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Abstract

Environmental endocrine disruptors (EEDs) are often consequences of human activity; however, 

the effects of EEDs are not limited to humans. A primary focus over the past ~30 years has been 

on chemical EEDs, but the repercussions of non-chemical EEDs, such as artificial light at night 

(LAN), are of increasing interest. The sensitivity of the circadian system to light and the influence 

of circadian organization on overall physiology and behavior make the system a target for 

disruption with widespread effects. Indeed, there is increasing evidence for a role of LAN in 

human health, including disruption of circadian regulation and melatonin signaling, metabolic 

dysregulation, cancer risk, and disruption of other hormonally-driven systems. These effects are 

not limited to humans; domesticated animals as well as wildlife are also exposed to LAN, and at 

risk for disrupted circadian rhythms. Here, we review data that support the role of LAN as an 

endocrine disruptor in humans to be considered in treatments and lifestyle suggestions. We also 

present the effects of LAN in other animals, and discuss the potential for ecosystem-wide effects 

of artificial LAN. This can inform decisions in agricultural practices and urban lighting decisions 

to avoid unintended outcomes.
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1. Introduction

Industrialization and urbanization have been beneficial for the prosperity and health of 

people, but have also introduced novel threats to wildlife and humans. Environmental 

endocrine disruptors (EEDs), which alter hormone homeostasis often to the detriment of 

organisms, are one consequence of human activity. EEDs are a growing concern over the 

past ~30 years. Although primary focus has been directed to the effects of chemicals found 

in plasticizers, pharmaceuticals, and pesticides, non-chemical sources such as light at night 
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(LAN) can also interfere with the endocrine system. Low levels of LAN are nearly 

ubiquitous in the modern world [1,2]. Because evolution of life has occurred under dark 

nights over millions of years, and animals have only been exposed to artificial LAN for 

about 100 years, it is not surprising to discover that LAN likely perturbs circadian 

organization.

The daily light-dark cycles produced by the earth’s rotation are a central influence over 

organismal behavior. The most salient cyclic behavior is sleep, but many other behavioral 

and physiological processes follow a daily cyclic pattern as well. Daylight is essential for 

regulating daily activity patterns in many animals; some animals are active at night, while it 

is beneficial to be active during the day for others. In addition, core body temperature also 

follows a daily rhythm in endotherms [3]. Virtually all life has internalized the 

environmental light-dark cycles in the form of circadian rhythms. Circadian rhythms are 

endogenous biological rhythms with periods of about 24 h. Circadian rhythms persist in the 

absence of environmental cues [4]; however, organisms use environmental cues, such as 

light, to entrain their circadian rhythms precisely to the 24-hour solar day [5].

Entraining circadian rhythms to the solar day allows individuals to synchronize with 

environmental conditions and display appropriate behaviors and physiological responses. 

Endogenous circadian rhythms are present in virtually all living organisms, including 

bacteria, plants, invertebrates, and vertebrates. Again, light is the most effective entraining 

agent, or zeitgeber. In many vertebrates, light stimulates intrinsically photosensitive retinal 

ganglion cells, which depolarize and synapse directly onto neurons in the suprachiasmatic 

nucleus (SCN) of the hypothalamus. The master biological clock is located within the SCN 

where approximately 20,000 neurons maintain a transcriptional autoregualtory feedback 

loop. The molecular mechanism of the circadian clock has been reviewed in detail elsewhere 

[6]. This autoregulatory loop is the primary mechanism driving circadian rhythms; however, 

there is increasing evidence of additional processes, including posttranslational 

modifications [7] and cAMP signaling [8], that are also essential for maintenance. Time-of-

day information, based on light intensity, is then relayed from the SCN to other brain 

regions, as well as to peripheral tissues, stimulating appropriate responses.

In vertebrates, in addition to the molecular clock, circadian rhythmicity is also influenced by 

the nightly secretion of melatonin from the pineal gland. Light stimulates clock gene 

transcription in the SCN, which sends GABAergic inhibitory signals through the 

paraventricular nucleus (PVN) of the hypothalamus. These PVN neurons then send 

projections through the intermediolateral cell column (IML), which stimulates 

norepinephrine release from the superior cervical ganglion (SCG). Norepinephrine then 

activates melatonin synthesis and secretion from the pineal gland [9]. In this way, light has 

an inhibitory effect on melatonin secretion, and the onset of dark triggers melatonin 

secretion. Melatonin has a negative feedback effect on clock gene transcription in the SCN, 

and is important for circadian rhythmicity [10,11].

