
Hand synergies: Integration of robotics and neuroscience for 
understanding the control of biological and artificial hands

Marco Santelloa,*, Matteo Bianchib,c, Marco Gabiccinib,c,d, Emiliano Ricciardie,b, Gionata 
Salviettif, Domenico Prattichizzof,c, Marc Ernstg, Alessandro Moscatellig,h, Henrik Jörntelli, 
Astrid M.L. Kappersj, Kostas Kyriakopoulosk, Alin Albu-Schäfferl, Claudio Castellinil, and 
Antonio Bicchib,c,**

aSchool of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA 
bResearch Center ‘E. Piaggio’, University of Pisa, Pisa, Italy cAdvanced Robotics Department, 
Istituto Italiano di Tecnologia (IIT), Genova, Italy dDepartment of Civil and Industrial Engineering, 
University of Pisa, Pisa, Italy eMolecular Mind Laboratory, Dept. Surgical, Medical, Molecular 
Pathology and Critical Care, University of Pisa, Pisa, Italy fDepartment of Information Engineering 
and Mathematics, University of Siena, Siena, Italy gDepartment of Cognitive Neuroscience and 
CITEC, Bielefeld University, Bielefeld, Germany hDepartment of Systems Medicine and Centre of 
Space Bio-Medicine, Università di Roma “Tor Vergata”, 00173, Rome, Italy iNeural Basis of 
Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, 
Sweden jHuman Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands kSchool of 
Mechanical Engineering, National Technical University of Athens, Greece lDLR – German 
Aerospace Center, Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany

Abstract

The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of 

multiple elements working together towards a common goal has been extensively used in 

neuroscience to develop theoretical frameworks, experimental approaches, and analytical 

techniques to understand neural control of movement, and for applications for neuro-

rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies 

to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. 

At the same time, robotic research on the sensorimotor integration underlying the control and 

sensing of artificial hands has inspired new research approaches in neuroscience, and has provided 

useful instruments for novel experiments.

The ambitious goal of integrating expertise and research approaches in robotics and neuroscience 

to study the properties and applications of the concept of synergies is generating a number of 

multidisciplinary cooperative projects, among which the recently finished 4-year European project 

“The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. 

Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how 
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robotics has leveraged the insights from neuroscience for innovative design in hardware and 

controllers for biomedical engineering applications, including myoelectric hand prostheses, 

devices for haptics research, and wearable sensing of human hand kinematics. The review also 

emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a 

synergy-based approach for robotics, and provides guidelines and principles for analyzing human 

behavior and synthesizing artificial robotic systems based on a theory of synergies.
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Introduction

The human hand is an extraordinarily sophisticated and versatile sensorimotor system. 

Controlling the large number of elements of the hand, such as muscles, bones, and joints, as 

well as integrating multiple sensory modalities, are complex tasks the Central Nervous 

System (CNS) must deal with.

As infants, we use our hands as a sensory organ to learn the properties of the world around 

us, e.g., whether a surface is cold or hot, rough or smooth, hard or soft. As early motor 

developmental milestones are conquered and well before we learn how to walk or to verbally 

communicate, we acquire the ability to perform well-directed reaching movements towards 

objects that capture our attention, pre-shape our hands to ensure that we can grasp objects as 

we complete our reach, and oppose the thumb to the other fingers to firmly grasp and 

manipulate objects. As the CNS continues to mature, we become more skilled at using our 

hands as motor organs, through which we gradually learn to perform a wider gamut of 

manual actions. Some of these actions may require the ability of moving individual digits 

independently when, for example, we need to pick and manipulate a small object, or learn to 

play a musical instrument. Other actions may require the use of all digits in a synergistic 

fashion, i.e., by conjointly closing or opening all digits in a coordinated way [1].

Given the critical role that the hand plays in activities of daily living, hence quality of life, as 

well as to better understand how to improve functional recovery of hand control after 

neurological or traumatic injuries, many studies have been devoted to characterize the way 

the CNS controls the hand. As hand function emerges from the interplay among a large 

number of sensory and motor elements, neural control of the hand has been studied across 

many levels of the CNS and through a wide variety of experimental approaches. The 

quantification of the spatial and temporal coordination of multiple hand muscles, joints, and 

digit forces has led a number of investigators to develop and test the theoretical framework 

of hand synergies.

Synergies

In the large body of studies on neural control of movement (for reviews the reader is referred 

to [2–7]) “synergies” have been defined in several different ways depending on the level(s) 

and scale of the sensorimotor system being investigated, including but not limited to motor 
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units, muscles, and joints (for details see [8]). Thus, at the level of motor units, common 

neural input in the time and/or frequency domain (synchrony and coherence, respectively) 

could be viewed as a form of synergistic control as it constrains the timing at which multiple 

motor units are activated (for review see [9]). At the muscle level, muscle synergies have 

been defined as patterns of muscle activity whose timing and/or amplitude modulation 

enable the generation of different movements (for review see [10]). When examining motor 

output rather than neural drive underlying movement production, synergies have also been 

identified and defined as covariation patterns that constrain in a systematic way angular 

excursions at multiple joints, e.g., hand postural synergies ([11–13]; for review see [8]), or 

covariation patterns among digit forces (for review see [14]).

Regardless of the level of the CNS at which synergies are defined, the main implication that 

is shared across the different definitions of synergies is that multiple degrees of freedom are 

controlled within a lower dimensional space than the available number of dimensions. It has 

been proposed that in the intact nervous system, synergies allow to flexibly adapt to different 

task conditions, e.g., the amplitude and/or temporal relations among several muscles can be 

changed to generate different motor behaviors, or the same behavior across different task 

conditions. However, injury to the nervous system would interfere with the ability of the 

sensorimotor system to flexibly combine synergies, thus leading to abnormal synergies 

([15,16]; for a review see [6]).

As the number of studies of hand synergies in animal and human models grew and refined 

analytical and experimental approaches, over the past decade roboticists have started to 

investigate the potential applications of hand synergies for artificial hands [17,18]. This 

work has led to the successful application of the concept of synergies [17] and the creation 

of novel design and control concepts for robotic hands and prostheses, while providing 

experimental tools and new research approaches for neuroscience.

The aims of this review are to provide an overview of the neuroscientific bases of hand 

synergies – meant as common patterns of actuation of the human hand – and to report how 

robotics has leveraged the insights from neuroscience for innovative design in hardware and 

controllers for biomedical engineering applications, including myoelectric hand prostheses, 

devices for haptics research and human–machine interactions, and wearable sensing of 

human hand kinematics. We also describe insights that robotics research on artificial hand 

design and control has provided to neuroscience research. This review mainly focuses on the 

most significant achievements of the international cooperation project called “THE Hand 

Embodied”1 and is organized in four sections. The first section describes the synergistic 

organization underlying motor control of the human hand. We will review how such an 

organization can be observed at different levels – postural, muscular, and neural – and 

quantified through different techniques – motion tracking, electromyography (EMG), and 

brain functional imaging. The second section describes how the concept of synergy has been 

exploited in robotics to develop tools for the analysis, modeling, and synthesis of artificial 

robotic hands, with potential applications for human–robot interaction and prosthetics. The 

1“THE Hand Embodied” project was supported by the European Commission under CP Grant No. 248587, within the FP7-
ICT-2009-4-2-1 program “Cognitive Systems and Robotics” (01.03.2010–28.02.2014).
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third section focuses on the relation between sensing and human hand synergies, and in 

particular on how the concept of dimensionality reduction might apply to the sensory 

domain of hand control, in the framework we define as sensory synergies. Furthermore, we 

consider how sensory and motor elements can be combined together into the paradigm of 

sensory-motor synergies. Analogies and applications in robotics are also discussed. The 

fourth and last section introduces open questions and directions for future research built on 

leveraging the complementary questions and approaches used in robotics and neuroscience 

to advance our understanding of neural control of the hand, as well as biomedical and 

robotic applications.

1. Hand synergies: motor control

The taxonomy proposed in [19] divided the large number of hand postures into two main 

categories: power and precision grips. The main insight of this taxonomy was the definition 

of hand postures based on a functional gradient. Thus, tasks that demand large forces are 

performed using hand postures that are characterized by large contact areas, often involving 

the palm of the hand and several digits. In contrast, precision grips would be used to perform 

tasks that require small but finely controlled forces, often exerted through the fingertips. 

