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Abstract

Malaria remains a major burden on global health, with roughly 200 million cases worldwide and 

more than 400,000 deaths per year. Besides biomedical research and political efforts, modern 

information technology is playing a key role in many attempts at fighting the disease. One of the 

barriers toward a successful mortality reduction has been inadequate malaria diagnosis in 

particular. To improve diagnosis, image analysis software and machine learning methods have 

been used to quantify parasitemia in microscopic blood slides. This article gives an overview of 

these techniques and discusses the current developments in image analysis and machine learning 

for microscopic malaria diagnosis. We organize the different approaches published in the literature 

according to the techniques used for imaging, image preprocessing, parasite detection and cell 

segmentation, feature computation, and automatic cell classification. Readers will find the 

different techniques listed in tables, with the relevant articles cited next to them, for both thin and 

thick blood smear images. We also discussed the latest developments in sections devoted to deep 

learning and smartphone technology for future malaria diagnosis.

INTRODUCTION

Malaria is caused by protozoan parasites of the genus Plasmodium that are transmitted 

through the bites of infected female Anopheles mosquitoes and that infect the red blood 

cells. Most deaths occur among children in Africa, where a child dies almost every minute 

from malaria, and where malaria is a leading cause of childhood neuro-disability. According 

to the World Malaria Report 2016,1 an estimated 3.2 billion people in 95 countries and 

territories are at risk of being infected with malaria and developing disease, and 1.2 billion 

are at high risk (>1 in 1000 chance of getting malaria in a year). There were about 214 

million cases of malaria globally in 2016 and about 438,000 malaria deaths. The burden was 

heaviest in the African region, where an estimated 92%2 of all malaria deaths occurred, and 

in children aged under 5 years, who accounted for more than two thirds of all deaths (see 

also the malaria death rates from an earlier WHO report in Fig 1). Typical symptoms of 
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malaria include fever, fatigue, headaches, and, in severe cases, seizures and coma, leading to 

death.

Hundreds of millions of blood films are examined every year for malaria, which involves 

manual counting of parasites and infected red blood cells by a trained microscopist. 

Accurate parasite counts are essential not only for malaria diagnosis. They are also 

important for testing for drug-resistance, measuring drug-effectiveness, and classifying 

disease severity. However, microscopic diagnostics is not standardized and depends heavily 

on the experience and skill of the microscopist.1 It is common for microscopists in low-

resource settings to work in isolation, with no rigorous system in place that can ensure the 

maintenance of their skills and thus diagnostic quality.1 This leads to incorrect diagnostic 

decisions in the field.1 For false-negative cases, this leads to unnecessary use of antibiotics, a 

second consultation, lost days of work, and in some cases progression into severe malaria. 

For false-positive cases, a misdiagnosis entails unnecessary use of anti-malaria drugs and 

suffering from their potential side effects, such as nausea, abdominal pain, diarrhea, and 

sometimes severe complications.

This sober analysis of malaria diagnosis has prompted efforts to perform malaria diagnosis 

automatically. Automatic parasite counting has several advantages compared with manual 

counting: (1) it provides a more reliable and standardized interpretation of blood films, (2) it 

allows more patients to be served by reducing the workload of the malaria field workers, and 

(3) it can reduce diagnostic costs. Several key processing steps are typically required to 

quantify parasitemia automatically. First, digital blood slide images need to be acquired, 

which often requires preprocessing to normalize for lighting or staining variations. In a 

second step, blood cells or parasites need to be detected. For blood cells, this typically 

implies cell segmentation to identify individual cells in cell clumps to obtain accurate cell 

counts. In a third step, after cell detection and segmentation, features are computed to 

describe the typical visual appearance of infected and uninfected blood cells. In a final 

classification step, a classifier, who has been trained on an independent and typically 

manually annotated training set, then discriminates between infected and uninfected cells. 

Once the number of infected and uninfected cells is known, computation of parasitemia is a 

straightforward mathematical equation, which includes clinical parameters such as 

hematocrit value, for example.