The circadian clock directly induces a cyclic hormonal rhythm in endocrine tissues. Human 

serum cortisol concentrations, and corticosterone in many other vertebrates, fluctuate daily, 

with the highest concentrations in the early morning, within 30–45 minutes of waking in 
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diurnal species [12,13]. Serum thyroid-stimulating hormone (TSH) follows a 24-hour 

profile, with a maximum between 0200 and 0400 h and a nadir between 1600 and 2000 h 

[14,15]. Furthermore, melatonin influences several endocrine pathways, including the stress 

and reproductive axes [16], and also signals to adipose tissue and influences body weight 

[17]. Many endocrine tissues are also innately cyclic via endogenous expression of clock 

genes. Therefore, disrupted circadian rhythms can have broad physiological outcomes 

through several pathways.

The circadian system is vulnerable to aberrant lighting outside the solar day due to its high 

sensitivity to light. Exposure to constant bright light can greatly disrupt or completely 

abolish circadian rhythms [18], but brief durations of bright light, or reduced light levels, are 

also disruptive. Just a brief pulse of light can transiently induce expression of Period 1 
(Per1), a core clock gene, and phase shift the molecular clock [19]. In Siberian hamsters, just 

one 30 minute pulse of light during the dark phase was sufficient to activate the neurons of 

the SCN [20]. Furthermore, very low levels of LAN are also capable of disrupting the clock. 

The rhythmic expression of three essential clock genes, Per1, Per2, and cryptochrome 2 
(Cry2) were attenuated by exposure to just 5 lux of light [21], a level ubiquitous in urban/

suburban areas. In addition, light differentially affects secretion of melatonin as a function of 

the time of day. In humans, peak melatonin secretion occurs between midnight and 0400 h, 

and exposure to light at night during this time inhibits melatonin secretion for the entire 

night [22,23]. Light at night, therefore, can be disruptive at multiple levels of circadian 

circuitry.

Whereas bright levels of light at night are experienced occasionally, low levels of light at 

night are fairly ubiquitous. Forty lux of light is the approximate level of light commonly 

emitted from electronic devices including cellular phones held approximately 30 cm from 

the face, and therefore is a common exposure level for humans. Five lux of light is 

approximately 5 times brighter than moonlight and is comparable to levels of light pollution 

around urban centers [2]; thus, 5 or more lux is a common level of exposure for humans and 

many other animals. Light can directly alter endocrine signaling from circadian 

dysregulation or disrupted or dampened melatonin production, or indirectly through 

inflammatory responses or elevated circulating stress hormones. We will discuss these 

mechanisms in relation to the consequences of LAN exposure below.

This review will describe many epidemiological and basic science studies investigating the 

role of LAN in circadian disruption and physiological outcomes. Epidemiological and 

clinical results refer to diurnal humans, whereas most basic science research is conducted in 

nocturnal rodents. Diurnal (day-active) and nocturnal (night-active) species’ locomotor 

activity profiles are opposite from one another, however, the underlying mechanisms of the 

molecular clock are highly conserved between diurnal and nocturnal species. The structural 

and molecular components of the SCN are similar; however, some downstream components 

of the system can vary between nocturnal and diurnal animals [24]. Importantly, the effects 

of light on entraining circadian rhythms, as well as the photic inhibition of melatonin, are 

highly similar between nocturnal and diurnal animals. In addition, many of the behavioral 

effects of circadian dysregulation are similar between diurnal and nocturnal rodents [25,26]. 

LAN often disrupts sleep in diurnal animals, and thus the resulting effects cannot be 
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attributed to circadian dysregulation independently from sleep disturbances. Therefore, 

using nocturnal animals in studies of LAN allows the isolation of the effects of circadian 

dysregulation in the absence of alterations in sleep.

2. Effects of Light at Night on Human Health

The broad endocrine effects that result from LAN exposure can have many physiological 

outcomes to human health. Most studies investigate the effects of LAN on disruption of 

metabolic processes, resulting in obesity or diabetes, and cancer incidence. Additionally, 

altered hormonal signaling from LAN can result in elevated stress and reproductive 

abnormalities. In this section we will discuss each of these physiological outcomes in 

relation to human health.