However, the examination of digit joint kinematics extracted from static hand posture 

revealed a different picture than the aforementioned taxonomy. Specifically, hand postures 

used to grasp a wide variety of imagined objects could be described by a very small number 

of linear combinations of joint angles, i.e., principal components or postural synergies (or 

eigenpostures) [11]. Furthermore, it is also possible to observe a gradient in hand 

eigenpostures, where lower-order principal components reflect covariation patterns for 

metacarpal–phalangeal (MCP) and interphalangeal (IP) joints – which are mainly 

responsible for coarse hand opening and closing – and higher-order principal components 

corresponding to finer hand shape adjustments. These observations, which have been 

replicated with real objects [12] and in many other experimental settings (see [8] for a 

review) revealed that the apparent complexity associated with having to control multiple 

digit joints might be addressed by constraining them to move in a synergistic fashion. In 

other words, the problem of controlling many joints is not as complex as it seems, especially 

when not all joints can or should be moved independently from other joints.

As reviewed in [8], the synergistic organization in the motor domain can be defined 

according to the level at which the analysis is performed. In the following sections, we will 

review the main concepts related to how synergies have been defined at kinematic or 

postural level, at the muscular level, and at the neural level.

1.1. Kinematic redundancy and biomechanical constraints

The biomechanical architecture of the hand provides some insights into how the CNS might 

implement a synergistic control of digit motion and forces (for a review see [20]). Briefly, 

the tendons of extrinsic finger flexors and extensors cross several joints. Therefore, tension 

exerted on a tendon would generate torques at several joints. Furthermore, passive linkages 

exist among hand muscles, and in non-human primates these connections can transmit 

tension across tendons [21]. Both of these observations indicate that motion at multiple 
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joints and/or digits can occur without the need for, or the existence of, neural drive to 

multiple hand muscles. However, and as discussed in [6], the CNS can override – to some 

extent – these tendencies for ‘unwanted’ widespread motion at multiple fingers, as it 

happens following training in performing individuated finger movement necessary for typing 

or piano playing.

1.2. Muscle synergies

As mentioned above, synergies can be also studied at the muscular level. The leading 

hypothesis of the so-called “muscle synergies” is that multiple muscles can be activated as a 

unit by varying their timing and/or neural drive (quantified as EMG). The combinations of 

these multi-muscle activation patterns would therefore underlie the control of given 

movements, e.g., postural control, gait, or arm movements, across different task conditions 

or requirements [4,10,22].

With respect to hand control, and in addition to the above-described peripheral constraints 

on independent digit motion and contact forces, it has been proposed that the organization of 

neural inputs to motor nuclei of hand muscles in the spinal cord might also contribute to 

their synergistic activation. Specifically, common neural inputs to motor units of hand 

muscles have been described for extrinsic and intrinsic hand muscles during grasping 

[23,24]. Interestingly, common neural input to hand muscle motor unit pairs appear to be 

distributed along a functional gradient, where muscles involved in synergistic finger control 

tend to receive stronger common neural input than muscles involved in fine modulation of 

digit movement and forces (extrinsic and intrinsic hand muscle, respectively) ([25,26]; for a 

review see [9]). Studies of hand muscle synergies quantified at the motor unit population 

level through interference EMG have revealed that the activation of multiple muscles scales 

with total grip force during three-digit grasping [27], thus complementing the above 

observations of correlated neural input to motor unit pairs. Non-human primate studies have 

further quantified correlations in EMG amplitude of hand muscles recruited for grasping 

objects with different shapes and sizes [28,29]. Synergistic control of multiple hand muscles 

has also been described by studies of whole-hand grasping in humans [30] and finger 

spelling [30,31]. It should be noted that the analysis of hand synergies at the muscular or 

kinematic level are likely to reveal phenomena that lie on a functional continuum, i.e., 

dynamic and static hand postural synergies may be related to, or mediated by, hand muscle 

synergies. This view is supported by a recent study showing a close correspondence between 

muscle synergies and kinematic synergies in a reach-grasp-pull task [32].

An important question is whether hand synergies are learned or inborn. The earliest form of 

hand synergy is probably the ‘palmar grasp reflex’ that is found at birth, and through which 

the whole hand closes in response to a stimulation of the palm of the hand. Movement of 

individual fingers and thumb follow at 10–12 months of age, thus laying the foundations for 

more complex hand movement patterns that will gradually be mastered over the years [33]. 

It is tempting to speculate that this gradual evolution from somewhat basic hand movement 

patterns (e.g., whole hand opening and closing) to movements characterized by greater 

motion independence among the fingers might correspond with the above-described 

eigenpostures. Experimental observations point out to the high degree of similarity in 
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eigenpostures among individuals, both in laboratory tasks (e.g., [11]) and activities of daily 

living [34], as well as across manual tasks [35]. At the same time, the role of training and 

intensive practice can, to some extent, modify these stereotypical finger movement patterns 

[36]. However, the degree of plasticity with which motor commands can adapt to override 

synergistic finger movement patterns is not fully understood. A better understanding of the 

extent to which hand synergies can emerge through sensorimotor experience and interactions 

with the environment will be extremely valuable scientifically and in terms of bio-inspired 

technological applications (see Section 2).

In summary, the organization of neural inputs to hand muscles limits the extent to which the 

CNS can independently activate individual hand muscles, thus control individual digit forces 

and movement. Such limitation is captured by the tendency of neural activity measured 

across motor unit pairs and populations to be modulated in a synergistic fashion across 

multiple muscles. The next section examines constraints and neural correlates of hand 

synergies at higher levels of the CNS.

1.3. Neural bases of hand synergies

As reported in the previous sections, the control of the hand can be described by consistent 

spatial-temporal coordination patterns in the kinematic, kinetic, and muscle domains across 

a wide variety of tasks. Thus, the critical question of whether and to what extent hand 

synergies are represented in the CNS arises. In other words, are synergies the best models to 

describe how the sensorimotor system deals with redundant solutions to the control of 

multiple degrees of freedom [2,37–39] or, rather, are synergies the ‘real alphabet’ that the 

motor-related brain areas rely on to compose the ‘words’ of different hand movements [40–

42]?

The compelling hypothesis is that synergistic control of the hand would not simply represent 

an effective theoretical approach to explain how the CNS solves the redundancy problem, 

but could also characterize the way movements and actions are represented and recognized 

at the neural level. Brain regions involved in hand action representation and motor planning 

are distributed in a well-identified fronto-parietal cortical network, the so-called ‘grasp 

circuit’ [43]. Within these action-sensitive regions, the neural representations of different 

features of movements (e.g., target representation, final goal, hand–object interaction, etc.) 

appear to be extensively distributed but topographically organized [44–46]. Nonetheless, the 

nature of the specific neural information encoded within these regions is still ill-defined. Of 

particular relevance to this review article is the question about the structural and functional 

organization of hand movement control within brain regions such as primary motor cortex, 

supplementary motor area and premotor cortex, from which the cortico-spinal transmissions 

originate to control motor units.

Historically, the concept of motor somatotopy was introduced based on work on humans and 

animal models. This concept proposes that primary motor cortex is topographically arranged 

into sub-segments that control a single effector, or a subset of effectors, e.g., muscles or 

joints [47–50]. Whereas a coarse arrangement of body limbs (e.g. hand, mouth or face areas) 

has been confirmed within primary motor areas, the intrinsic organization of the distinct 

limb-specific clusters has often been challenged ([51–53]; see also review by [20]). For 
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instance, in the hand-related areas of primary motor cortex, single finger representations 

appear to be distributed along overlapping patches that lack an elementary functional 

organization, and are even interconnected, thus favoring a hand-movement coding based on 

multi-joints and multi-muscles modules [21,54–56]. In addition, neurophysiological studies 

have indicated that single neurons within primary motor and premotor areas exhibit a 

heterogeneous organization that includes low-level representations of single digit control – 

as predicted by a somatotopic functional organization [47,51] – to the higher-level 

description of full behaviorally-relevant motor acts, which would favor an action goal-

oriented organization [57–59].