The prospects of automating malaria diagnosis with its obvious advantages has attracted 

many researchers, especially in the last decade. The publications reflect all the major 

developments we have seen in the areas of automatic pattern recognition and machine 

learning in the last years. Our article will give an overview of the articles that have been 

published, using the processing steps mentioned above as a framework and guide. This is not 

the first survey article on the subject. In fact, several survey articles have already been 

published before, which bear testimony to both the importance of automated malaria 

diagnosis and the research dynamics and rapid system development. We refer readers in 

particular to the following surveys for additional information about the background of 

automatic malaria diagnosis and the image processing and machine learning methods used 

for automated microscopy diagnosis of malaria.3–5 In addition, more specific surveys have 

been published on cell features for malaria parasite detection,6 on malaria diagnosis,7 on 
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malaria diagnostic tools,8 and on alternatives to conventional microscopy.9 The purpose of 

our article is not to replace these surveys, but rather to complement them and to provide the 

latest update of the state of the art in image analysis and machine learning for malaria 

diagnosis as it presents itself at the end of the year 2017. With about 170 literature citations, 

we have collected more references compared with the other surveys. We had the goal to 

include also maybe lesser known publications to provide a historical documentation of the 

work done. In addition, we included a section on deep learning, which is the latest 

development in malaria diagnosis and which arguably has the potential to render many of the 

old approaches obsolete, similar to the development in other imaging application areas. 

There have also been many developments in hardware for automatic malaria diagnosis, 

which are however out of the scope of this article and deserve a separate article14,17,66,67,138. 

Nevertheless, we devote a section to rapid diagnostic tests (RDTs) for malaria diagnosis 

because they are also widely used in the field. The bulk of our articles have been collected 

from the Journal of Microscopy, Malaria Journal, and PLOS ONE, including a few articles 

from Nature and others. We have also collected publications from Institute of Electrical and 

Electronics Engineers (IEEE) conferences and other proceedings published by Springer and 

Elsevier. Furthermore, we have organized the articles into sections for preprocessing, cell 

detection and segmentation, feature computation, and classification. We have also added a 

separate section about deep learning and an extensive section about mobile smartphone 

applications for malaria diagnosis. A discussion of the latest developments and our 

conclusion mark the end of this article.

MALARIA

There are 5 Plasmodium species that cause malaria in human: Plasmodium falciparum, 
Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and Plasmodium knowlesi. 
The 2 most common species are P. falciparum and P. vivax. P. falciparum is the most severe 

form and is responsible for most malaria-related deaths globally.1

P. falciparum is the most prevalent malaria parasite in sub-Saharan Africa, accounting for 

99% of estimated malaria cases in 2016. Outside of Africa, P. vivax is the predominant 

parasite in the WHO Region of the Americas, representing 64% of malaria cases, and is 

above 30% in the WHO Southeast Asia and 40% in the Eastern Mediterranean regions.10

Each of these parasite species goes through stages during their development cycle (48 

hours), which gives the parasites a different visual appearance that can be observed under 

the microscope. In chronologic order, these stages are the ring stage, trophozoite stage, 

schizont stage, and gametocyte stage. Fig 2 shows typical examples of all stages for each 

species.

In nonsevere malaria, mostly the young stages (<24 hours old) of P. falciparum are present 

in the peripheral blood, whereas for severe malaria all stages can be present in the peripheral 

blood. For P. falciparum, the trophozoite-infected red blood cells disappear from the 

peripheral blood circulation by attachment to the walls of capillaries inside vital organs, 

which is a process called sequestration. If the capillaries are blocked for newly infected cells 
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by already attached cells, more mature parasite stages (trophozoites and schizonts) will be 

visible in the peripheral blood, which indicates a severe infection and a bad prognosis.