2.1 Obesity and Metabolic Disorders

Obesity has become an epidemic in our modern world, with global obesity rates in adults 

nearly double what they were in 1980. More than 2 in 3 adults and 1 in 6 children and 

adolescents are considered obese in the United States [27]. Obesity is a leading risk factor 

for type 2 diabetes, heart disease, high blood pressure, stroke, fatty liver disease, 

osteoarthritis, and some types of cancers. An estimate of the economic cost of obesity in the 

U.S. in 2008 was approximately $147 billion/year [28]. Thus, obesity is a major detriment to 

both human health and the economy.

A notable trend in night shift workers is an overall higher incidence of obesity [29] and 

metabolic syndrome compared with individuals who do not participate in night shift work. 

In a simulated study of night shift work in humans, more than one night of shift work 

reduced the total daily energy expenditure by ~3%, indicating metabolic dysregulation [30]. 

Furthermore, Danish nurses who work night shifts have a higher risk of diabetes compared 

with those working day shifts [31]. Activity during typical sleeping hours, and conversely 

sleeping during waking hours, presents an assortment of behavioral alterations that could 

lead to weight gain, including the time of day food is consumed, the type of food consumed, 

and changes in overall activity level. However, an additional factor of growing interest is the 

aberrant exposure to light during natural sleeping hours. A recent population-level study 

correlates global levels of LAN with obesity rates. In this model, LAN explains 70% of the 

variation in prevalence rates of overweight and obese individuals, while controlling for other 

lifestyle characteristics, such as food consumption [32]. In addition, a study investigating 

type 2 diabetes risk in night shift workers that separates early and late chronotypes, reported 

that individuals with a late chronotype had the highest diabetes risk when working daytime 

schedules, and conversely, individuals with an early chronotype had the highest risk when 

working night shifts [33]. These data support a role for circadian disruption in the metabolic 

dysregulation associated with shift work.

Animal models of shift work also support the idea that circadian misalignment contributes to 

metabolic dysregulation. Several rodent studies have been conducted to elaborate on LAN as 

a contributing factor in metabolic dysregulation. Mice exposed to lighting regimes 

mimicking shift work had impaired glucose tolerance [34]. Rats exposed to LAN also had 

impaired glucose tolerance, and the effect was time- intensity- and wavelength-dependent 
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[35]. A number of studies report increased overall body mass when exposed to dim light at 

night (dLAN) [36,37], and returning mice to dark nights reverses the effect [21]. Exposing 

mice to dLAN for just two weeks reduced energy expenditure and increased carbohydrate 

over fat oxidation, resulting in an overall increase in body mass. These mice simultaneously 

maintained similar activity levels and daily food intake as mice housed in dark nights [37], 

indicating altered metabolic function. In addition, mice exposed to dLAN shifted a portion 

of their normal nocturnal food intake to day-time. In this study, mice increased body mass 

despite equivalent caloric intake to mice experiencing dark nights [36]. Therefore, animal 

studies support epidemiological observations of LAN as a contributing component to weight 

gain and metabolic dysregulation in humans.

Behavioral changes in humans engaging in shift work that might lead to weight gain do not 

simultaneously explain the resulting metabolic dysregulation. Circadian dysregulation 

induces several physiological effects that could contribute to metabolic alterations. 

Continuous exposure to LAN disrupts circadian clock function in islet cells through 

impairment in the amplitude, phase, and inter-islet synchrony of clock transcriptional 

oscillations. This leads to diminished glucose-stimulated insulin secretion [38]. This could 

be one potential mechanism by which circadian dysregulation can predispose to islet failure 

in type 2 diabetes mellitus. Constant light is also a known stressor, increasing overall 

circulating glucocorticoids [39,40]. Chronic increases in circulating glucocorticoids can lead 

to weight gain. However, exposure to dim levels of LAN does not necessarily increase 

circulating glucocorticoids [41,21]; therefore, weight gain associated with exposure to 

dLAN is likely not the result of increased glucocorticoids. Exposure to LAN is also 

associated with an increase in inflammation [21], and inflammation and obesity have long 

been associated [42]. However, it is uncertain whether inflammation is the effector or, more 

likely, the response to obesity. Consequently, there must be another contributing factor to the 

changes in metabolism associated with LAN.

LAN suppresses melatonin levels [43], and therefore could contribute to metabolic 

alteration. Circulating melatonin drives daily rhythms of plasma leptin and modulates 

glucose homeostasis [44], demonstrating a role of melatonin in metabolic regulation. 