The above-described behavioral and physiological observations indicating that hand postures 

can be effectively characterized as linear combinations of a small number of synergies offer 

an alternative and more comprehensive theoretical description of motor functional 

organization. While favoring the idea of a modular definition of motor acts, a synergy would 

represent a way for the CNS to (1) simplify motor control through a dimensionality 

reduction strategy, (2) produce complex movements through a wide number of weighted 

combinations of neuronal populations, and (3) spatially and temporally coordinate multiple 

elements of individual digits through a task-specific interaction with the biomechanical 

constraints of the effector. An invariant representational structure for simple and complex 

hand movements, independent from the somatotopic arrangement of the digits, has been 

recently demonstrated in sensorimotor cortex, thus supposing the existence of an ‘organizing 
mechanism’ that models the similarity between movement-related response patterns across 

individuals [60].

So far, however, limited evidence exists of synergy-based neural representations of hand 

synergies in motor cortical areas. Specifically, direct intracortical microstimulation in non-

human primates [7,41] and indirect transcranial magnetic stimulation in humans [40,61] 

over primary motor cortex can elicit synergistic finger movement patterns. Nonetheless, until 

recently no study has directly associated neural responses within primary motor areas in 

humans to synergy-based hand control, or dimensionality-reduction strategies in motor 

planning at the cortical level.

To better understand the brain functional architecture that mediates hand synergies, a recent 

study [62,63] combined machine learning and multivariate approaches methods to 

neuroimaging [64,65] and integrated these data with motor control models, as defined via 

behavioral or electrophysiological measurements. Specifically, multivariate techniques 

allowed to directly assess whether brain activity at a cortical level encodes hand movements 

through the “language” of postural hand synergies. A multimodal experimental paradigm 

integrated patterns of neural responses during grasping movements as measured with 

functional magnetic resonance imaging (fMRI) with kinematic and EMG-based models of 

hand synergies. Preliminary results revealed a significantly higher accuracy of the synergy-
based model than a somatotopy-based model of functional organization in predicting 

movement-specific patterns of neural response. Importantly, the synergy-based model also 

indicated that synergies are encoded in primary motor areas associated with hand control in 

a consistent fashion across subjects. If confirmed, these observations of a ‘high-level’ 

encoding of individual hand postures through synergies would provide, for the first time, 
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evidence for neural correlates of functional sensory-motor modules in the brain. In addition, 

the specificity of the patterns of neural response elicited during different movements could 

be exploited to predict hand postures directly from fMRI activity. This provides novel ways 

of decoding task-specific patterns of neural responses from motor control brain regions, as 

recently attempted using electroencephalography [66] and envisioned for robotic 

applications, such as more effective methods to acquire, localize, and decode signals for 

brain–machine interfaces and prosthetic applications.

From both theoretical and methodological perspectives, motor synergies account for an 

extensive, but still relative, amount of neural content of information, as quantified by 

measures of variance of brain activity [62]. This suggests that primary motor areas also 

process other action-related features, such as force production [67], final posture [57, 68,69], 

or even single digit movements [70] and joint angles [71]. Therefore, further studies should 

also address the relative contribution of peripheral constraints versus central commands in 

generating coupled motion of the digits.

2. From biology to robotics

Attracted by the above-described experimental observations of synergistic patterns of finger 

motion, in the last decade roboticists have proposed a geometric model of hand synergies, 

which is applicable to the pre-grasping phase, i.e., before actual contact with the grasped 

object. The underlying concept for this model – and for a general geometric interpretation of 

the concept of synergies – is dimensionality reduction. This dimensionality reduction refers 

to the reduction of the number of degrees of freedom (DOFs) of the human hand that can be 

controlled in an independent manner [72], as well as of the space of possible (most frequent) 

hand postures that can be actively controlled. One of the first software applications of this 

concept was provided by [18] as a means to reduce the number of dimensions of the large 

search space of robotic grasp planning with dexterous hands. The reduced computational 

burden allowed by a low-dimensional hand posture subspace enabled on-line grasp synthesis 

at a rate compatible with effective user interaction [73], and the reduction of the control 

variables [74]. At the same time, the geometric model of hand synergies suggested novel 

approaches for the design and control of robotic hands with a reduced number of aggregated 

DOFs. The first notable mechanical implementation of postural synergies was made in [17], 

where a two-eigenposture mechanism design combined and drove a 17-DOFs 5-fingered 

robot hand through a train of pulleys with different radii.

Although the adoption of the concept of synergies for the development of robotic hands 

brought a significant simplification in terms of design and control complexity, it opened 

novel research questions: (1) Is anthropomorphism the best choice to implement and exploit 

the synergistic model in robotics? and (2) Is it possible to define a general framework to 

extend and map human hand synergies to robotic hands with dissimilar structure from a 

human hand? Question (1) is related to the debate on the usefulness of anthropomorphism in 

robot motion and design. Considerations on safety in human–robot physical interactions [75] 

and social interactions [76–78] motivate the anthropomorphic approach. For example, in 

scenarios where humans and robots have to cooperate to execute specific tasks, 
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anthropomorphic robot motion can be more easily predicted by humans who could therefore 

better adapt to robot actions and avoid possible injuries.

The suggestion to leverage the concept of human hand synergies for biologically-inspired 

designs of robotic hands can also be extended to other structures, such as upper and lower 

limbs. For example, in [79], two suitable non-linear kinematic synergies were constructed 

for the lower part of the body of a humanoid robot and exploited to increase its capability to 

balance dynamically against unforeseen disturbances, e.g., from external forces or due to 

manipulation of unknown loads.

In these cases, too, anthropomorphic robot motion inspired by human example could 

leverage the concept of synergies to enable more effective human–robot interactions (HRI) 

and co-adaptation, as well as artificial control. Furthermore, the spatial and temporal 

coordination of arm, wrist, and hand movements during reach-to-grasp points to a control 

strategy that constrains the action of multiple effectors and joints to achieve a high-level 

goal, i.e., transporting the hand in a way that optimizes the likelihood of successful object 

grasp and manipulation [80–85]. In this context, it should be noted that hand kinematic 

synergies have been quantified also during reach-to-grasp, indicating that the temporal 

evolution of hand shape is spatially and temporally coordinated with the control of shoulder 

and elbow kinematics responsible for hand transport [13].

The above-described biologically-inspired motor control strategies have been used in 

robotics also to define closed-loop grasp planning schemes to ensure anthropomorphism of 

robot motion, convergence to desired task goals, and human-like adaptive robot behavior. To 

achieve these goals, research has focused on mapping human motion to anthropomorphic 

robot motion through non-linear, constrained optimization methods [86–89]. The 

anthropomorphic robot trajectories are then projected into low-dimensional manifolds of 

upper limb “principal components”, where appropriate Navigation Function models can be 

trained [90].

As specified in the above research question (2), the problem of mapping human to robot 

motion is particularly relevant also for the correct definition of a general framework for 

controlling robotic hands independently from their kinematics and mechanical design. This 

approach entails designing control algorithms for an anthropomorphic hand model with 

predefined synergies and mapping the resulting finger motions onto several robotic hands. 

This procedure can be implemented at different levels, e.g., at the joint level [73], in the 

Cartesian space [91], and considering the relation among hand poses [92]. However, the 

success of these approaches strictly depends on the kinematic structure of the robotic device, 

and thus cannot be easily generalized. To tackle this problem, a different solution was 

proposed in [93], where the authors introduced the concept of virtual objects and a mapping 

from humans to robots designed in the manipulated object domain. The role of virtual object 

can be played, for example, by a virtual sphere, which can be defined as the minimum 

volume sphere that includes a set of reference points on the fingertip of the human hand. 

Thus, motion of the human hand generates motion of the reference points, and consequently 

of the virtual sphere. Another example of this approach can be found in [94], where a rigid 
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motion of the object center and a non-rigid strain (e.g., variation of the sphere radius) were 

used.

At the same time, by defining in an analogous manner a virtual sphere also on the robotic 

hand, it is possible to implement such object-based mapping procedure by imposing that the 

rigid and non-rigid motions captured by the virtual object in the human hand are replicated 

by the object defined on the robotic hand. Other more general virtual object geometries were 

defined in [95,96]. The validity of the whole object-based mapping procedure was 

demonstrated with different robotic hand models, considering both motions and exerted 

forces, in bilateral teleoperation tasks and through software simulation [97,98] (Fig. 1).