For P. falciparum, ring stages have a visible cytoplasm and 1 or 2 small chromatin dots. The 

infected blood cells are not enlarged but can feature multiple infections. P. falciparum 
trophozoites are rarely seen in peripheral blood smears. The cytoplasm of mature 

trophozoites tends to be more dense than younger rings, trophozoites can appear round in 

shape with brown malarial pigment inside, (Centers for Disease Control and Prevention 

(CDC)). P. falciparum schizonts are also seldomly seen in peripheral blood. They are 

displaying more than 2 and up to 32 nuclei (merozoites) with dark brown pigment clumped 

in the middle. Gametocytes of P. falciparum have a crescent or sausage shape, and can be 

seen in the blood smear 1 week after a parasite infection. The chromatin is visible as a single 

mass or is diffuse. For more information about P. falciparum morphology, see for example 

References11,12. Similar observations can be made for the stages of the other parasite 

species. For example, for P. vivax, host cells are often enlarged and have irregular shape. 

Trophozoites are amoeboid in shape with malaria pigment seen, and for severe infections 

multiple infections of single blood cells are not uncommon. For P. malariae, host cells are 

not enlarged. Trophozoites have a strong tendency to form a band with malarial pigment 

scattered along across the diameter of infected red blood cells. Multiple infections are 

extremely rare for P. malariae. On the other hand, for P. ovale, host cells are slightly enlarged 

and have an oval shape with tufted ends, often fimbriated. Parasites are slightly enlarged and 

trophozoites are amoeboid in shape with malarial pigment. Multiple infections of a single 

cell are more common than for P. vivax. For P. knowlesi, infected red blood cells do not 

appear enlarged. The parasite erythocytic cycle is only 24 hours, which is shorter than P. 
falciparum’s cycle (48 hours) and much shorter than P. malariae’s cycle (72 hours), which 

will lead to the same stage seen in peripheral blood every day at a given time. The 

morphology of P. knowlesi parasites is similar to P. malariae. Trophozoites can feature 

malarial pigment spread inside, band form may be seen like P. malariae, but their cytoplasm 

is more irregular, and multiple parasites infecting 1 single red blood cell can be seen like in 

P. falciparum.

Fig 3 shows 2 examples of different parasite stages in the same thin blood slide image. In the 

first slide image, P. falciparum trophozoites and gametocytes can be seen together with white 

blood cells. The latter are larger and have a pronounced nucleus compared with the many red 

blood cells in the image. In the second image, P. falciparum ring stages are together with 

schizonts. In addition, other objects such as parasite outside cells and staining noise are 

visible in both images. Staining noise in particular can be confused with parasites by an 

unexperienced microscopist.

MALARIA DIAGNOSIS

Malaria is a curable disease, with drugs available for treatment, including drugs that can help 

prevent malaria infections in travelers to malaria-prone regions. However, there exists no 

effective vaccine against malaria yet, although this is an area of active research and field 

studies. Once infected, malaria is a rapidly progressing disease, with a serious risk of 

developing into severe and cerebral malaria with neurologic symptoms for P. falciparum 
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infections. Therefore, a timely diagnosis of malaria is very important. Although malaria can 

be diagnosed in many different ways, there is room for improvement for current malaria 

diagnostic tests including reducing cost, increasing specificity, and improving ease of use. 

Because automated malaria diagnosis for resource-poor settings is the main topic of this 

survey, we have devoted 2 subsections to light microscopy and RDTs, which are by far the 2 

most heavily used diagnostic means in these areas. We also briefly discuss the other options 

for malaria diagnosis, although they are arguably less suited for the conditions in remote 

malaria regions. For more information about malaria diagnosis, we refer readers to the 

surveys in Ref 7 and 9 and the following references:8,13,14.

Detecting the presence of parasites is the key to malaria diagnosis. In addition, identifying 

the parasite species and presence of potentially mixed infections is important, as well as the 

observation of the stage development of P. falciparum parasites in relation to the severity of 

the disease. Counting parasites for determining the level of parasitemia is not only important 

for identifying an infection and measuring its severity, it also allows monitoring patients by 

measuring drug efficacy and potential drug resistance.

Light microscopy

The current gold-standard method for malaria diagnosis in the field is light microscopy of 

blood films, which is the main focus of this article. Although other forms of diagnosis exist 

and have become popular in recent years, in particular RDTs, microscopy remains the most 

popular diagnostic tool, especially in resource-poor settings. With microscopy, all parasite 

species can be detected. It allows computing the level of parasitemia, clearing a patient after 

a successful treatment, and monitoring drug resistance. Furthermore, it is less expensive than 

other methods and widely available. However, its biggest disadvantages are the extensive 

training required for a microscopist to become a proficient malaria slide reader, the high cost 

of training and employing, maintaining skills, and the large component of manual work 

involved.

