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The centriole is a multifunctional structure that organizes
centrosomes and cilia and is important for cell signaling,
cell cycle progression, polarity, and motility. Defects in
centriole number and structure are associated with human
diseases including cancer and ciliopathies. Discovery of the
centriole dates back to the 19th century. However, recent
advances in genetic and biochemical tools, development of
high-resolution microscopy, and identification of centriole
components have accelerated our understanding of its as-
sembly, function, evolution, and its role in human disease.
The centriole is an evolutionarily conserved structure built
from highly conserved proteins and is present in dll
branches of the eukaryotic tree of life. However, centriole
number, size, and organization varies among different
organisms and even cell types within a single organism,
reflecting its cell type—specialized functions. In this review,
we provide an overview of our current understanding of
centriole biogenesis and how variations around the same
theme generate alternatives for centriole formation and
function.

Centrioles are microtubule (MT)-based structures that form
centrosomes and cilia and have diverse functions in our cells,
such as cell polarity, signaling, cell proliferation, and motility.
The centrosome is an important MT-nucleating and signaling
center of the cell (Arquint et al., 2014; Conduit et al., 2015).
The animal centrosome is composed by two centrioles sur-
rounded by a protein-rich material, the pericentriolar matrix
(PCM). In mitosis, two centrosomes organize the poles of the
mitotic spindle, which defines its bipolarity, and mediate spin-
dle positioning through the interactions of their astral MTs with
the cell cortex (Roubinet and Cabernard, 2014; Ramkumar and
Baum, 2016). In interphase, centrosomes and their anchored
MTs regulate the positioning of many molecules and structures
such as nuclei and the Golgi along with the stability of cellu-
lar junctions and adhesions, helping to define cell shape and
polarity (Akhmanova et al., 2009; Etienne-Manneville, 2013;
Gavilan et al., 2015). When fully mature, centrioles form a
structure termed the basal body that is essential to nucleate a cil-
ium (Fig. 1 A). Cilia functions include cell motility, movement
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of fluids, and specialized sensory functions such as a response
to light. In addition, most cilia, whether motile or immotile, are
signaling entities. It is likely that the centrosome plays many
other undescribed roles as several novel functions were recently
described, such as positioning of the cilium (Mazo et al., 2016),
promoting polarized secretion at the immune synapse (Stinch-
combe et al., 2015), locally regulating actin nucleation (Farina
etal., 2016; Obino et al., 2016), and concentrating protein trans-
lation and degradation machinery (Hehnly et al., 2012; Amato
et al., 2014; Vertii et al., 2016).

Centrioles may drastically vary in size among different
organisms and within different cell types of the same organism;
however, all centrioles share a ninefold symmetry and a proxi-
mal—distal polarity (Fig. 1 A). Centriole diameter is ~200-220
nm, whereas length ranges from 150 (Drosophila melanogaster
embryo) to 500 nm (human somatic cells) to >1,000 nm in the
sperm of Drosophila and some other organisms. Most centri-
oles have a wall of nine triplet MTs: a complete inner A tubule
and two partial B and C tubules, although in certain organisms,
the centriole wall has MT doublets or singlets (Carvalho-Santos
et al., 2011). Centriole symmetry is defined during early stages
of its formation by a ninefold symmetrical cartwheel (Fig. 1 A;
Gonczy, 2012), a scaffolding structure present in the proximal
Iumen of young and sometimes older (mature) centrioles.

The proximal end of centrioles organize PCM critical for
the centrosome to nucleate MTs (Fig. 1 A; Conduit et al., 2015).
PCM size depends on the size of the centriole, the amount of
available components, and the activity of regulatory kinases
such as Polo-like kinase 1 (PLK1; for a model of PCM accumu-
lation see Woodruff et al., 2014; Zwicker et al., 2014; Conduit
et al., 2015). The PCM was originally observed by electron mi-
croscopy as an electron-dense amorphous material surrounding
centrioles with y-tubulin ring complexes that nucleate MTs. Re-
cent superresolution microscopy of PCM components revealed
that the PCM is not an amorphous material but a well-defined
supramolecular complex (Lawo et al., 2012; Mennella et al.,
2012; Sonnen et al., 2012; Lukinavicius et al., 2013). During
interphase, some PCM components such as pericentrin extend
radially from the centriole, with the carboxy terminus pericen-
trin-AKAP450 centrosomal targeting (PACT) domain adjacent
to the centriole wall and the amino terminus extending outward
into the PCM. Many other components are organized in toroids
around the centriole. In mitosis, the PCM is more abundant but
less structured. Mitotic kinases such as PLK1 phosphorylate
critical components of the PCM such as SPD5 in Caenorhabditis
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STAN domain and allows its association with
SAS-6. These three proteins form the cartwheel
perpendicularly to the proximal wall of the
mother centriole. Cdk2 promotes centriole
elongation and prevents reduplication. Other
proteins assemble into the cartwheel and help

the formation of the daughter MT wall. Daughter centriole MTs elongate during S and G2 phases of the cell cycle. Mother and daughter centrioles stay
associated until the end of mitosis. Each sister G1 cell inherits one mother and one daughter centriole. During G1, the daughter centriole acquires its own
PCM and the ability to duplicate. The mother centriole, formed two cell cycles ago, reaches its final maturation and acquires proximal appendages and
DAs. In vertebrates, the cartwheel is lost from maturing daughters in early mitosis. For more details, see main text (section Building a centriole).

elegans (Laos et al., 2015; Wueseke et al., 2016; Woodruff et
al., 2017) and CNN/CDKS5RAP2 in Drosophila, leading to the
recruitment of MT polymerizers and stabilizers that concentrate
tubulin, thus promoting MT nucleation (Conduit et al., 2010,
2014a,b; Feng et al., 2017; Woodruff et al., 2017).