These mapping approaches can lead to standardization among control strategies of robotic 

hands with dissimilar structures, thus enabling to fully exploit a synergistic organization in a 

device-independent manner. This theoretical framework is reminiscent of the concept of 

motor equivalence, originally introduced by [100], which is a topic of ongoing investigation 

(e.g., [101]). This also allows to replicate an organized set of synergies in the artificial hand, 

ordered by increasing complexity, so that a correspondence can be attained between any 

specified task set – in terms of a number of different grasps and explorative actions – and the 

least number of synergies whose aggregation makes the task feasible.

2.1. Soft synergies for soft hands

In the previous section, we showed how the geometric model of postural synergies can be 

successfully exploited to implement synergies for software and hardware design. This 

approach enables to adopt a model of the hand with a number of independent actuators that 

is smaller than the number of joints. However, this approach does not necessarily imply that 

the hand will move and comply with the shape of the grasped object. To extend the 

applicability of this synergy model to the correct implementation of force generation and 

distribution in the robotic hand grasp and contact force control, the soft-synergy model was 

introduced to factor in the mechanical compliance of the hand musculo-tendinous system 

[102].

In this model, the physical hand is attracted by an elastic field towards a reference hand 

identified by the geometric ‘synergy coordinates’ (as defined in [11] and discussed in the 

previous section). At the same time, the forces arising from contact with objects in the 

environment and mediated by the impedance of the hand–object mechanical system repels 

the physical hand from the reference hand, thus being responsible for force distribution 

during grasp. Numerical results obtained by this model indicate that the same dominant 

synergies (i.e., principal components) observed from human pre-grasp postural data are also 

crucial for establishing force distributions to perform stable grasps [102,103].

Such soft-synergy paradigm has triggered renewed interest for robotic grasp analysis and 

synthesis problems, together with the need of developing novel analytical tools to deal with 

the synergistic compliant coupling of a subset of DOFs. For example, the soft-synergy 

paradigm has enabled the definition of a rigorous procedure to establish the number of 

synergies that guarantees grasp stability and efficiency, depending on the task to be 

performed and the type of considered embodiment. To this aim, [104] proposed a quasi-
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static model and defined grasp structural properties related to contact force and object 

motion controllability. Here, the compliant model of soft synergies was assumed and 

different sources of compliance in the manipulation system were considered. Further studies 

focused on extending the manipulability analysis to synergy-actuated hands by employing 

the concept of manipulability ellipsoids and introducing new manipulability indexes [105]. 

This approach allowed the identification of the directions in the input and output spaces that 

maximize this manipulation efficiency metric. These directions could also be used as a tool 

to assess the manipulation performance of robotic hands by taking directly into account 

underactuation (i.e., the use of less degrees of actuation than DOFs) and compliance. A 

general grasp analysis framework for underactuated hands with compliance, which considers 

also pre-loading conditions, was then presented by [106]. Here, new definitions of structural 

properties of general manipulation systems and novel matrix factorization procedures were 

introduced to define a general approach to control the Cartesian grasp compliance in 

synergistically underactuated hands with variable impedance joints [107].

However, although the idea of soft synergy actuation represents an elegant solution to the 

problem of simple hand design, combining natural motion from the postural synergy 

approach with adaptability through compliance, its mechanical implementation is 

technically challenging. To address this issue, a soft-synergy model was translated into the 

corresponding adaptive synergy model, which can be identified through transmission matrix 

and joint stiffness. Based on the above considerations, the Pisa/Italian Institute of 

Technology (IIT) SoftHand [108,109], a joint venture between the University of Pisa and 

IIT, represents a promising approach to the design of soft-synergy inspired hands through 

adaptive underactuated mechanisms (Fig. 2).

The Pisa/IIT SoftHand is an anthropomorphic robotic hand with 19 joints but only one 

actuator, which implements the soft-synergy model along the first postural synergistic 

direction through its corresponding adaptive synergy counterpart. This artificial hand 

exploits an innovative soft design of joints and ligaments, which enables a high level of 

compliance and adaptation to objects of different shape and dimensions. The mechanical 

design is parameterized by a transmission matrix and a joint stiffness matrix that allow the 

hand to exhibit the same behavior as the soft synergy model of human hand around a local 

equilibrium configuration. At the same time, the Pisa/IIT SoftHand design ensures high 

robustness, which allows the hand to exploit the external physical constraints to increase 

manipulation performance. Thanks to its simplicity, compliance, and robustness, the Pisa/IIT 

SoftHand represents an ideal platform for the development of a novel prosthesis [110,111], 

thereby opening interesting perspectives in prosthetics design and robotic rehabilitation. At 

the same time, EMG synergy-based approaches can be profitably exploited to increase 

control performance in HRI and prosthetics, as analyzed in the next section.

2.2. EMG-based human–robot interaction applications and prosthetics

In the framework of rehabilitation and assistive robotics, surface electromyography (sEMG) 

has been used as a human–machine interface for decades. Typically, a given number of 

sEMG signals are processed in real-time to control a rehabilitation or assistive device, e.g., 

an exoskeleton or a hand prosthesis, and enforcing at least a rough form of open-loop control 
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by the prosthetic user. This is called myoelectric control, as it potentially enables control of 

the mechatronic device by using muscular activity in a way that mimics how the subject 

used to control his musculature before the loss of a limb. For the standard one-DOF hand 

prosthesis case, it is customary to have two sEMG sensors located on the residual wrist 

flexor and extensor muscles to control the closing and opening of the prosthesis.

As opposed to this traditional approach, which has been and remains the clinical standard 

since the 1960s, controlling recent research prototypes of prosthetic hands relies on a larger 

number of sEMG electrodes, typically up to several tens of them, to better capture the 

electrical activity or the residual musculature and therefore decode the intent of the user 

[112]. Since such a well-tuned set of sEMG signals reflects quite faithfully the underlying 

residual muscle activity [113], the question arises as to whether the concept of muscle 

synergies can be of practical use for prosthetic applications. If so, can synergistic muscle 

activations be detected in the high-dimensional sEMG signal space? Furthermore, does this 

signal space measured in the residual musculature of individuals with upper limb loss reflect 

the muscle synergies as found in the intact CNS? Lastly, can these muscle synergies be used 

to effectively simplify the task of the myoelectric controller, e.g., to ‘translate’ the motor 

plan or intent of the user into specific hand postures and/or torques/forces?

These issues are controversial. In [114], the authors reported that multi-muscle activation 

patterns can be detected across sEMG signals. This is hardly surprising as sEMG electrodes 

directly detect the neural activity of the motoneurons, although in a mixed form [115]. In the 

works cited above, Principal Component Analysis revealed that four linear combinations of 

sEMG signals could account for up to 90% of the sEMG signal variance, thus suggesting the 

existence of muscle synergies which are reminiscent of the above-described EMG-based 

synergies described for grasping and finger spelling in humans and non-human primates, as 

discussed in Section 1.2

It remains to be defined whether a synergy-based approach for decoding multiple sEMG 

signals has practical applications for myoelectric hand prostheses controllers. First, to 

evaluate such synergy-based approach, a fairly large number of sEMG signals with good 

signal-to-noise ratio is required, and this might be challenging in individuals with upper limb 

loss. Additionally, sEMG signals from amputees are known to change with time, e.g., as it 

happens with practice with self-powered prostheses [116]. Second, extracting sEMG 

synergies to be fed to a machine-learning algorithm as an alternative to using the original, 

fully-dimensional input space is tantamount to compressing the input signal with potential 

loss of information, hence accuracy. However, the results of two recent methodological 

approaches appear to mitigate the above concerns. First, we will introduce the concept of 

incremental learning used to map multi-sEMG signals to multi-DOF devices: for example, 

in [117], an eight-dimensional sEMG space is used to finely control one of the most 

advanced commercially-available hand prostheses, the i-LIMB (Touch Bionics Ltd.) in a 

teleoperated scenario using an incremental machine learning method. Then we will describe 

how sEMG signals from two muscles with opposite mechanical actions can be used to map 

the user’s impedance and position control in a synergistic fashion onto an advanced robotic 

hand designed according to the concept of soft-adaptive synergies [118]. Whether the 

theoretical framework of sEMG-based synergies is of relevance here remains an open 
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question, but these recent studies, as well as other investigations of using multi-sEMG 

signals for robotic hand control (see e.g. [119] or the survey in [120]), seem to pave the way 

towards a successful exploitation of synergistic concept in prosthesis control.