Melatonin supplementation improved the obesity phenotype in Zucker diabetic fatty rats 

[45,46], and decreased weight gain in response to a high fat diet in Sprague Dawley rats 

[47,48]. Furthermore, the sympathetic nervous system has principle control over white 

adipose tissue, and strongly influences lipolysis in mammals [49]. Melatonin receptors 

interact with sympathetic nervous system connectivity with white adipose tissue [50], 

presenting a potential mechanism for melatonin’s interaction with adiposity, however this 

concept remains unstudied. Photoperiodic Syrian hamsters in long-day conditions develop 

obesity, and this phenotype is completely reversed when the animals are exposed to short-

day conditions. The reversal of weight gain occurs in the absence of an initial decrease in 

food intake, and is instead attributed to an increase in energy expenditure [51]. Short day and 

long day phenotypes are heavily dependent on the duration of melatonin signaling. 

Therefore, the decrease in melatonin signaling resulting from exposure to LAN could be a 

mechanism for an increase in adiposity without an increase in caloric intake. In addition, in 

Wistar rats under normal dark night conditions, melatonin reduced weight gain. However, a 

caveat to this study was that this occurred without altering overall metabolic activity, and 
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was likely due instead to an increase in nocturnal activity [52]. Additionally, the strains of 

mice used in many studies of LAN and body weight produce very low levels of melatonin, 

while still showing metabolic dysregulation. Therefore, an alternative mechanism to blunted 

melatonin likely contributes to the metabolic effects seen with LAN exposure in mice.

The circadian system is also involved in metabolic regulation independent of melatonin 

rhythms. Several peripheral tissues involved in metabolic homeostasis have rhythmic 

expression of clock genes, and rhythmicity is disrupted with circadian dysregulation. 

Circadian disruption decreased rhythmic expression in all but one clock gene in the liver of 

mice exposed to dLAN [21], and in humans, circadian dysregulation altered clock gene 

expression in adipose tissue [53]. Clock-gene mutant mice have reduced insulin production, 

impaired glucose tolerance, and develop obesity [54]. In another study, disruption of either 

of two major clock genes, circadian locomotor output cycles kaput (Clock) or brain and 

muscle ARNT-like 1 (Bmal1) led to hypoinsulinemia and diabetes [55]. Within the past 20 

years, orexin neurons in the lateral hypothalamus were discovered, and they provide a 

critical link between circadian rhythms and metabolic homeostasis. Orexin promotes 

wakefulness and food-seeking behavior in animals in response to ghrelin signaling [56]. 

Orexin neuron activity maintains a circadian rhythm, with elevated activity during the night 

in nocturnal animals, and elevated activity during the daytime in diurnal animals [57]. 

Likewise, ghrelin, along with several other hormones involved in metabolic regulation, also 

display a circadian rhythm [58,59,60]. Orexin neurons are also influenced by the SCN via 

indirect pathways, and ablation of the SCN eliminates orexin rhythmicity [61]. 

Consequently, metabolic homeostasis is intimately tied with circadian rhythms via orexin 

signaling. Therefore, circadian disruption in the SCN is likely to alter orexin signaling, and 

thus alter hunger via resulting disruption of leptin/ghrelin homeostasis. This is a likely 

pathway contributing to metabolic dysregulation that results from circadian disruption.

2.2. Light at night in endocrine-related cancers

A link between exposure to light at night and cancer risk was first hypothesized in 1987 

[62]. In more recent years, shift work has been listed as a risk factor for cancer, and the 

incidence of cancer in shift workers has been the focus of numerous epidemiological studies. 

In a population-based study, the overall cancer risk was increased for prostate, colon, 

bladder, rectum, pancreas, and lung cancers among men who ever worked at night compared 

with men who never worked at night [63]. Women night shift workers have increased risk 

for ovarian, breast, squamous cell carcinoma, and malignant melanoma [64].

The increased risk of breast cancer in night shift workers has been of particular focus in 

epidemiological and rodent studies. Meta-analyses of epidemiological studies investigating 

breast cancer risk among women chronically exposed to LAN found an average increase of 

about 50% [65,66]. Nurses who had worked at least three nights per month had a 

significantly increased risk of breast cancer. This risk increased with the number of years 

spent working night shifts; risk was increased as much as 36% when shift work occurred 

over a 30 year period [67]. In another study in nurses, a significant increase in risk was 

discovered when women worked at least 6 consecutive night shifts per month in just 5 years 

[68]. This suggests a cumulative effect of shift work, where both an increase in consecutive 
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nights and duration over time are both contributing factors. In addition, global levels of 

lighting were compared with the regional incidence of breast cancer. Mean illumination 

levels at night from 164 countries were correlated with breast cancer rates, while also 

considering relevant socioeconomic data that could explain the variation in cancer rates. 