At their distal end, fully mature centrioles form nine dis-
tal appendages (DAs; Fig. 1 A), and in vertebrates, a variable
number of more robust sub-DAs (SDAs). DAs are required for
the formation of cilia as they interact with vesicles to form a
vesicular cap, which fuses with the cytoplasmic membrane of
the cell during ciliogenesis (Sorokin, 1962; Tanos et al., 2013;
Lu et al., 2015). DAs are equivalent to fibers observed at the
distal end of basal bodies in motile cilia (Ishikawa et al., 2005;
Tanos et al., 2013; Tateishi et al., 2013). During interphase,
SDAs anchor MTs and position the centriole and primary cilium
(Piel et al., 2000; Delgehyr et al., 2005; Tateishi et al., 2013;
Mazo et al., 2016). SDAs are molecularly equivalent to the
basal feet, a structure that associates with the basal bodies of
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motile cilia and help their positioning (Kunimoto et al., 2012;
Tateishi et al., 2013). In cycling cells, SDAs are transiently
lost from centrioles before mitosis and are rebuilt in G1, al-
though the physiological significance of such dynamics is not
understood. On their proximal end, centrioles often have an-
other fibrous appendage-like striated structure called a rootlet,
which varies in size depending on the cell type. Rootlets link
centrioles and basal bodies of various animal cilia and green
algae flagella to the cell body (Lechtreck and Melkonian,
1991) and contribute to their long-term stability and/or func-
tion (Yang et al., 2005; Mohan et al., 2013; Chen et al., 2015).

Additional structures found in the vicinity of vertebrate
centrosomes are centriolar satellites (Fig. 1 A). Satellites are
poorly understood nonmembrane particles (70—100 nm), which
contain components such as OFD1 and PCM1 (Hori and Toda,
2017). Deregulation of satellite components perturbs spindle
assembly, centriole duplication, and the initial steps of cilio-
genesis, suggesting that satellites regulate centrosome—cilia



complexes by their sequestration and/or trafficking (Delgehyr
et al., 2005; Kurtulmus et al., 2016).

Recent work has begun to elucidate the molecular under-
pinnings of different modes of centriole biogenesis in different
organisms and cell types. In this review, we focus on our current
understanding of molecular processes that drive centriole for-
mation in different cellular contexts, aiming at discussing com-
mon frameworks and diverse aspects that underlie each.

In cycling somatic cells, centrioles assemble in association with
preexisting (mother) centrioles in the canonical centriole dupli-
cation process. However, centrioles can also form without de-
tectable precursors by the so-called de novo pathway or around
specialized structures known as deuterosomes. Those different
modes of centriole formation can occur independently in time
and space or simultaneously (Bettencourt-Dias and Glover,
2007). These modes use some specific, but mostly conserved,
molecules to build centrioles (Meunier and Azimzadeh, 2016).
Cells have molecular mechanisms that adjust the number of cen-
trioles to the requirement of a given cell. For instance, somatic
cycling cells strictly restrict the number of mature centrioles
able to form cilia, whereas multiciliated cells (MCCs) produce
and mature hundreds of centrioles (Meunier and Azimzadeh,
2016). In this section, we discuss the common steps in centriole
assembly and describe several examples where these steps take
a different turn to satisfy specific physiological requirements.

Initiation of centriole for-
mation is driven by the sequential action of a highly conserved
set of proteins. In humans, three proteins, Plk4 (Sak or PLK4 in
Drosophila and ZYG-1 in C. elegans), SCL-interrupting locus
protein (STIL; Ana-2 in Drosophila and SAS-5 in C. elegans),
and SAS-6, comprise a seed for centriole initiation (Fig. 1 C;
Arquint and Nigg, 2016). Plk4, a serine/threonine kinase, is the
master driver of centriole duplication (Bettencourt-Dias et al.,
2005; Habedanck et al., 2005; Kleylein-Sohn et al., 2007). Plk4
phosphorylates STIL, its key binding partner, on multiple sites
(Moyer et al., 2015; Kraatz et al., 2016), allowing STIL binding
with SAS-6 and initiation of centriole formation. SAS-6 is a key
structural component of a cartwheel, the structure that institutes a
ninefold symmetry of the centriole (Leidel et al., 2005; Nakazawa
et al., 2007; Kitagawa et al., 2011; van Breugel et al., 2011;
Keller et al., 2014). This was recently demonstrated by the abil-
ity of recombinant SAS-6 and its binding partner Bld10 to
self-organize into a ninefold symmetrical cartwheel structure in
vitro (Guichard et al., 2017).