2.2.1. Mapping EMG from multiple muscles to multi-DOFs devices—Whereas 

multi-fingered hand prostheses, prosthetic elbows, wrists and shoulders are now available for 

use in the rehabilitation clinics, in general control of these devices by the amputee is still 

largely an open issue. The standard approach is to use sEMG as the input signal to a 

machine learning-(ML-)based system; there is evidence in the scientific literature (e.g., 

[121–123]) that, even decades after the operation, a surprising wealth of information can still 

be extracted from residual muscles. In other words, an appropriate set of sEMG sensors, 

coupled with a smart ML system, can effectively translate surface signals into control 

commands enacted upon the subject’s will.

When considering sEMG from multiple residual muscles, interfacing these signals with a 

multi-DOF device implies creating a direct mapping between a multi-EMG pattern 

associated with a given movement, and the corresponding prosthetic control command. If 

the original multi-muscle EMG pattern associated with movement can be exploited (that is, 

the EMG pattern that the subject would have recruited before the amputation), natural 
control can be enforced; that is, there is the possibility of letting the amputee controls the 

prosthesis in the most transparent way. On the other hand, as the amputee learns how to use 

a prosthesis, if the prosthesis reacts reasonably well, chances are that new multi-muscle 

patterns, or synergies meant as a re-organization of the original sEMG pattern, will be 

developed in order to obtain an optimal ML-based control.

At the time of writing, the major factor hindering an effective deployment of ML-based 

control systems in the clinics is the issue of reliability [124,125]. ML-based control has the 

potentiality of actuating many DOFs simultaneously and proportionally, that is to 

dramatically increase the acceptance of self-powered prostheses. However, as it happens 

with all statistical methods, it cannot assure that a certain pattern will be stably recognized. 

Indeed, ML-based methods relying on classification are discrete decision systems (on–off) 

that suffer from the inherent ambiguity of the signal as it crosses the boundary between two 

decision zones of the input space. Moreover, surface signals are influenced by a number of 

factors such as sweat, sensor positioning and muscle fatigue.

The concept of simultaneous and proportional (s/p) myocontrol defined in [115] can be 

regarded as an attempt to improve the reliability of ML-based myocontrol. S/p control 

directly maps the detected multi-muscle EMG onto patterns to simultaneous activation of 

several DOFs thanks to a regression method, rather than a classifier. Although still debated, 

the superiority of regression with respect to classification lies in (a) the capability of giving 

graded control as opposed to on–off, and (b) the fact that small errors in regression would 

likely not lead to a catastrophic result, but rather to slight instabilities in force application by 

the prosthesis. For these reasons, there is a definite trend in the community to employ s/p 

control in place of classification [86,120,126].
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It should be noted that the vast majority of ML methods employ a one-shot initial calibration 

phase. To make this calibration sufficiently robust, the usage of an incremental machine 

learning approach was recently proposed. Incrementality means that the function 

approximation can be further refined after the initial calibration phase has finished; in fact, 

rather than calibration, the term model update is employed in this case [117,127]. As 

instabilities in the control can be therefore corrected as they happen, this approach has been 

called interactive learning.

2.2.2. Minimalistic EMG mapping: tele-impedance approach—In the previous 

paragraph, we have described several approaches used for mapping multiple sEMG signals 

to control prosthetic hands. In this paragraph, we propose a different approach: using the 

minimal number of EMG signals to control a synergy-inspired robotic hand, i.e., the Pisa/IIT 

SoftHand described in Section 2.1. Furthermore, below we discuss a novel control concept 

beyond the classic position control approach, i.e., tele-impedance.

When humans interact with the external environment, they are able to produce restoring 

forces with respect to environmental displacement [128] by modulating limb impedance 

through muscle co-contraction. It has been proposed that tele-operation tasks, such as 

operating a prosthetic hand through myoelectric control or remote control of a robotic 

gripper, can be performed using compliant (soft) slave robots and time-to-time modulation 

of their impedance throughout the task. In [129] the authors proposed an approach to 

overcome stability problems in force-reflecting tele-operation and enable a more human-like 

task execution [130]. In this approach, user intent is incorporated into the control command, 

which includes both the desired motion or equilibrium position and stiffness profile 

estimated on the master side through a suitable human–machine interface. These profiles are 

then replicated on the tele-operated robot in real-time. The strong correlation between 

muscle activation and impedance can be leveraged by using sEMG signals to estimate arm 

and hand position and impedance. For the latter case, this approach is intuitive since it is 

well known that muscle force increases with muscular activity [131]. Furthermore, 

individual muscle forces contribute to net joint torque, whereas their co-activation can 

modulate joint impedance [132]. However, the extraction of position from muscle forces 

requires the application of inverse dynamics [133].

The effectiveness of the tele-impedance approach in replicating the impedance of the 

proximal arm and lower limb was demonstrated by [118,130,134] who extended the tele-

impedance approach to the control of the Pisa/IIT SoftHand and exploited the efficiency and 

robustness of its soft synergy-based design. These authors developed a novel active 

impedance controller that incorporates both hand stiffness and postural synergy references in 

real-time. With the goal of exploiting the minimum number of muscles necessary for 

decoding the reference profiles, in [118] the authors used the major finger antagonist muscle 

pair – the m. extensor digitorum communis (EDC) and m. flexor digitorum superficialis 

(FDS) – and two functions of a modified hyperbolic tangent shape [135] to map the 

reference commands extracted from experimental data. Through tele-impedance control and 

exploiting two tactile interfaces, which conveyed information about grasping forces and 

high-frequency texture information to the user, subjects could improve grasp robustness and 
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interaction performance while controlling the Pisa/IIT SoftHand through a myoelectric 

interface.

These findings offer a novel perspective for the control of prosthetic devices with multi-

DOFs. The current challenge is to determine whether and in what conditions tele-impedance 

is a better solution with respect to multi-sEMG signal pattern regression. To address this 

issue, the choice of the end effector has to be taken into account. Specifically, the question is 

whether or not synergy-based robotic hands should be used, which can cope motor 

redundancy through their mechatronic design. Additional factors to consider are the extent 

to which synergy-based designs improve artifi-cial hands’ reaction to external disturbances, 

and/or improve the intuitiveness with which humans can operate them.

3. Hand synergies: sensing

In this section, we consider the dual aspect of actuation, i.e., the sensing domain. Here we 

describe how “dimensionality reduction” through synergies is not limited to the motor 

domain, as it also appears to operate in the sensing domain by reducing the huge amount of 

inputs from sensory receptors into a low-dimensional set of manageable perceptual 

representations of the external world. Furthermore, we leverage the notion that it might be 

possible to determine a relation between sensory and motor domains, which lays the 

foundations of the concept we refer to as sensory-motor synergies. As reviewed above for 

the motor domain, we describe how the physiological principles underlying neural sensing 

can inspire robotics research and design through simplified approaches to the design of 

haptic interfaces and sensorization of robotic and human hands with a reduced number of 

sensors. Applications of such approaches include HRI and sensorimotor rehabilitation. We 

also describe how robotics can provide useful tools to neuroscience for studying 

sensorimotor integration.

3.1. Multi-sensory integration and fusion as the perceptual analogue of motor synergies

Motor synergies can be regarded as maps between the higher dimensional complexity of the 

mechanical architecture of the human hand and the lower dimensional control space of the 

action and performance [3]. In essence, perception can be also regarded as a process for the 

reduction of dimensions and complexity. Color vision provides a clear example of 

complexity reduction. Indeed, the infinite values of wavelength of the photons characterizing 

a given light can be mapped into a discrete color by specifying just the three dimensions of 

hue, saturation and brightness [136]. A similar reduction of dimensionality was also studied 

in haptics. In [137], the author investigated the number of dimensions that is needed to 

describe haptic perception from a mechanical point of view. Even if such a number is 

infinite, human touch-related experience seems to take place in a finite, low dimensional 

space. In these two examples, both in color vision and touch, the nervous system produces a 

nearly instantaneous reduction of dimensions to convert a complex problem into a 

manageable set of computational tasks. Several perceptual illusions can be interpreted as the 

results of this reduction of the stimulus complexity. Following the same reasoning, the 

existence of a map between the higher-dimensional space of elemental sensory variables 

involved in the mechanics of touch and the lower dimensional space of perceptual primitives 
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was postulated in [103]. The elements of this mapping can be regarded as projections of the 

tactual perception manifold onto constrained subspaces, the latter ones individuating 

increasingly refined approximations of the full spectrum of haptic information. The authors 

referred to these maps as sensory synergy basis. From a geometrical perspective, this is the 

counterpart of postural synergy basis in the motor domain [11].