This study found a strong correlation between levels of light at night and breast cancer rates 

[69].

Studies correlating shift work with other types of cancers are limited. A 19% increase in risk 

for prostate cancer was reported in men who regularly worked full-time rotating shifts when 

compared with men who had never worked full-time rotating shifts [70]. In addition, a study 

conducted in Spain reports a 37% increased risk of prostate cancer in men who worked over 

28 years of shift work [71]. Likewise, an increased risk of prostate cancer was also reported 

in pilots and flight crews who engaged in transmeridian flights [72]. Women working 

rotating night shifts of at least three consecutive nights over 15 years had an increased risk 

of colorectal cancer, but a subsequent study indicates a short duration of sleep might be the 

contributing factor as opposed to light [73,74].

Animal studies that directly address light at night in cancer initiation are rare. Instead, 

available studies focus on the role of light or circadian dysregulation in tumor progression, 

and use xenografts or implanted cells. In addition, the majority of studies focus on circadian 

dysregulation by shifted light cycles, confounding the influence of light itself in 

tumorigenesis. Nevertheless, available studies indicate a direct role of light in cancer 

progression. Bright light intensities in rats with human breast cancer xenografts increased 

the rate of tumor progression [75]. Likewise, LAN had a positive effect on tumor growth-

rate in mice inoculated with 4T1 [76], and LAN slowed the effects of therapy in breast 

cancer [77].

The suppression of rhythmic melatonin seen with LAN exposure likely contributes to tumor-

progression. In 1978, Cohen and colleagues pointed out a role of the pineal gland in the 

etiology and treatment of breast cancer [78]. The inhibition of melatonin or pinealectomy 

has tumor-enhancing effects [79], and conversely administration of melatonin has tumor-

reducing effects [80,81,82]. Also, melatonin receptors MT1 and MT2 are present in human 

xenografts of breast cancer, further supporting the ability of melatonin to directly influence 

tumor cells [75].

Melatonin is also a strong anti-inflammatory agent, and accordingly, exposure to dLAN 

exaggerates inflammatory responses. Mice exposed to 4 weeks of dLAN increased body 

temperature and elevated pro-inflammatory cytokine expression in microglia following 

lipopolysaccharide (LPS) administration [83]. LPS acts as an endotoxin and elicits strong 

immune responses when administered to animals. Dim LAN also exacerbated the 

inflammatory phenotype, with elevated TNFα and MAC1 gene expression in white adipose 

tissue, present under high fat diet conditions [84]. Many humans in the developed world are 

already exposed to increased inflammation due to diets high in fats, and therefore light 

exposure at night could be compounding the inflammatory response. A relationship between 

inflammation and tumor progression is not a new concept. Several inflammatory proteins 

such as IL-1, IL-6, and inflammatory cytokines promote tumor progression [85,86,87]. 
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Therefore, the increased inflammation under artificial LAN could contribute to a tumor-

promoting environment.

In addition to its anti-inflammatory properties, melatonin also has anti-estrogenic effects. 

This is an important consideration in estrogen-dependent tumors such as breast cancer. 

Melatonin can interact with estrogen receptor α [75], leading to decreased signaling of 

estrogens. Conversely, suppressed melatonin can increase estrogen/progesterone signaling, 

and therefore suppressed melatonin promotes estrogen-dependent tumor growth by 

increasing signaling of estrogens. Epidemiological studies support suppressed melatonin’s 

role in tumor promotion. In one study, there was decreased melatonin and an increased 

estradiol concentration in women engaging in shift work [88]. In another study, there is a 

significant inverse relationship between plasma melatonin concentrations and estrogen-

receptor positive breast cancer [89]. Hence, increased e signaling of estrogens is a likely 

mechanism behind the role of dLAN and subsequent melatonin suppression in hormone-

dependent tumor progression.

Lastly, the oncostatic properties of LAN could arise from the direct regulation of the cell 

cycle by the circadian clock. In rodents, 7% of clock-controlled genes regulate cell 

proliferation or apoptosis that mediate responses to DNA damage [90]. Furthermore, specific 

transcription factors with a role in the cell cycle such as cyclin b1, cdc2 kinase, c-Myc, p53, 

caspases, and cyclins, are regulated by clock genes [91,92]. Mice with mutations in clock 

genes show an increase in tumor development [93]. Therefore, disruption of the circadian 

clock from LAN could directly affect the cell cycle, and thus cell proliferation and 

apoptosis, leading to tumorigenesis. The initiation and progression of cancer are thus likely 

caused by a combination of suppressed melatonin and direct disruption of the cell cycle.