Initial binding of Plk4 to centrioles in human cells is
mediated by Cep63, Cep192, and Cepl152, which encircle the
proximal ends of mother centrioles (Fig. 1 B; Dzhindzhev et
al., 2010; Brown et al., 2013; Kim et al., 2013; Lukinavic¢ius
et al., 2013; Sonnen et al., 2013). In flies, recruitment of SAK/
PIk4 requires only the Cepl52 orthologue Asterless, and in
worms, the recruitment of ZYG-1 requires only the Cepl192
orthologue SPD-2 (Delattre et al., 2006; Pelletier et al., 2006;
Dzhindzhev et al., 2010). After cartwheel formation, centroso-
mal p4.1-associated protein (CPAP; Sas-4 in Drosophila) aids
formation of the centriole MT wall (Pelletier et al., 2006; Kohl-
maier et al., 2009; Schmidt et al., 2009; Tang et al., 2009). In
some species such as humans, nine MT singlets are first assem-
bled, followed by addition of the second and third set of MTs
(Guichard et al., 2010). It is not known what regulates addition
of the second and the third MT set. Additional proteins such

as Cepl35 (Bld10 in Drosophila) and Cepl20 associate with
CPAP, facilitate the formation and stabilization of the centriole
MT wall, and drive centriole elongation (Fig. 1 C; Comartin et
al., 2013; Lin et al., 2013a,b).

Centriole size varies in
different species and in different tissues within a species. Unlike
cytosolic MTs, centriole MTs grow at a very slow rate and are
extremely stable (Kochanski and Borisy, 1990). In recent years,
a variety of work has shown that there are very specialized
MT-associated proteins (MAPS) that regulate the slower but
steady elongation of centriolar MTs (Sharma et al., 2016; Zheng
et al., 2016). Overexpression of several centrosomal proteins
such as CPAP or Cepl20 leads to the elongation of centriole
tubules in some mammalian cells (Kohlmaier et al., 2009;
Schmidt et al., 2009; Tang et al., 2009; Lin et al., 2013b). CPAP
associates directly with centriole tubules via its N terminus, me-
diating centriole growth and stabilization (Sharma et al., 2016;
Zheng et al., 2016). Proteins such as hPOC5 (Azimzadeh et al.,
2009), Asterless (Galletta et al., 2016), Cep295 (Chang et al.,
2016), Centrobin (Gudi et al., 2015), and SPICE1 (Comartin et
al., 2013) also positively regulate centriole elongation, although
the mechanisms are unknown (Fig. 1 C). In addition, proteins
that cap distal centriole ends, such as CP110 and Cep97, restrict
centriole elongation in vertebrate but not invertebrate cells
(Spektor et al., 2007; Schmidt et al., 2009; Franz et al., 2013).
In flies, the MT-depolymerizing kinesin-13 KLP10A/Kin13 has
an important role in restricting elongation through MT depo-
lymerization (Delgehyr et al., 2012). In conclusion, how centriole
elongation is regulated and how this process varies across tis-
sues and species is still a fundamentally unanswered question.

New centrioles must be stabilized to become com-
petent for duplicationina process termed ““centriole-to-centrosome
conversion” (Fig. 1 C). This involves the acquisition of ANA1/
CEP295 for the recruitment of critical factors for duplication,
such as Asl/CEP152 (Loncarek et al., 2010; Wang et al., 2011;
Izquierdo et al., 2014; Kong et al., 2014; Fu et al., 2016). Proteins
such as centrobin and Cep120, which are recruited to daughter
centrioles in their first cell cycle, are gradually lost during the
conversion (Mahjoub et al., 2010; Januschke et al., 2013).

To become competent for ciliogenesis and MT anchor-
ing, centrioles must additionally mature on their distal ends
and build DAs and SDAs (Fig. 1 C). The assembly of SDAs
is initiated by recruitment of ODF2 (Ishikawa et al., 2005;
Huang et al., 2017) and followed by the recruitment of various
proteins that are poorly characterized, including CCDC120,
CCDC68, and trichoplein. hNinein and CEP170 are part of
the SDA, and both bind MTs. Other proteins that localize near
SDAs and function in anchoring MTs to mother centrioles,
include those comprising the dynein—dynactin complex (con-
taining p50/dynamitin, p150Glued, and p24), EB1, and Kif3a
(Huang et al., 2017). The formation of DAs requires the re-
cruitment of OFD1 and C2cd3 (Ye et al., 2014) at the centri-
ole, followed by the recruitment of Cep83, which then recruits
other DA components, including Cep89, SCLT1, FBFI, and
Cepl64 (Tanos et al., 2013; Thauvin-Robinet et al., 2014). All
identified DA proteins are essential for appendage and cilia
formation. Functional studies indicate that DA proteins are
essential for centriole docking to the membrane, recruitment
of intraflagellar transport complex, and axoneme extension
(Schmidt et al., 2012; Joo et al., 2013; Tanos et al., 2013; Ye et
al., 2014; Sanchez and Dynlacht, 2016).

The right centriole for each cell
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Centrioles and basal
bodies are very stable structures, with fluorescence recovery
after photobleaching of a-tubulin at the basal body in Tetrahy-
mena thermophila showing little turnover (Pearson et al., 2009).
Moreover, upon nematode egg fertilization, the sperm centriole
that is inherited after fertilization can be traced at least until the
550-cell stage (Balestra et al., 2015). Finally, in vertebrate cells,
centriole MTs show also little turnover and are resistant to drug-
and cold-induced MT depolymerization (Kochanski and Borisy,
1990), and they resist MT-generated forces and MT instability
in mitosis (Belmont et al., 1990).