The tactile system uses different strategies to achieve a reduction of stimulus complexity 

(i.e., a reduction of the perceptual dimensionality). Selective attention on salient features is 

an example of efficient complexity reduction. As demonstrated in [138], in haptic search 

tasks the observer focuses on specific features of the stimuli. An object having a salient 

feature would quickly pop out during the search task, thus reducing the exploration time. 

With regard to softness discrimination, a possible reduction of dynamic, force-varying tactile 

information operated by the nervous system can be described by a tactile flow paradigm 

[139], which suggests that, in dynamic conditions, a large part of contact sensing on the 

finger pad can be described by the flow of strain energy density (SED). Moreover, the 

integral version of the tactile flow equation can be used to explain the Contact Area Spread 

Rate (CASR) experimental observation. This finding reveals that a considerable part of 

tactile ability in object softness discrimination is retained in the relationship between the 

contact area growth over an indenting probe (e.g., the finger pad which presses the object) 

and the indenting force itself [140]. These suitable approximations and reductions of haptic 

information manifold can suggest new strategies to build haptic interfaces, in order to 

implement trade-offs between accuracy in stimulus rendering and simplicity. For example, 

recognizing that a simple force-area relation describes a large amount of cutaneous 

information involved in softness discrimination by probing has inspired the development of 

simpler and more effective haptic displays for human–computer interaction (e.g., [140–

143]).

Cutaneous cues appear to be more informative than kinaesthetic cues in softness 

discrimination [144,145]. Applying the “synergy as a basis” description, in [103] the authors 

ventured to consider kinaesthesia and CASR as the two main “synergies” in softness 

discrimination: this idea seemed to be further supported by the experimental outcomes in 

[146], which offered an interesting parallel with synergies in the motor domain. Similarly to 

the motor domain, performance in softness discrimination increases with the number of 

sensory synergies involved, i.e., when both kinaesthetic and cutaneous cues are available, 

even if cutaneous perception provides a more refined “inner representation of object 

softness”. Similar findings have also been reported by length perception experiments [147].

Such an increase in perceptual/representation fidelity can be found also in the artificial side. 

Tactile displays, which provide specific stimuli through skin deformation, are able to elicit a 

better softness perception than their purely kinesthetic counterparts, i.e., devices that act as 

force displays. However, the fidelity by which softness can be artificially rendered increases 

with the number of synergies employed in rendering, i.e., by suitably integrating both types 

of devices [146].

At the human side, the integration of sensory information occurs both over space and time. 

An example of temporal integration is when we slide the fingertip over the surface of an 
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object to feel its texture, or we follow a contour to perceive its shape [148]. Spatial 

integration occurs when information from different body locations is combined. In [177], the 

authors investigated whether different ways of spatial integration lead to the same or 

different perceptions of length, by comparing different ways of discriminating length using 

two fingers, either of the same hand (thumb and index finger) or of the different hands (both 

index fingers). Results showed that the unimanual and the bimanual grasping conditions 

yielded best performance. Indeed, in all conditions information from different locations had 

to be integrated, but apparently this is easiest if body locations are strongly connected. 

Different types of information can be also jointly exploited to provide a unified perception of 

tactile properties of the external environment. In [149] the authors investigated whether local 

curvature can be also used for length discrimination and thus whether extent and curvature 

information can be integrated. Results showed that when length and curvature were both 

present in the stimuli, performance (i.e., sensitivity) was significantly better than when just 

length or curvature alone was present. This provides clear evidence that curvature and length 

information can be integrated in perception. Of these two conditions, the one in which 

curvature and length correlated as in circular stimuli led to best performance.

Multisensory fusion can be also viewed as an instance of sensory dimensionality reduction. 

Whenever we explore an object, for example a pencil, we fuse the multiple cues provided by 

our senses (such as the visual and tactile estimate of its length, color, softness, etc.) in a 

unique, coherent object representation. Multisensory integration has also an interesting 

counterpart in robotics, for example for the control of mobile robots [150]. Due to this 

mechanism of dimensionality reduction, questions like “Is the visual length of the pencil 

longer than its tactile length?” would sound as meaningless in most of daily life experience 

(except for philosophical debate), since the redundant estimates gathered from the different 

sensory channels are merged in a unique multisensory estimate.2 What would be an optimal 

strategy for sensory fusion? We know from classical studies in psychophysics that the level 

of noise could be considerably different between different sensory channels. In this case, a 

weighted average of different cues, where the weight of each cue is an inverse function of its 

noise, would provide a statistically optimal solution to the problem [151]. In their classical 

paper, Ernst and Banks [152] showed that the actual combination of vision and touch is 

statistically optimal.

An important related research topic in haptics is the sensory fusion of proprioception and 

cutaneous touch. Indeed, whenever we move the hand and we contact an external object, the 

somatosensory system receives multiple afferent signals from the musculoskeletal system 

(e.g., [153,154]), and the skin (e.g., [139,155–157]). Our brain fuses these signals to produce 

a unique and coherent representation of the hands position, contact orientation and motion. 

Accordingly, in [158] the authors showed that the perception of motion of a touched surface 

arises from the integration of tactile cues, proprioceptive cues, and prior assumptions on 

surface motion state.

2Notice however that questions like that are often posed in psychophysical experiments, where specific setups allow to disentangle the 
cues; see for example [152].
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As already pointed out, a simple solution to fuse different sensory measurements (i.e., 

different sensory cues) comprises computing their weighted average [151]. When the 

weights are chosen as inversely proportional to the relative precision of the measurements, 

this guarantees a statistically optimal estimate [152]. For signals to be integrated, however, 

they have to be received in commensurable units of measure. The issue of combining 

qualitatively different cues was first studied in visual depth perception [151]. The authors 

distinguished between absolute and relative depth cues. The latter need to be calibrated in a 

process known as cue promotion in a way that the units become commensurable. Only after 

cue promotion, the absolute and relative cues can be integrated into an object estimate. A 

similar model also accounted for the fusion of proprioception and touch in the perception of 

finger displacement [159]. Moving the finger to contact an external surface, it produces a 

spread, from an initial point, of the area of contact between the skin and the object. This is 

even more appreciable if the external object is compliant; in this case, the size of the area 

increases even further with the finger indentation. Therefore, the spread of the area of 

contact provides a relative cue to finger displacement or indentation. Accordingly 

modulating the size of the area of contact through the softness-rendering device illustrated in 

[143], induces an illusory displacement of the finger. The size of the area of contact is a 

promoted displacement cue, which is combined with absolute cues, for example from 

proprioception, to gather a fused estimate of the finger displacement.

A similar fusion of the proprioceptive and the tactile cue might also occur when sliding our 

finger over a rigid surface and we have to estimate the motion path or the velocity. Touch is 

able to provide displacement information, showing that the human brain is able to integrate 

the motion signal over time. Three behavioral experiments [160] showed that this is actually 

the case, that is, observers were able to integrate tactile velocity over time to produce a 

reliable estimate of the motion path. Using the tactile device described in [161], the authors 

generated slip motion along several triangular paths. Participants contacted the moving 

surface with the index fingertip, while keeping the hand world-stationary and they were able 

to accurately indicate the length and the shape generated by the motion path. The 

experimental paradigm required estimating the motion path through a mechanism of path 

integration; heuristics solely based on motion duration would not account for the actual 

responses. The above-discussed studies showed that, when both proprioceptive and tactile 

motion cues are available, the somatosensory system fuses these cues in a unique 

representation of limb motion, thus producing a reduction in signal dimensionality and 

complexity.

The integration of multiple cues might in principle include information from our motor plan 

and the predictions that a given action would have on proprioception and touch. This would 

suggest the possibility of a mapping or correspondence between the strain pattern on the 

skin, proprioceptive information and the coordinated muscle activity, particular for a given 

action. This mapping can be defined as a sensorimotor synergy [103] and could simplify the 

interpretation of the complex sensory information from touch. In the next section, we 

propose a novel perspective on the correlation between sensory and motor signals, and how 

sensory-motor synergies can be exploited at the neural level to build a manageable 

perceptual representation. The duality of sensory and motor domains will be also discussed 
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in the context of artificial sensory and motor domains, with applications to sensorization of 

human hands.