2.3. Other Disorders of the Endocrine System

Metabolic disorders and cancer are the most well-studied health effects of circadian 

dysregulation. However, clock disruption is also associated with several other hormonal 

systems. Upregulation of estrogenic signaling via suppression of melatonin was discussed in 

relation to estrogen-dependent cancers, but the canonical role of estrogens in female 

reproduction is also pertinent. Circadian dysregulation has been linked with reproductive 

dysfunction and subfertility in humans. In fact the circadian clock system is integrated into 

all aspects of the female hypothalamus-pituitary-gonad axis of the endocrine system. The 

clock is necessary to regulate neuroendocrine control of pituitary hormone gene expression 

and secretion. The ovaries of vertebrates, from fish to mammals, display cyclic clock gene 

expression [94,95]. The mammalian ovary, throughout follicle development, is regulated by 

a number of biological rhythms. The core clock proteins BMAL1, CLOCK, CRY1, CRY2, 
PER1, and PER2 all exhibit daily cyclic expression throughout follicle development [95], 

and circadian timing is involved in ovarian steroid hormone biosynthesis and secretion, 

ovulation, implantation, and parturition.

In addition to circadian clock gene involvement, melatonin also plays a major role in female 

reproductive function. Many studies indicate normal cyclic activity of melatonin has a 

positive effect on female reproduction [96]. Melatonin is produced in granulosa cells, 

cumulus oophorous, and the oocyte, which all contribute melatonin to the follicular fluid. 
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Melatonin concentration in the follicular fluid is higher than in blood, and it acts to protect 

the oocyte from oxidative stress. There is a lack of studies that directly test the effects of 

light or circadian dysregulation on reproductive fitness. However, given the necessity of both 

rhythmic clock gene expression and cyclic melatonin in successful follicular development, 

light is likely to have negative consequences on reproduction.

The effect of LAN on the hypothalamus-pituitary-adrenal (HPA) axis depends on the 

exposure. Constant exposure to LAN activates the HPA axis, increasing blood glucocorticoid 

concentrations. Even short durations of bright light exposure at night can significantly 

increase glucocorticoids [39,40]. In humans an exposure to 40 lux of short wavelength light 

upon waking increased levels of cortisol [97]. Because cortisol is important for wakefulness, 

when timed properly, this could be beneficial. However, light presented earlier could 

inappropriately increase cortisol levels and increase arousal during sleep. In contrast, dim 

LAN (5 lux) does not increase circulating glucocorticoids in mice, and therefore effects seen 

with dLAN exposure such as weight gain and increased immune response are independent 

of increased glucocorticoids [21,36,41,98]. Thus, the level of the light is important in 

considering physiological outcomes.

3. Agricultural Implications of Light at Night

It is important recognize that although humans are the source of LAN, we are not the only 

recipients of its effects. Agricultural animals are often housed in rural settings, but the 

pervasiveness of light pollution does not exclude them from LAN exposure. Perhaps fertility 

could be improved in livestock and fisheries if dark nights are assured. Conversely, because 

data indicate LAN can induce an obese phenotype, exposure might assist in increasing the 

size of livestock animals via metabolic dysregulation. The growth system is an additional 

target of LAN not previously discussed in relation to human health. Growth factors (growth 

hormone (GH), insulin-dependent growth factor 1 (IGF1), and IGF1 receptor) in vertebrates 

display daily rhythms, and the response to growth hormone administration is dependent on 

the time of day. In teleost fish, the strongest effect from GH administration was observed 

when given at mid-darkness [99]. Administration of GH in the middle of the dark period 

significantly reduced pituitary GH and enhanced Igf1 expression in the liver. In addition, 

melatonin promotes bone growth [100], and suppressed melatonin and circadian rhythmicity 

could inhibit the growth axis. Therefore, the effects of LAN in agriculture could increase 

body weight due to metabolic dysregulation, but also could inhibit growth via the endocrine 

growth axis. An additional consideration is in developmental exposure to LAN. Although 

developmental research in this area is sparse, exposure to dLAN (3 lux) during development 

prevented increases in songbird mass [101]. Growth is extremely important during 

development and a strong indicator of overall health. LAN exposures could have different 

effects during development compared with adulthood. Further work is needed to parse out 

the effects of LAN specific to agricultural-relevant species. In addition to considerations in 

human health, the physiological effects of LAN could have implications on best practices in 

livestock and fisheries management.
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4. Ecological Consequences of Light at Night