Several factors have been shown to contribute to centri-
ole stability. The cartwheel is important for the maintenance
of immature centrioles (Izquierdo et al., 2014). In certain
species, 8- and e-tubulins found on the centriole contribute to
the formation and/or stability of the triplet MTs (Winey and
O’Toole, 2014). Ultrastructural analysis revealed linkers be-
tween the A and B tubules and between the A and C tubules
that may help to stabilize the centriole (Winey and O’Toole,
2014). In addition, centriole MTs are modified by detyros-
ination, acetylation, and glutamylation and contain A2-tubu-
lin, all of which can contribute to their stability directly or
through association with other proteins (Janke, 2014). Injec-
tions of antibodies against the more characterized PTM, glu-
tamylated tubulin (Bobinnec et al., 1998), and interference
with a molecular linker between glutamylated tubulin and the
PCM were suggested to lead to centriole disassembly (Mada-
rampalli et al., 2015), indicating that those modifications are
important for centriole stability.

However, centrioles can be eliminated from cells at cer-
tain development stages. In 1933, Huettner and Rabinowitz
(1933) showed that centrosomes are eliminated in Drosophila
eggs, and the same was later shown in some terminally differen-
tiated cells such as skeletal muscle (Tassin et al., 1985; Srsen et
al., 2009). It is not yet known how they disassemble, but it was
recently shown in the female germline in Drosophila that loss of
Polo kinase leads to the loss of PCM and centriole elimination,
whereas artificial tethering of Polo to centrosomes prevented
centriole loss in the oocyte (Pimenta-Marques et al., 2016). This
strongly suggests that centrioles require active maintenance
through a PCM-mediated mechanism and that cells have strate-
gies for their elimination.

In proliferating verte-
brate cells, centriole formation follows the canonical pathway
whereby new centrioles assemble in association with mother
centrioles (Vorobjev and Chentsov YuS, 1982). There are two
unduplicated centrioles during G1 (Fig. 1 A). At the beginning
of S phase, the proximal end of each (mother) centriole pro-
vides an environment for the initiation of one perpendicularly
oriented daughter centriole, also known as procentriole (Fig. 1,
B and C). Initially, a cartwheel forms near the wall of the mother
centriole, marking the site of procentriole assembly. Next, there
is addition of centriole MTs, which continue to elongate during
interphase. In mitosis, each duplicated centriole forms one pole
of a mitotic spindle and segregates into one of the sister cells.
The mother and daughter centrioles separate from each other
and form two centrosomes at mitotic exit by assembling an in-
dependent PCM around them. By synchronizing the duplication
and segregation of their two centrioles with the DNA cycle, so-
matic cycling cells maintain two centrosomes over generations.

However, for this strategy to succeed, the mother centriole must
duplicate only once per cell cycle and form only one procentriole.

Control of procentriole number. Control of the number
of procentrioles formed in one duplication cycle requires fine-
tuned cellular levels of centriole initiating factors such as Plk4,
STIL, and SAS-6, because their stoichiometry controls the litter
size. Overexpression of Plk4, and to a lesser extent STIL and
SAS-6, leads to simultaneous formation of multiple daughter
centrioles per mother centriole (Habedanck et al., 2005; Kley-
lein-Sohn et al., 2007; Guderian et al., 2010). Plk4 levels are
regulated at a transcriptional level but, more importantly, via
protein turnover. Plk4 degradation depends on its homodi-
merization and autophosphorylation of the residues critical for
the binding of the SCF*-T"P E3 ubiquitin ligase, which mediates
its degradation (Cunha-Ferreira et al., 2009; Rogers et al., 2009;
Guderian et al., 2010; Moyer et al., 2015). During G1, Plk4 is
localized in a Cep63/Cepl152/Cepl192-dependent manner in a
ringlike pattern around centrioles (Fig. 1 B). Interestingly, al-
though Cep63, Cepl52, and Cep192 remain localized in a ring
throughout the cell cycle, Plk4 localization is reduced to a dis-
crete site marking the position of the future daughter centriole
after procentriole initiation (Sonnen et al., 2012; Kim et al.,
2013). Asymmetric dotlike localization of P1k4 persists until the
end of the cell cycle when the two centrioles separate (Sonnen
etal.,2012; Kim et al., 2013). It is unclear how Plk4 achieves an
asymmetric high local concentration, escaping its own destruc-
tion, and what mechanisms prevent the accumulation of Plk4
around the mother centriole once the procentriole is initiated.
In this respect, Plk4 association with STIL was suggested to
protect Plk4 from degradation (Dzhindzhev et al., 2014; Ohta et
al., 2014; Arquint et al., 2015; Klebba et al., 2015).

Association between mother and daughter centriole. Cen-
trosomes have an intrinsic mechanism to inhibit overduplica-
tion of a mother centriole once it is associated (engaged) with
a procentriole (Tsou and Stearns, 2006a). This centrosome-in-
trinsic block to reduplication was first proposed by Wong and
Stearns (2003) after a series of cell fusion experiments. Fusion
of the cells containing either duplicated or unduplicated centri-
oles with cells in different cell cycle stages has demonstrated
that when exposed to cytoplasm permissive for centriole du-
plication, only unduplicated mother centrioles initiate duplica-
tion, whereas the mother centrioles already engaged to daughter
centrioles do not. Laser ablation of the daughter centrioles in S
phase—arrested HeLa cells promoted a new duplication cycle on
the mother centrioles, showing that the block of reduplication
originates from the daughter (Loncarek et al., 2008).