3.2. Sensory-motor synergies at the neural level and robotic applications

The execution of purposeful movements is dependent on a brain–body relationship and a 

sense of the relationship between ourselves and the environment. The brain can rely on 

hundreds of thousands of sensors in skin, muscles and joints as well as direct control of 

hundreds of muscles. Evolution has established a number of predefined structures in the 

CNS, but how the sensors find their appropriate target neurons and how this process leads to 

the emergence of meaningful movements among the very large number of DOFs of the body 

is not known. However, a number of basic principles of the architecture or circuitry structure 

of the brain are known, as are the activation properties of the sensors. In combination with 

behavioral analysis of movement patterns and their statistics in humans (e.g., [11,12, 162]) 

and animal models (e.g., [29,163]), it is slowly becoming possible to model the neural 

circuitry mechanisms for task-specific dimensionality reduction in sensorimotor functions, 

and even how these mechanisms can be learned and established in brain circuitry. The 

processing is massively parallel, where most tasks of movement control can be expected to 

engage large proportions of the circuitry. This has the interesting consequence that the same 

circuitry components are involved in most or all tasks, implying that the brain has in 

addition solved the challenge of having the solutions to a very large number of motor tasks 

in the same circuitry components.

However, the modeling of the control circuitry requires a reality check of the viability of the 

underlying fundamental principles – in this respect, principles from robotics may provide 

critical insights. One example of such insights is the enabling constraints provided by the 

‘anatomy’ of robotic hand [109], where the mechanics will preferentially allow certain types 

of movements, but modifications of those movement patterns can be added as needed. In 

fact, the basic plan of the central nervous systems is similar across such widely different 

mammals as the mouse and the whale [164], but the mechanics of the bodies are not. 

Therefore, it has been proposed that the biomechanics of our bodies are an important initial 

factor behind the early organization of the neural control circuitry, for both motor control 

and sensory processing [165]. But what would be the circuitry mechanisms that support the 

acquisition of such complex skills?

A possible answer is that the basic mechanisms are not particularly complex, but the 

learning occurs in many different phases and layers of control in sequence. Perhaps the most 

easily graspable solution is that of acquisition of sensory synergies, as the learning of 

(relatively) pure sensory synergies probably occurs in one layer only. This framework 

provides a demonstration-of-principle that is likely to apply also for the acquisition of 

muscle synergies for dimensionality reduction during movement. In essence, the skin of our 

bodies have thousands of sensors [160] that provide monosynaptic (direct synaptic) input to 

the neurons of the cuneate nucleus in the brainstem. All tactile inputs that reach the 

neocortex of the brain must first pass the cuneate nucleus where information is integrated by 

a monolayer of neurons, supported by a limited population of local inhibitory interneurons. 

Each neuron of the monolayer receives input from hundreds or thousands of sensors. 
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However, in an intracellular analysis of such neurons, the number of primary sensory 

afferents that provided synapses of substantial influence on the receiving neuron was as few 

as 5–8 [166], which suggested the involvement of a learning process strengthening a few of 

the synapses while reducing the weight of other synapses. This observation raised the 

question of what purpose this learning process might have. Specifically, what was the 

common denominator that made some sensors provide strong synaptic input to certain 

cuneate neurons, whereas the efficacy of synaptic input of the same sensors to other neurons 

was reduced?

A recent study, in which a novel view on the organization of somatosensory processing in 

the brain was tested, seems to have shed light on these issues. The study was made possible 

by likewise recent advances in psychophysics/robotics where a haptic interface designed to 

explore haptic illusions in humans had been developed [157]. The novel idea being tested 

was that the somatosensory functions of the brain are based on the fundamental input 

features defined by contact mechanics [137] rather than the classical neuroscience concepts 

of receptive fields and sub-modalities. Thus, the individual cuneate neurons did indeed seem 

to be apt at segregating the input features, or haptic input dimensions [157,167]. A 

consequence of this phenomenon is that each cuneate neuron has a unique input profile, but 

the population of cuneate neurons can give precise information about the contact mechanics 

of a skin–object interaction at any point on the skin. As the input features run across 

multiple receptive fields, where 100s of sensors are located, whereas the individual cuneate 

neurons appear to sample information primarily from 5–8 sensors, this is a prime example of 

a sensory synergy or dimensionality reduction where the astronomic number of 

combinatorial possibilities provided by the sheet of sensors is reduced to a mere subset by 

learning mechanisms at the level of the cuneate neurons.

At the neural level, the subsets of sensors identified through the learning process are then 

most likely selected by the movement statistics and the sensor locations of the individual, 

where the movement of the skin against objects by the laws of contact mechanics will 

determine which sensors will be most frequently co-activated. These co-activated sensors 

will be the ones that become strengthened in their synapses on the cuneate neurons, and the 

higher the number of cuneate neurons, the higher the number of co-activated sensor sub-

groups can be afforded to be represented, and the richer the sensory experience. It is likely 

that we can think of the organization of the motor control systems in a similar fashion: the 

movement statistics, which initially are determined by the biomechanics of the individual’s 

body, will be laid down in the circuitry structure by learning processes. However, the motor 

control systems are more complicated than the sensory system reviewed above, as they are 

subdivided into several layers of varying intrinsic complexity. The innermost control loops 

reside in the spinal cord, and the earliest muscle synergies are probably established there, 

perhaps as early as in fetal life. The spinal circuitry is relatively complex, as it is driven in 

part by motor commands from higher centers and in part from sensory feedback of different 

types, where the tactile sensors described above are but one of at least three major classes of 

sensory feedback [168]. More complex synergies are likely dependent on the functionality 

added by the cerebellum [8,169], which regulates the spatiotemporal structure of the motor 

commands descending to the spinal circuitry from higher centers.
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The strong relationship between the motoric and sensory side can be exploited also in the 

artificial side, offering useful hints to robotic research. As previously pointed out, the 

concept of motor synergies enables to reduce the number of DOFs to be enrolled according 

to a given level of approximation of the motor act and, as extensively discussed, was used in 

robotics under a controllability point of view, to design and control artificial hands with a 

reduced number of inputs/actuators.

However, this result can also have another interpretation, under the observability point of 

view: the question is whether it is possible to reduce the number of independent hand joints 

to be measured or sensed to achieve hand pose estimation at a given level of approximation. 

Indeed, if the human hand moves according to patterns of most frequent use, it could be 

possible to exploit this information to improve hand pose reconstruction despite 

measurements, which are in general noisy and reduced in number.

In [170], this approach was applied to whole hand avatar animation, considering only two 

contact points for the thumb and the index with a haptic interface. Exploiting synergistic 

information, the forces necessary to track real finger trajectories through virtual springs 

(between the avatar’s tips and the corresponding operator’s tips) were transformed in the 

synergy-space of general forces. The latter ones were subsequently used to estimate the 

updated synergy variables and then to characterize the whole-hand configuration.

In [171], the authors examined the problem of optimal estimation of the posture of a human 

hand using non-ideal hand pose reconstruction (HPR) systems, or gloves, with many 

applications in the fields of human–robot interaction, rehabilitation and virtual reality. 

Indeed, all HPR methods are inherently affected by non-idealities, which limit their 

performance, such as the complexity of the human hand biomechanics and costs. All these 

factors usually determine an incomplete and imperfect relation between the measurements 

and the anatomical DOFs of the human hand. The solution proposed in [171] was to increase 

the accuracy of the pose reconstruction without modifying the glove hardware – hence 

basically at no extra cost – by collecting, organizing, and exploiting information on the 

probabilistic distribution of human hand poses in common tasks. Such information was 

organized in a database as in [11], represented in a hierarchy of correlation patterns (or 

postural synergies), and finally fused with glove measurements in a consistent manner. Thus, 

it was possible to provide good hand pose reconstructions in spite of insufficient and 

inaccurate sensing data, as demonstrated through simulations and experiments with a low-

cost glove. In the companion paper [172], the authors pushed forward this analysis, 

investigating how and where to place sensors on a glove, to get maximum information about 

the actual hand posture. This problem becomes particularly crucial when constraints limit 

the number and the quality of the sensors.