To diagnose malaria under a microscope, a drop of the patient’s blood is applied to a glass 

slide, which is then immersed in a staining solution to make parasites more easily visible 

under a conventional light microscope, usually with a 100× oil objective. Two different types 

of blood smears are typically prepared for malaria diagnosis: thick and thin smears.15 A 

thick smear is used to detect the presence of parasites in a drop of blood. Thick smears allow 

a more efficient detection of parasites than thin smears, with an 11 times higher sensitivity.5 

On the other hand, thin smears, which are the result of spreading the drop of blood across 

the glass slide, have other advantages. They allow the examiner to identify malaria species 

and recognize parasite stages more easily.

The actual microscopic examination of a single blood slide, including quantitative parasite 

detection and species identification, takes a trained microscopist 15–30 minutes. 

Considering that hundreds of thousands of blood slides are manually inspected for malaria 

every year, this amounts to a huge economic effort required for malaria diagnosis.
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Rapid diagnostic tests

The main advantage of microscopic malaria diagnosis lies in its low direct cost, which gives 

it a distinct advantage in resource-poor settings.1 Other existing diagnostic methods, and any 

new method, have to prove that they can provide the same ease of use and price point as 

microscopy given the limited financial resources typically available in malaria-prone 

regions. Arguably the only and main competitor in this sense are RDTs. They detect 

evidence of malaria parasites (antigens) and take about 10–15 minutes to process. Their 

detection sensitivity is lower but comparable with manual microscopy, and they do not 

require any special equipment and require only minimal training.

Although RDTs are currently more expensive than microscopy in high-burden areas,16 a 

valid question is whether these tests can replace microscopy in the near future. At the time 

of this writing, according to WHO,1 more countries use microscopy more than they use 

RDTs.2 RDTs are used more in rural areas where microscopy is not available. About 47% of 

malaria tests in malaria endemic countries worldwide were made by RDT.2

The use of RDTs, however, does not eliminate the need for malaria microscopy. A major 

disadvantage is that RDTs do not provide quantification of the results. Therefore, at this 

point in time, microscopy and RDTs are more complementing each other than one replacing 

the other.

Other tests

Several methods for diagnosing malaria are available. Important criteria are cost per test, 

sensitivity and specificity of the method, time per test, and the required skill level of the 

user. Furthermore, quantification of the number of infected red blood cells is important as a 

prognostic indicator.17

• Polymerase chain reaction (PCR). A molecular method called PCR has shown 

higher sensitivity and specificity than conventional microscopic examination of 

stained peripheral blood smears.7 In fact, it is considered the most accurate 

among all tests. It can detect very low parasite concentrations in the blood and 

can differentiate species. However, PCR is a complex high-cost technology that 

takes many hours to process by trained staff. According to Tangpukdee et al.,7 

PCR is not routinely implemented in developing countries because of the 

complexity of the testing and the lack of resources to perform these tests 

adequately and routinely. Quality control and equipment maintenance are also 

essential for the PCR technique, so that it may not be suitable for malaria 

diagnosis in remote rural areas or even in routine clinical diagnostic settings.

• Fluorescent microscopy. Quantitative buffy coat is a laboratory test to detect 

infection with malaria or other blood parasites, using fluorescent microscopy. A 

fluorescent dye makes parasites visible under ultraviolet light. According to 

Adeoye and Nga,18 this test is more sensitive than the conventional thick smear. 