So, how does engagement prevent reduplication? Fong
et al. (2016) disrupted cartwheel maintenance by chemical and
genetic manipulation of Plk4 and STIL to show that the loss
of STIL from the cartwheel triggers a new reduplication cycle
on the mother centriole. Under experimental conditions such as
those causing cell cycle arrest that allow mother centriole re-
duplication during interphase, distancing of daughter centrioles
from the wall of mother centrioles leads to reduplication even
without the dissolution of the cartwheel (Shukla et al., 2015).
So, it is possible that the mother centriole senses the vicinity of
the PIk4-STIL complex, which operates in trans and inhibits
the initiation of additional centrioles.

How centrioles maintain or lose association is also not
clear. One explanation of the association between mother and
daughter centriole is the existence of a physical link established
between the two centrioles during duplication and which per-



sists until it is severed during centriole disengagement. Can-
didate structures were seen using cryotomography on isolated
centrioles (Guichard et al., 2010) and in Drosophila spermato-
cytes (Stevens et al., 2010).

In recent years, a series of investigations have aimed
to unravel the components responsible for centriole engage-
ment. Separase is the proteolytic enzyme that cleaves cohesin
connecting two sister chromatids during mitosis and is indis-
pensable for disengagement of isolated human centrioles in
Xenopus laevis extracts in vitro (Tsou and Stearns, 2006b).
However, homologous inactivation of both separase genes in
human HCT116 cells slowed, but did not prevent, disengage-
ment (Tsou et al., 2009). Similarly, defects in the centriole cycle
have not been reported in a separase-knockout mouse (Kumada
etal., 2006). In C. elegans embryos, separase depletion affected
centriole disengagement and duplication of the sperm-derived
centrioles at the meiosis—mitosis transition but not during mi-
totic centriole duplication cycles (Cabral et al., 2013). Thus,
separase may not be universally needed for disengagement. The
data describing the role of cohesin in engagement are contra-
dictory as well. Inhibition of cohesin cleavage did not prevent
centriole disengagement in HCT116 cells (Tsou et al., 2009),
whereas a different study conducted in both U20S cells and
isolated centrioles found that it did (Schockel et al., 2011).
Cohesin cleavage was not sufficient to drive centriole disen-
gagement in Drosophila (Oliveira and Nasmyth, 2013), but the
depletion of a short form of Shugoshin, a protector of cohesin
integrity, was sufficient for centriole disengagement in mouse
fibroblasts (Wang et al., 2008).

Mitotic PIk1 has also emerged as a necessary protein for
centriole disengagement in human mitotic (Tsou et al., 2009;
Kim et al., 2015) and interphase-arrested cells (Loncarek et
al., 2010; Kong et al., 2014). Overactive Plkl in human cells
leads to premature centriole disengagement and reduplication
in a CPAP-dependent manner (Shukla et al., 2015). In mitosis,
PIk1 may also promote centriole disengagement via Plk1-de-
pendent phosphorylation and subsequent degradation of the
PCM protein Pericentrin (Lee and Rhee, 2012; Matsuo et al.,
2012; Seo et al., 2015). Centrioles also prematurely disengage
after various types of genotoxic stress, a process dependent on
PIk1 (Inang et al., 2010) and/or the ubiquitin proteasome system
(Douthwright and Sluder, 2014).

In conclusion, the existing data point to multiple possible
mechanisms leading to the loss of centriole association, which
may result in uncoupling of the centriole with the cell cycle.
These mechanisms may be cell type— or cell cycle—specific.
Many studies exploring centriole cycle rely on biochemical
methods or on conventional low-resolution immunofluores-
cence analyses and therefore lack an in-depth ultrastructural
centriole analysis needed for unambiguous interpretation of the
data. Increased usage of superresolution imaging techniques to-
gether with more direct and immediate techniques to perturb
gene function in centriole studies will resolve some of these
conundrums and help us understand the nuances of centriole
cycle regulation among various cells and cell cycle conditions.

Centrosome association and segregation. Preservation of
mother—daughter centriole association during interphase is also
critical for proper segregation of duplicated centrioles during
cell division. After mitosis, separated mother and daughter
centrioles each assemble a centrosome. During early G1, the
younger centriole moves extensively in the cytoplasm, whereas
the older centriole stays near the cell center. As the younger

centriole matures and duplicates, its movement becomes at-
tenuated and in most cell types, both centrosomes are adja-
cent to each other near the physical center of the cell in S and
G2 phases (Piel et al., 2000). Some research suggests that the
two mother centrioles are tethered by a proteinacious filament
composed of several coiled-coil proteins including rootletin,
LRRC45, and CEP68 (Flanagan et al., 2017). These proteins
dock to the proximal side of mother centrioles via NEK2-as-
sociated protein 1 (C-NAP1), CEP135, and centlein. In the G2
phase of the cell cycle, Plk1 activates NEK2A, which phosphor-
ylates the linker filaments, allowing their dissolution. Together
with the activity of motor proteins such as kinesin Eg5, this
leads to the separation of two centrosomes at the onset of mito-
sis (Agircan et al., 2014).