The example of the human hand can again provide inspiration to solve this problem. Indeed, 

looking at the dorsal skin of the human hand, a non-uniform distribution of different types of 

mechanoreceptors can be observed. Such receptors were proven to contribute to the 

kinesthetic perception of finger position (see e.g., [153]). These observations suggest that a 

non-uniform map of sensitivities to joint angles may exist in the human hand sensory 

system. Even if the functional role of this architecture remains to be understood, a 
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fascinating explanation might be related to the different importance of distinct elementary 

percepts in building an overall representation of the hand pose. All these biological data 

motivated the search for a preferential distribution and density of different typologies of 

sensors in sensing gloves, with the goal of optimizing their accuracy. This optimal sensor 

distribution and density, which enables to get maximum information about the actual hand 

posture, was shaped on the basis of postural synergistic information as represented in [171].

Of particular significance is the mutual inspiration between neuroscience and robotics. 

Specifically, the kinematic synergy concept, together with the observations on the biology of 

human mechanoreceptors, was the leading idea for the optimal estimation approach with 

HPR systems. At the same time, experimental results obtained with artificial devices might 

further inspire biological investigations, thereby providing theoretical and technical tools to 

advance the study of human hand sensorimotor apparatus.

4. Open questions and directions for future research

This article has reviewed the main scientific findings on the synergistic organization of 

human sensory-motor apparatus and how this organization has inspired novel paradigms for 

the development of “intelligent” artificial systems. Under this light, the words pronounced 

by the anthropologist Sherwood Washburn [173] more than 50 years ago, “. . . the modern 
human brain came after the hominide hand. . . ”, not only appeared as an astonishing 

assertion, but represented the historical starting point for the interdisciplinary reflections we 

have discussed in this paper. This assumption was linked to the idea that in order to 

completely understand intelligence, we must first understand the details of sensorimotor 

system underlying the control of our own hands. We have shown that in robotics it is quite 

tempting to think of a similar hypothesis, namely that the design of mechanical hands, 

including the principles of low-level sensing and control, will shape, at least in part, the 

development of the field of artificial intelligence at large.

The fundamental idea underlying this approach and the related cross-disciplinary work 

reported in this survey was that (rephrasing Galileo) “the hand and the physical embodiment, 

which determines its behavior and cognitive capabilities, speaks a language whose words are 

the sensorimotor synergies”, and that only the understanding of this language will enable us 

to build artificial systems that can have a dialogue with the human counterpart.

These observations motivated questions that were addressed by “THE Hand Embodied” 

project, however some important scientific questions remain open and should be targeted by 

future research. These concern the reciprocal linkages between the physical hand and its 

high-level control functions, and the way that embodiment enables and determines behaviors 

and cognitive functions. According to the methodology delineated in this paper, the study of 

the intrinsic relationship between the hand as a cognitive abstraction and its bodily instance 

might be furthered by performing neuroscientific and perceptual behavioral studies with 

participants engaged in controlled manual activities. In parallel, the development of a 

theoretical framework explaining the underlying neurobiological mechanisms can lay the 

foundations for the design and control of robotic hands, haptic interfaces, and neuro-

prosthetic devices. We deem these studies to be necessary to eventually come to an 
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understanding of how the embodied characteristics of the human hand and its sensors, the 

sensorimotor transformations, and the very constraints they impose, affect and determine the 

learning and control strategies we use for such fundamental cognitive functions such as 

exploring, grasping and manipulating.

The multidisciplinary approach we have undertaken shows that human data and hypothesis-

driven simulations can be analyzed and used to derive novel system architectures for the 

“hand” as a cognitive organ, and this knowledge can eventually be applied to design and 

control robotic devices with superior robustness and flexibility. The program is 

fundamentally based on the conceptual structure and the geometry of “synergies”, and in the 

broad definition we have used of “enabling constraints”: correlations in redundant hand 

mobility (motor synergies), correlations in redundant cutaneous and kinaesthetic receptors 

readings (multi-cue integration), and overall sensorimotor system synergies. We believe that 

these concepts are also keys for advancing the state of the art in artificial systems as well as 

the creation of the next generation of humanoid robots, advanced haptic systems, and highly 

integrated neuro-prosthetic devices.

From a technological perspective, work reported in this survey also has important 

implications for future research. First, the technology of “soft hands” that was adopted in the 

project THE can be applied in many forms – e.g., using continuum robotics as presented in 

[174]. Indeed, the use of compliant hands to replace traditional rigid robotic devices opens 

new opportunities, but also new challenges, in robotic manipulation. Manipulation with a 

simple, soft-synergy based hand allows for, and indeed requires strong interactions with the 

environment, including the manipulandum. Through the observation of human hand 

operations, it can be easily realized how fundamental in everyday grasping the role of hand 

compliance to adapt fingers to the shape of the surrounding objects is. Since the shape of 

soft hands is determined by the forces exchanged with the objects in contact, objects and 

environmental constraints can be profitably exploited to functionally shape the hand and to 

go beyond its nominal kinematic limits by exploiting structural softness [175,176], 

substantially changing the classical manipulation planning paradigm. Due to their simplicity, 

compliance and robustness, hands developed following the soft synergy approach represent 

an ideal platform for the development of novel prostheses, thus opening interesting 

perspectives in robotic rehabilitation. Initial work using the Pisa/IIT SoftHand as a 

prosthesis on a number of normal subjects and amputees has provided promising albeit 

preliminary results in terms of ease of use, intuitive command, grasping and manipulation 

performance [111]. Furthermore, the exploitation of tele-impedance and EMG-based 

applications as well as the usage of wearable haptic interfaces can enable a more natural and 

intuitive control of (synergy-inspired) prosthetic hands [118].

On the other side, considering sensing and tactile-related information feedback, the correct 

understanding of mechanisms of multi-cue integration and sensor fusion, in other terms of 

sensory synergies, can not only inspire the design of novel, simple yet effective sensing 

systems and haptic devices but offer novel insights in a wide range of robotic applications, 

e.g., mobile robotics. In these applications, where multiple information sources are unified 

in a unique coherent perceptual representation, synergistic inspiration can be used to enable 

robotic systems with advanced perceptual and cognitive capabilities. Furthermore, the 
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identification of the most informative forms of sensed data, together with the study of 

transparent manners to convey them back to the user, can represent the successful approach 

to improve prosthetic devices, closing the loop between action and perception, and endowing 

prostheses not only with advanced control systems but also with perceptual properties.

The challenging goal is to identify trade-offs between simplicity, intuitiveness and 

effectiveness. Suitably balancing these ingredients is not an easy task: “working hard to 

make it simple” can be the novel motto for synergy-inspired robotic research. In other terms, 

getting close to the astonishing capabilities of CNS in producing nearly instantaneous 

simplifications of the huge amount of human sensory-motor data can be the key for the 

design of a novel generation of cognition-enabled robotic devices.

However, this road is still largely unexplored and the challenges it poses become more and 

more intriguing as research on the human hand sensory-motor apparatus provides novel 

insights. The approach we propose to profitably proceed along this road is to make 

technological developments and biological research working together in a synergistic 

fashion. The ultimate goal of this research is to bridge the gap between neuroscience and 

robotics with the twofold goal of increase the comprehension of the functional and 

neuroanatomical organization of the human hand, also thanks to technological tools to 

perform neuroscientific investigations and robotic inspiration, and to derive biology-inspired 

guidelines for a more effective development of robotic systems, through the usage of 

mathematical language.
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Fig. 1. Mapping synergies from the human hand model (left) to the robotic hand (right)
The reference points on the human hand model (red dots) allow the definition of the virtual 

object. Activating the human hand synergies, the object is moved and strained; its motion 

and strain can be evaluated from the velocities of the reference points. This motion and 

strain, scaled if necessary, are then imposed to the virtual object relative to the robotic hand, 

defined on the basis of the robotic reference points (yellow dots). The hand models in the 

figure are obtained using the SynGrasp Toolbox [99]. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
(a) Skeleton of the Pisa/IIT SoftHand advanced anthropomorphic hand prototype. (b) The 

SoftHand joints can withstand large forces in all directions, thus allowing the hand to 

automatically return to the initial configuration. (c) Examples of experimental grasps 

performed with the Pisa/IIT SoftHand. (Adapted from [109].)
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