus the clinical ZMPC is due to event E2. This event is triggered 

due to higher levels of glucose due to the meal, in conjunction with a sharp decay of 

to zero following a meal bolus. This infusion of basal following the meal bolus raises the 

average insulin in the ET-ZMPC above the clinical controller (which computes infusions 

lower than basal).

VI. Conclusions

For next generation AP systems, we envision miniaturization and low-power technology to 

ensure wearability, implantability and increased life expectancy of the medical device. A 

step in this direction is provided in this paper. Specifically, we present an event-triggering 

methodology that increases the idle time of the control module via reduction of controller 

updates. The proposed methodology utilizes the richness of MPC design features to enable 

skipping of control actions and using the tail of the control sequence to save energy. We also 

inject personalized design specifications into our event-based formalism through user-

defined parameters such as ξk, ℓmax, and εobs. The simulation results indicate that the 

*Specific details of the study can be found at clinicaltrials.gov ID: NCT02438670 and NCT01987206.
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proposed method can achieve comparable performance to standard MPC, but with >50% 

reduction in controller updates, signifying its suitability for an embedded, power-saving AP.

We appreciate that although the microprocessor implementing the control algorithm is a 

significant energy drain, optimal power management is dependent on the efficient use of 

multiple components such as communication modules, safety alarms, end-user displays. 

Thus, our future work will be dedicated to extending the event-triggering mechanism to self-

triggering methods to enable the CGM to be the ‘driver’ instead of the controller: that is, to 

design a smart CGM that decides when (and if) the controller needs a BG value, based on 

physiological trends. Other modes of investigation include the search for a low-energy 

communication module for secure and fast transferral of BG, constraints, and insulin 

information.
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Fig. 1. 
Flowchart for event-triggered MPC-based AP.
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Fig. 2. 
Scenario for testing the performance of the proposed event-triggered AP. The closed-loop 

starts at 4 PM the first day. Two meals are consumed the first day followed by a simulated 

secret insulin bolus to force a nocturnal hypoglycemic event. The second day includes a 

meal plan of three meals with long intervals between meals. The closed-loop ends the next 

day at 9 AM.
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Fig. 3. 
Histogram of absolute glucose deviations obtained from clinical CGM data [14] with 3 

mg/dL median (continuous vertical line) and 1–6 mg/dL interquartile range (dashed vertical 

lines).
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Fig. 4. 
Hardware-in-the-loop implementation. Note that the Raspberry Pi Zero is smaller than the 

credit card beneath. SND and RCV denote sending and receiving data, respectively, via 

Bluetooth LE or WiFi.
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Fig. 5. 
Box-and-whisker plots to compare the TT-ZMPC and ET-ZMPC strategies in terms of trade-

off between glucose regulation (median time in the 70–180 mg/dL range) and percentage of 

controller updates required in closed-loop over the entire simulation and during the night-

time with and without meal announcement. Statistical significance is shown with blue stars 

and regression-based trade-off curves are depicted using gray dashed lines. Note that the x-

axis is reversed.
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Fig. 6. 
Robustness analysis of the controller with mismatched basal insulin rate, carbohydrate ratio 

and total daily insulin intake. (Left column) Controller performance with unannounced 

meals. [A] Median of events over the closed-loop simulation. [B] Median and interquartile 

(IQ) ranges of blood glucose concentration for ET-ZMPC (blue) and TT-ZMPC (red). [C] 

Median insulin profiles for ET-ZMPC (blue) and TT-ZMPC (red). (Right column) Controller 

performance with meal announcements. [D] Median of events over the closed-loop 

simulation. [E] Median and interquartile ranges of blood glucose concentration for ET-

ZMPC (blue) and TT-ZMPC (red). [F] Median insulin profiles for ET-ZMPC (blue) and TT-

ZMPC (red). The spikes (truncated at 0.3U) denote the manual insulin boluses
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Fig. 7. 
Pie charts of the distribution of events of the ET-ZMPC (εobs = 2 mg/dL) reported for the 

overall simulation time, the night-time with an undetected 2U insulin bolus, and a night-time 

without meals or latent hypoglycemia. (Top) Scenario of unannounced meal disturbances. 

(Bottom) Scenario of announced meal disturbances.
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Fig. 8. 
Clinical evaluation of ET-ZMPC using advisory mode with varying εobs on clinical data. 

The lower three plots compare mean insulin profiles of the ET-ZMPC (black) and the 

clinical controller (red) for 17 patients, where the background blue shading denotes times 

when the control module processor can be switched off.
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TABLE I

Controller performance comparison with announced and unannounced meals (Mean ± One Standard 

Deviation) for 111 subjects. The grey shading is used to depict overnight metrics. The ‘*’ implies a p-value< 

0.05 and ‘**’ indicates a p-value< 0.001.