Regulation of centriole cycle by cyclin-dependent kinases
(Cdks). Cdk1 and Cdk?2 regulate the centriole cycle in several
embryonic and somatic systems (Hinchcliffe and Sluder, 2002).
Cdk?2 activity was shown to be necessary for centriole duplication
and/or reduplication in a variety of systems, comprising Xenopus
embryos (Lacey et al., 1999), Xenopus egg extracts (Hinchcliffe
etal., 1999), sea urchin zygotes (Schnackenberg et al., 2008), and
CHO cells (Matsumoto et al., 1999; Meraldi et al., 1999) as well
as for HPV-16 E7-dependent centriole reduplication in mouse fi-
broblasts (Duensing et al., 2006). Cdk2 and Cdk4 were proposed
to promote centriole reduplication in mouse fibroblasts by hyper-
phosphorylating the centrosomal protein nucleophosmin, a puta-
tive inhibitor of centriole duplication (Okuda et al., 2000; Adon
et al., 2010). However, in mammalian somatic cells, Cdk2 is not
essential for cell cycle progression (Berthet et al., 2003) or for the
centriole cycle (Duensing et al., 2006). In Cdk2-null cells, cen-
trioles still duplicate; thus, if Cdk2 drives centriole duplication,
itsrole can be overtaken by a redundant Cdk/cyclin combination.
Contrary to its positive role in centriole formation, Cdk2 was
proposed to play an inhibitory role in centriole reduplication via
phosphorylation of Cep76 and inhibition of premature Plk1 acti-
vation (Barbelanne et al., 2016). Cdk1 has been proposed to in-
hibit premature initiation of centriole formation in mitosis via its
inhibitory binding and phosphorylation of STIL, which prevents
both its presence at the centrosome and association with Plk4
(Arquint and Nigg, 2014; Zitouni et al., 2016). In fast-dividing
Drosophila embryos, Cdk1 is important for phosphorylation and
priming of Sas-4 for Polo recruitment to the young centrioles and
for their timely conversion to centrosomes (Novak et al., 2016).
A systematic approach will be required to unravel which steps of
the centriole cycle are responsive to the activity of various Cdks.

Somatic cycling cells
must restrict the number of mature centrioles to two. However,
in tissues such as respiratory airways, oviduct, and brain
ependymal, some cells undergo differentiation into MCCs.
MCCs generate hundreds of centrioles that are converted into
basal bodies and produce hundreds of motile cilia (Fig. 2 A).
Cilia beat at the cell surface and promote a fluid flow that is vital
for numerous tissue-specific processes. Some centrioles in
MCCs form in association with the preexisting two centrioles,
which duplicate with the increased litter size. However, for
massive centriole production, MCCs develop specialized elec-
tron-dense structures called deuterosomes, which nucleate cen-
triolesintheir vicinity. The descriptions of deuterosome-mediated
centriole formation go back to the 1960s (Sorokin, 1968), but
the cascade of molecular events that trigger deuterosome for-
mation and support a massive centriole production have only
recently emerged (Meunier and Azimzadeh, 2016).
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A Massive centriole production

1. Centriole-mediated
2. Deuterosome-mediated
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C

Amoeba

Centriole
duplication

Controlled de novo
centriole formation

Controlled flagella and centriole disintegration

In many tissues, the process of multiciliation starts with
down-regulation of the Notch signaling pathway followed by
differentiation of MCCs. This event promotes the expression
of two regulatory genes, GEMCI and multicilin (MCIDAS),
triggering the differentiation program of MCCs (Stubbs et al.,
2012; Amato et al., 2014; Terré et al., 2016). A complex con-
taining MCIDAS, E2F4/5, and Dp1 then in turn modulates the
expression of selected cell cycle regulators and transcriptionally
up-regulates hundreds of genes, including those used for canon-
ical centriole duplication (Vladar and Stearns, 2007; Hoh et al.,
2012). Massive centriole formation is also somehow promoted
by the transcription factor Myb (Tan et al., 2013). In addition,
downstream from MCIDAS is cyclin O, expression of which
is up-regulated in MCCs and required for proper deuterosome
structure, subsequent centriole maturation, and centriole dock-
ing to the membrane (Funk et al., 2015). Maturation of young
centrioles into basal bodies and ciliogenesis is under the con-
trol of the RFX/FOXIJ1 signaling network (Choksi et al., 2014;
Jackson and Attardi, 2016).

Transcriptional up-regulation of conserved centriole du-
plication genes explains the formation of multiple daughter
centrioles around existing parental centrioles in MCCs. To form
deuterosomes, MCCs need a specific deuterosome-forming fac-
tor Deupl (or CCDC67), a paralog of the centrosomal protein
Cep63 (Zhao et al., 2013). Like Cep63, Deupl associates with
Cep152, but unlike Cep63, which localizes specifically to pa-
rental centrioles, Deupl associates with deuterosomes. Cep152
recruitment to the deuterosomes requires CCDC78 (Klos Deh-
ring et al., 2013). This is then followed by PLK4 recruitment
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De novo pathway, random
centriole number