Many wildlife populations tend to be away from urban centers. However, as made clear by 

the singing birds in the morning and the deer crossing signs on the highway, wildlife is also 

pervasive in urban/suburban settings, and therefore is also vulnerable to the effects of 

artificial lighting. Indeed, several studies indicate artificial LAN alters behavior and 

physiology in wild species. In great tits (Parus major), there is a strong dose-dependent 

effect of LAN, in which the onset of activity was increasingly advanced, and overall 

nighttime activity was increased with higher light intensities at night. In addition, increased 

intensities of LAN also decreased melatonin levels, suggesting artificial LAN disrupts 

normal day/night behavior via suppressed melatonin [102]. Additionally, while controlling 

for additional time of day cues, LAN remained positively correlated with corticosterone and 

negatively correlated with estrone levels in female blackbirds [103]. European blackbirds 

exposed to very low levels of LAN (0.3 lux), which is pervasive in urban, suburban, and 

even rural areas, exited their photorefractory period nearly one month earlier than birds 

exposed to dark nights [104]. These birds were monitored for a second year, and in the 

second year birds exposed to dLAN showed no sign of reproductive activity, suggesting that 

even low levels of LAN might suppress the signal to exit the seasonal photorefractory 

period. If this is the case, then dLAN has the potential to severely limit fitness in these 

animals. In both the previous study by Dominoni and colleagues, as well as a study 

conducted in Florida scrub-jays by Schoech and coauthors, birds in an urban/suburban 

habitat breed earlier than birds in their native habitat. This alone indicates circadian 

dysregulation from LAN plays a role in the early exit from photorefraction. In addition, male 

Florida scrub-jays exposed to LAN had a depressed concentration of luteinizing hormone 

(LH) and females had low testosterone concentrations. Estradiol levels were reduced in both 

sexes and the typical correlation between T and E2 levels was disrupted [105]. These studies 

strongly suggest disruption at each level of the HPG from exposure to LAN.

Whereas the majority of studies in wildlife species have been conducted in birds, studies 

indicate mammalian effects as well. The nocturnal mouse lemur (Microcebus murinus) was 

exposed to light that mimicked streetlight (~50 lux) at night for 5 weeks and compared with 

lemurs exposed to light simulating moonlight (0.3 lux). Lemurs exposed to LAN had 

significantly decreased urinary concentrations of 6-sulfatoxymelatonin [106], melatonin’s 

major urinary metabolite, which has previously been closely correlated with plasma 

melatonin levels in blood [107]. Lemurs exposed to LAN also increased testis size and 

plasma T concentration just 2 weeks after entering light treatment, indicating premature 

sexual recrudescence [106]. It remains unspecified whether non-laboratory mammals are 

also affected by exposure to LAN, and the repercussions to their overall fitness and the 

fitness of the ecosystem have not been determined.

An additional reproductive consideration in wildlife arises because many vertebrates are 

seasonal breeders, mating only during the spring and summer. Thus, individuals must 

calculate the optimal time to breed so spermatogenesis, territorial defense, migration, or any 

other time-consuming adaptations can be developed prior to the onset of the breeding 

season. Consequently, seasonally breeding vertebrate animals often must detect and respond 

to environmental cues that accurately signal, well in advance, the arrival or departure of 
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seasons favoring reproductive success. The annual changes in day length serve as a precise 

reference for the time of year, and the principal physiological mediator of day length is 

melatonin. To make appropriate physiological and behavioral modification necessary to 

initiate or terminate breeding at the correct time of year, animals must be able to discern 

long days from short days. Short durations of melatonin secretion signal long-days, and 

conversely, long durations of melatonin signal short days. Short days reverse the long-day 

obese phenotype in hamsters through an increase in energy expenditure [51]. LAN, through 

the suppression of melatonin signaling, could thus alter energy expenditure and reverse the 

appropriate weight-loss in short day conditions. Laboratory studies strongly suggest that 

exposure to dLAN is sufficient to block adaptive short-day responses [108] and 

desynchronize seasonal reproduction in wild mammals [109].

The effects to wildlife presented thus far have focused on disruption to endocrine systems. 