Nowadays, portable fluorescent microscopes with fluorescent reagent to label 

parasites, are available commercially. Although the quantitative buffy coat 

technique is simple, reliable, and user friendly, it requires specialized 
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instrumentation, is more costly than conventional light microscopy, and is poor at 

determining species and numbers of parasites.7

• Flow cytometry. This is a laser-based cell counting and detection method that 

allows to profile thousands of cells per second. Although flow cytometry offers 

automated parasitemia counts, this is offset by a rather low sensitivity. Flow 

cytometry is less suitable as a diagnostic technique in the field, when a direct 

answer is required for treatment decisions. However, in developed countries, it 

can be applied in the clinical setting for accurate counting of parasite numbers, 

for instance in the follow-up of drug treatment.19

STAINING METHODS

More than 100 years ago, Giemsas stain (1902) was applied for the first time for the 

diagnosis of malaria. Since then, it received increased attention. Because of its low cost, its 

high sensitivity, and specificity, it is currently widely used in microscopical malaria 

examinations.20 However, Giemsa staining requires multiple reagents, experienced personal, 

and is labor-intensive and time-consuming (it typically requires at least 45 minutes to stain a 

slide20).

Other stains have been used, too, like Field stain that significantly reduces the staining time, 

although it requires drying of samples before and during staining.21 However there are also 

disadvantages with Field’s stain, especially in under-resourced health centers in which the 

stain might be used. Poor blood preparations often result in the generation of artifacts 

commonly mistaken for malaria parasites, such as bacteria, fungi, stain precipitation, dirt, 

and cell debris. These can frequently cause false-positive readings.

Another stain is Leishman’s stain (1901), which has a high sensitivity, is cheap, and 

relatively easy to perform. Among the other stains being used is, for example, the Wright-

Giemsa stain, which is a combination of Wright and Giemsa stain, and where the former 

facilitates the differentiation of blood cell types.

In 1970s, Sodeman et al.22 investigated the effect of fluorochrome staining in identifying the 

malaria parasites at low-level infection. It has been shown that fluorochrome staining is 

more sensitive and less time-consuming than Romanowsky and Giemsa staining 

methods23–25 but requires considerable practice and training, and suffers from artifacts 

including photobleaching and phototoxicity.26,27 Moreover, fluorescence microscopes are 

more expensive than standard light microscopes, which is a factor in tropical resource-poor 

regions where malaria is endemic.22,24,28

Table I shows the blood smear types and staining techniques used for the approaches 

published in the literature. Clearly, the vast majority of publications has been for thin 

smears. Certainly, 1 reason for this lies in the fact that thin smears allow to determine the 

parasite species and stages more easily, in addition to the parasitemia. So, in some sense, 

thin smears are more versatile and contain more information. Another important reason is 

probably that the presence of red blood cells gives the problem of parasite detection more 

structure, and makes the problem easier to a certain degree, as parasites need to be detected 
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only inside cells. For thick films, parasite detection may be harder because of noise and 

staining artifacts that can lead to false positives. Nevertheless, because of the importance of 

thick smears for practical malaria diagnosis, it is very likely that more approaches for thick 

films will be implemented in the future. However, if convincing optical hardware solutions 

are found to scan multiple fields in thin smears and achieve a sensitivity comparable with 

thick smears, then this may be a moot point.44,142

Table I also shows that the majority of approaches, for both thin and thick smears, have 

adopted the most popular stain in practice, Giemsa. Although stains like Leishman provide 

very good results for malaria parasites, Giemsa stain has proved to be the best all-round stain 

for the routine diagnosis of malaria. It has the disadvantage of being relatively expensive, but 

this is outweighed by its stability over time and its consistent staining quality over a wide 

range of temperatures.

AUTOMATED DIAGNOSIS OF MALARIA

This section provides the core information of our survey, namely a compilation of references 

that should cover the vast majority of articles ever published on automated microscopy for 

malaria diagnosis, with the bulk of the articles published in the last 10 years. The work that 

has been done in this area is quite diverse. Nevertheless, a system for automated cell 

microscopy usually implements a sequence of key processing steps that can serve as a 

guideline. Therefore, each of the following subsections will focus on 1 specific aspect of the 

processing pipeline.

The first step is usually the acquisition of digital images of blood smears, which largely 

depends on the equipment and materials being use. The Image acquisition section breaks 

down the different approaches for the different types of microscopy, blood slides (thin or 

thick), and staining.

Following image acquisition, most systems perform one or several preprocessing methods to 

remove noise and to normalize lighting and color variations inherent in the image acquisition 

and staining process. The Preprocessing section sorts the publications according to the 

preprocessing methods implemented.