Flagella formation

Figure 2. Noncanonical modes of centriole
formation. (A) MCC of the airway. Multicilia-
tion requires a rapid production of hundreds
of centrioles. Some form around preexisting
centrioles in a rosettelike arrangement (1), but
most centrioles are formed around spherical
profeinacious structures called deuterosomes
(2). Centrioles are then released from deutero-
somes or centrioles, mature, associate with the
cell surface, and form motile cilia. (B) Somatic
cycling cells form new centrioles by canonical
duplication (Fig. 1). But if resident centrioles
are removed (by a laser beam, microsurgery,
or lost as a result of missegregation during
cytokinesis), centrioles can form de novo,
without any visible precursors. However, the
control over centriole numbers is usually lost.
(C) Centriole formation in the free-living fresh-
water protist Naegleria. Naegleria reproduce
and divide without centrioles when they are
in their amoeba state. Exposed to nutritional
and environmental challenges, Naegleria rap-
idly form the first centriole de novo, followed
by their duplication and the formation of two
swimming flagella. Centrioles and flagella are
disintegrated when the organism reverts to its
amoeba stage. See references in main text
(section De novo centriole formation).

Multiciliation

Flagellate
stage

and the rest of the centriole assembly pathway used by the
canonical centriole duplication pathway (Klos Dehring et al.,
2013; Zhao et al., 2013). How these centrioles mature in these
terminally differentiated cells is not known.

MCCs from mouse ependyma form <100 cilia, a small
number compared with other multiciliated epithelia, which
form 200-300 cilia. It was suggested that in these cells, deu-
terosomes form only in association with the young centriole and
not freely in the cytoplasm (Al Jord et al., 2014). This find-
ing differs from the early studies of MCC formation in fetal rat
lungs (Sorokin, 1968), where deuterosomes were found associ-
ated with the fibrous material adjacent to the Golgi. In agree-
ment, deuterosomes in MCCs of trachea were not seeded from
preexisting centrioles (Zhao et al., 2013). It is noteworthy that
MCCs in airways form a larger number of cilia (200-300). Fi-
nally, MCCs of olfactory neurons only moderately up-regulate
centriole numbers (Jenkins et al., 2009). It is not clear whether
in these cells, centriole amplification uses deuterosomes or only
the centrosome-mediated pathway (Cuschieri and Bannister,
1975). It is possible that the presence of deuterosomes, their
origin, and their overall number is related to the total number
of cilia in MCCs. In support of this possibility, species that
generate a smaller number of cilia in their MCCs (for instance,
zebrafish) or that do not have MCCs (for instance, inverte-
brates) do not have Deupl.

Multiciliation also occurs in some primitive plants such
as mosses, where numerous centrioles can be produced by a
structure called the blepharoplast (Mizukami and Gall, 1966;
Vaughn and Renzaglia, 2006). The blepharoplast is a hollow



sphere with initially radially arranged short centrioles along its
wall. As the sphere enlarges during spermatid differentiation,
centrioles elongate until the blepharoplast finally breaks up
and releases individual centrioles. The mechanisms leading to
the formation of this intriguing structure are slowly emerging
(Klink and Wolniak, 2003; Wolniak et al., 2015).

Finally, centrioles
can form de novo without any visible precursors. In cycling so-
matic vertebrate cells, the de novo pathway is silenced by resi-
dent centrosomes. It can be activated after resident centrioles
are destroyed by a laser beam or removed by microsurgery
(Khodjakov et al., 2002; La Terra et al., 2005; Uetake et al.,
2007). The de novo pathway in somatic human cells leads to the
formation of a random number of centrioles, which are scat-
tered in the cytoplasm (Fig. 2 B). The de novo pathway uses a
common P1k4/STIL/SAS-6/CPAP molecular cascade for centri-
ole biogenesis, raising the question of how cells with resident
centrioles normally suppress random centriole formation in
their cytoplasm (Rodrigues-Martins et al., 2007). A study by
Lopes et al. (2015) offered insight into this question. They
demonstrated that the activation of Plk4 requires dimerization
and trans-phosphorylation of its Thr172 residues, which occurs
only at higher P1k4 concentrations. P1k4 is naturally a low abun-
dant protein, and its cytosolic levels are not sufficient for Plk4
activation. Resident centrioles serving as Plk4 concentrators
allow Plk4 to achieve the levels necessary for its self-activation,
assuring that the new centrioles form only in association with
existing centrosomes. In support of this idea, a moderate Plk4
overexpression leads to the formation of additional daughters in
association with existing centrioles, whereas higher Plk4 over-
expression leads to de novo centriole formation (Kleylein-Sohn
et al., 2007; Lopes et al., 2015). Similarly, inhibition of Plk4
degradation leads to the formation of de novo centrioles in the
cytoplasm (Wang et al., 2011).