Performance Metrics Standard TT-ZMPC Proposed ET-ZMPC

εobs = 1 εobs = 2 εobs = 3

[A] Unannounced Meals

Overall BG < 70 mg/dL [%] 1.64 ± 2.85 1.27 ± 2.09 1.15 ± 1.99 1.07 ± 1.84

Overall BG in 70–180 mg/dL [%] 66.00 ± 8.63 63.72 ± 8.81 (*) 61.09 ± 8.87 (*) 58.73 ± 8.85 (*)

Overall BG > 180 mg/dL [%] 31.90 ± 8.64 34.51 ± 9.08 (*) 37.27 ± 9.37 (*) 39.80 ± 9.45 (*)

Overall BGmedian [mg/dL] 141.95 ± 13.47 146.94 ± 15.99 (*) 152.52 ± 18.92 (*) 157.81 ± 21.40 (*)

Overall Percent Controller Updates [%] 100.00 ± 0.00 59.34 ± 6.86 (**) 47.58 ± 5.73 (**) 38.83 ± 4.58 (**)

Overall Energy Consumed [mAh] 4.79 ± 0.32 2.86 ± 0.33 (**) 2.28 ± 0.29 (**) 1.87 ± 0.23 (**)

Overnight BG < 70 mg/dL [%] 3.24 ± 5.29 2.71 ± 4.35 2.46 ± 4.24 2.45 ± 4.23

Overnight BG in 70–180 mg/dL [%] 88.24 ± 8.51 86.56 ± 8.86 84.37 ± 9.50 (*) 81.93 ± 9.94 (*)

Overnight BG > 180 mg/dL [%] 8.16 ± 6.55 10.36 ± 8.03 (*) 12.75 ± 9.42 (*) 15.22 ± 10.25 (*)

Overnight BGmedian [mg/dL] 121.61 ± 8.53 123.93 ± 8.96 (*) 126.39 ± 10.41 (*) 129.12 ± 11.85 (*)

Overnight Percent Controller Updates [%] 100.00 ± 0.00 48.02 ± 11.05 (**) 37.48 ± 9.11 (**) 30.17 ± 7.13 (**)

Overnight Energy Consumed [mAh] 5.07 ± 0.43 2.43 ± 0.56 (**) 1.88 ± 0.45 (**) 1.53 ± 0.37 (**)

[B] Announced Meals

Overall BG < 70 mg/dL [%] 0.76 ± 1.46 0.96 ± 1.66 0.85 ± 1.52 0.80 ± 1.49

Overall BG in 70–180 mg/dL [%] 86.65 ± 9.73 86.75 ± 10.26 86.38 ± 10.35 86.07 ± 10.79

Overall BG > 180 mg/dL [%] 12.60 ± 9.08 12.29 ± 9.71 12.77 ± 10.01 13.14 ± 10.49

Overall BGmedian [mg/dL] 130.40 ± 7.43 129.99 ± 9.10 130.89 ± 10.01 131.30 ± 10.97

Overall Percent Controller Updates [%] 100.00 ± 0.00 33.04 ± 10.16 (**) 25.88 ± 8.26 (**) 20.68 ± 6.92 (**)

Overall Energy Consumed [mAh] 5.09 ± 0.30 1.70 ± 0.49 (**) 1.34 ± 0.40 (**) 1.07 ± 0.33 (**)

Overnight BG < 70 mg/dL [%] 1.67 ± 3.17 1.79 ± 3.23 1.54 ± 2.94 1.50 ± 3.05

Overnight BG in 70–180 mg/dL [%] 96.63 ± 5.43 96.22 ± 5.86 96.29 ± 5.68 96.22 ± 5.76

Overnight BG > 180 mg/dL [%] 1.50 ± 3.01 1.77 ± 3.77 1.89 ± 3.93 2.03 ± 4.13

Overnight BGmedian [mg/dL] 119.88 ± 7.75 119.41 ± 8.75 119.81 ± 9.37 120.10 ± 10.02

Overnight Percent Controller Updates [%] 100.00 ± 0.00 41.87 ± 13.16 (**) 32.22 ± 10.67 (**) 25.52 ± 8.59 (**)

Overnight Energy Consumed [mAh] 5.27 ± 0.36 2.21 ± 0.70 (**) 1.71 ± 0.55 (**) 1.36 ± 0.44 (**)
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