However, this is in no way an exhaustive account of the consequences of anthropogenic 

artificial LAN on wildlife populations. LAN can also alter behaviors in animals, which can 

reduce fitness both independently and in combination with adverse effects to physiology. In 

many urban and suburban areas, sky brightness resulting from urban sky glow is greater than 

nights with a full moon [2]. Because natural lunar cycles alone exert dramatic effects on 

predator-prey interactions, then artificial LAN could have equal, if not more dramatic 

changes on ecological dynamics. Indeed, artificial lighting exerts strong effects on foraging 

behavior and predation [110]. The precise mechanistic basis for such changes in foraging 

behaviors remains elusive, but foraging behavior is under neuroendocrine regulation through 

ghrelin signaling. Peripheral and central ghrelin induces food foraging, hoarding, and intake 

in Siberian hamsters [111,112]. An interaction between ghrelin and natural melatonin 

rhythms might contribute to these behavioral changes induced by LAN [113]. Melatonin 

regulates food intake in mammals [114], thus changes in melatonin and/or other 

physiological signals resulting from light exposure may alter foraging behavior.

As noted, LAN disrupts clock function, which leads to elevated body mass and body fat in 

laboratory animals [21]. Although gaining body fat with reduced foraging effort and food 

intake in response to light pollution may seem beneficial to free living animals, there seem 

to be significant potential fitness costs. Timing of food intake is shifted by exposure to just 5 

lux of light each night for 4 weeks, which could influence predator-prey dynamics in the 

wild. Predator-prey interactions are important determinants of many decisions made by 

animals, ranging from foraging behavior to mate choice [reviewed in 115,116]. It is well 

established that dynamics of predator-prey interactions change as a function of ambient light 

levels [117–119]. Independent of circadian regulation, light drives individuals to make 

activity decisions either directly by changing the risk of being seen by a predator (Predation 

Risk Hypothesis [115]) or indirectly by altering prey availability and thus changing the 

payoff of foraging during times of high illumination (Foraging Efficiency Hypothesis [118]). 

These ideas are not mutually exclusive; LAN has both direct and indirect effects [120]. 

Thus, changes in illumination levels affect not only the behaviors of predators, but also the 

behaviors of their prey, potentially resulting in large-scale ecosystem changes [121].

Migratory species are also influenced by light. The magnetic compass of migratory birds 

might be partially light-dependent. Retinal neurons that express cryptochromes have high 
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activity when night-migratory birds perform magnetic compass orientation [122]. 

Furthermore, many observations of birds being disoriented or entrapped by lighted structures 

at night have been reported [123,124,125]. Contrary to the mammalian effects of light at 

night, magnetic orientation in birds seems to be most disrupted by red wavelengths of light 

[126], and least affected by light in the blue/green spectrum. Disrupted migration in birds 

can lead to altered predator/prey interactions, altered reproduction, or mortality.

Invertebrates also are not exempt from the effects of artificial LAN. One study in moths 

indicates exposure to artificial LAN reduces sex pheromone production and also alters the 

chemical composition of the pheromones in females. This could make the females less 

attractive to the males and negatively impact reproduction [127]. Although the health of 

moths may not be of great concern to some, the repercussions to the ecosystem are poorly 

understood. Artificial LAN can also alter immigration/emigration through local regions 

based on either repulsion or attraction to light [128]. Combined with adverse effects to 

reproductive physiology, this alone could have great negative outcomes to reproductive 

fitness in wildlife, and further work is necessary to elucidate and limit effects of LAN on 

ecosystems.

5. Conclusions

We reviewed the evidence of endocrine disruption via exposure to LAN in human health, 

agriculture, and wildlife. The full spectrum of effects is still to be determined, but the 

consequences are increasingly apparent. Data on the effects of LAN on human health are on 

the rise, and can likely be applied in agricultural practices as well. Wildlife is not excluded 

from deleterious effects, and exposure to LAN likely provokes a fitness cost. Therefore, 

LAN should be considered in urban planning and choice of lighting options. With the 

evidence available, we can assert that LAN has endocrine disrupting properties, and the 

effects of LAN should be considered in human health, agriculture, and wildlife management.
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Highlights

• Artificial light at night disrupts endocrine signaling in humans and wildlife

• Effects of artificial light at night in humans could translate to agricultural 

livestock

• Artificial light at night is an environmental endocrine disruptor
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Figure 1. 
Approximate levels of light emission from common sources.
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Figure 2. 
Exposure to light at night interferes with several biological mechanisms and disrupts 

endocrine signaling.
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