The de novo centriole pathway is naturally widely used by
a variety of organisms. During parthenogenesis (development
without fertilization) in some insects, centrioles are lost during
oogenesis but are formed after oocyte activation (Miki-Nou-
mura, 1977; Szollosi and Ozil, 1991; Riparbelli and Callaini,
2003; Manandhar et al., 2005). Centrioles form de novo after
parthenogenetic activation of sea urchin eggs (Kato and Sugi-
yama, 1971; Kallenbach and Mazia, 1982; Kallenbach, 1983)
or in early embryogenesis in species where both paternal and
maternal gametes lose centrioles during gametogenesis (Szol-
losi et al., 1972; Schatten, 1994; Courtois and Hiiragi, 2012a).
A mouse zygote is a classic illustration as it does not initially
contain centrioles and successfully divides without them. Then,
during the blastomere stage, centrioles form and continue to
duplicate by the canonical pathway thereafter (Gueth-Hallonet
et al., 1993; Courtois et al., 2012b). Furthermore, centrioles
form de novo in centriole-less cells of a Chlamydomonas re-
inhardtii mutant defective in centriole segregation (Marshall et
al., 2001). De novo formation of centrioles has been originally
documented in the amoeboflagellate Naegleria gruberi (Fulton
and Dingle, 1971). Naegleria is a free-living freshwater protist,
which reproduces and divides without centrioles when it is in its
amoeba state. However, if exposed to various nutritional and en-
vironmental changes Naegleria undergoes a rapid (within 1 h)
metamorphosis into a swimming flagellate (Fig. 2 C), forming
two centrioles and two flagella. In this system, the first cen-
triole forms de novo immediately followed by its duplication
(Fritz-Laylin et al., 2016).

Although these examples of naturally occurring de novo
centriole formation illustrate that de novo centriole formation
can be controlled to yield centrioles in the proper number, the
molecular mechanisms have remained enigmatic.

The requirement for centrosomes, centrioles, and cilia is spe-
cies- and tissue type—specific. Higher plants, yeasts, and amoe-
bas do not have centrioles, canonical centrosomes, or cilia.
Lower plants like mosses, ferns, cycads, and ginkgo make cen-
trioles only in the cells which yield flagellate sperms as referred
to previously (Renzaglia et al., 2000). All animals studied to
date build centrioles, centrosomes, and cilia except planarians
(flatworms), which have no centrosomes but have centrioles
and motile cilia in MCCs.

Recent studies have demonstrated that the loss of centri-
oles or centrosomes is variably tolerated. For instance, somatic
cells of fruit flies appear more tolerant to centrosome loss than
somatic vertebrate cells. Without centrosomes, divisions in
the fly occur slower and with defects, but compensatory cell
proliferation can still make up for the lost cells (Basto et al.,
2006; Rodrigues-Martins et al., 2008; Poulton et al., 2014).
Nevertheless, flies without centrioles are uncoordinated and
sterile because of the absence of sensory cilia and sperm and
ultimately die. Vertebrates seem to have pathways sensitive to
errors caused by the lack of centrosomes. In mouse and human
somatic cells, centrosome loss triggers 53BP1 and USP28-me-
diated pathways, which activate p53 and block cell prolifer-
ation (Fong et al., 2016; Lambrus et al., 2016; Meitinger et
al., 2016). Which types of errors are detected by 53BP1 and
USP28 pathways in acentrosomal cells are not known (Lam-
brus and Holland, 2017). Divisions in zebrafish and C. elegans
embryos as well as fly embryos and spermatocytes, however,
seem sensitive to the absence of centriole-mediated bipolar
spindle assembly (O’Connell et al., 2001; Yabe et al., 2007; Ro-
drigues-Martins et al., 2008).

In vertebrates, centrosome number and structure defects
can lead to disease. Numerical and structural centriole aberra-
tions can cause chromosome attachment and segregation errors
(Ganem et al., 2009; Silkworth et al., 2009) and alter the be-
havior of interphase cells by increasing their invading and mi-
grating capacity (Godinho and Pellman, 2014; Godinho et al.,
2014). Centrosome numerical and structural defects can also
perturb the formation and the function of cilia. Already in the
19th century, the German biologist Theodor Boveri suggested
a link between centrosome amplifications and cancer. This re-
mained a hypothesis until recently, when it became possible to
manipulate the centrosome number in flies and mice to demon-
strate that amplified centrosomes can both trigger and accelerate
tumor development (Basto et al., 2008; Coelho et al., 2015; Ku-
lukian et al., 2015; Vitre et al., 2015; Serg¢in et al., 2016; Levine
et al., 2017). Centrosome deregulation caused by mutations in
centrosome protein coding genes can also cause microceph-
aly, a neurological condition resulting in smaller-than-normal
brain size (Bettencourt-Dias et al., 2011; Chavali et al., 2014).
It has been proposed that microcephaly results from a decreased
pool of neural precursors as a result of abnormal asymmetric
divisions in the neural stem cells and/or abnormal mitotic di-
visions that lead to aneuploidy, death, and p53-mediated cell
cycle arrest. Microcephaly can also be induced by Zika virus.
Recent work shows that the Zika virus leads to centrosome
perturbations, abnormal spindle positioning, and premature
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differentiation of neural progenitors (Gabriel et al., 2017,
Wolf et al., 2017). Infection with other viruses such as onco-
gene human papilloma viruses increases centrosome number
(Korzeniewski et al., 2011). The causality in those relationships
is yet to be determined.

Conclusion

It is gradually becoming clear that different modes of centri-
ole formation observed across different organisms and differ-
ent cell types of the same organism are controlled variations
of the same centriole assembly blueprint. However, to fully
understand centriole functions and how centrioles contribute to
human diseases, it will be critical to understand the nuances of
the molecular pathways that operate in physiological cellular
contexts. Until then, because of the diversity in their number,
structure, and function, centrioles will rightfully remain a cen-
tral enigma in cell biology.
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