The next step usually involves the detection and segmentation (outlining) of individual blood 

cells and maybe other objects that can be visible in a blood slide image, such as parasites or 

platelets. The section titled Red blood cell detection and segmentation gives an overview of 

all the segmentation methods that have been used for microscopic malaria diagnosis.

For most articles, cell segmentation is followed by the computation of a set of features, 

which describe the visual appearance of the segmented objects in a mathematical succinct 

way. The section titled Feature extraction and selection presents the different features and 

potential feature selection strategies that can be found in the literature.

In the last step, a mathematical discrimination method that classifies the segmented objects 

into different classes based on the computed features is implemented. For example, labeling 

each red blood cell as either infected or uninfected is a key classification task performed in 
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this step, which then allows to compute the parasitemia. The section titled Parasite 

identification and labeling lists all the classification methods used in the literature for 

malaria diagnosis.

Later in the article, in the section titled Deep Learning, we will present references for the 

latest classification trend, deep learning, which skips the feature computation step and 

sometimes even the segmentation step. Furthermore, in the section titled Mobile Smatphones 

for Malaria Diagnosis, we will discuss how smartphones can be used for microscopic 

malaria diagnosis and list the systems that have already been implemented and published.

Image acquisition

Table II lists all published systems according to the type of microscopy used. Because light 

microscopy is the most common form of malaria diagnosis in resource-poor settings, where 

automation will also have the largest impact on health care and economy, it is not surprising 

that most authors implemented systems for standard microscopy. We have also added all 

other imaging techniques that we found in the literature and for which automated systems 

have been developed. For more detailed information about these approaches, we refer to the 

references listed in the table and the reference list at the end of this article.7–9,13,14,159

Preprocessing

Table III lists all preprocessing approaches that have been applied to automatic analysis of 

digital blood slide images.

Preprocessing is mainly applied to improve the quality of the image and to reduce variations 

in the images that would unnecessarily complicate the subsequent processing steps. Three 

key objectives can be identified: noise removal, contrast improvement, illumination and 

staining correction.

For noise removal, the most popular approaches have been well-established filters, such as 

mean and median filters, or Gaussian low-pass filtering. In addition, applying morphologic 

operations is very popular. For contrast improvement, contrast stretching techniques and 

histogram equalization in particular, have been the most popular approaches. For 

illumination and staining variations, color normalization techniques have been applied, 

including the popular use of grayscale colors.

Red blood cell detection and segmentation

Table IV shows the different segmentation techniques applied to thin smears. The vast 

majority of these techniques are thresholding techniques, such as Otsu thresholding in 

combination with morphologic operations. However, these techniques may not be 

dominating because of their superior performance compared with other methods, but rather 

because of their relative simplicity. Other methods include Hough transform, which makes 

assumptions about the blood cell shape, and unsupervised k-means pixel clustering. Cell 

segmentation needs to be accurate to compute the correct parasitemia. However, touching 

cells in particular complicate the identification and segmentation of individual cells. For this 

problem, methods like watershed and active contours have been applied.
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Table V shows the different segmentation techniques in the literature for thick smears. The 

segmentation situation for thick smears is different in that white blood cells and parasites 

need to be segmented. However, white blood cells are bigger than red blood cells and have 

more texture, which makes their segmentation much easier. Furthermore, white blood cells 

just need to be identified and not to be processed or classified further. In addition, parasites 

are very small and their reliable identification is most important. Therefore, the detection of 

these objects is practically more important than their segmentation, which may explain again 

the dominance of thresholding techniques and morphologic operations.

Feature extraction and selection

Table VI lists the different features used in the literature to describe the appearance of red 

blood cells, infected and uninfected, in thin smears. Obviously, because parasites have been 

stained, color features are most natural and indeed used by many articles. In addition, several 

texture and morphologic features have been used to describe the inside of red blood cells. 

The idea is that in case of infected cells, these features can pick up the typical appearance of 

ring structures with visible cytoplasm and other unique parasite characteristics. Generally 

speaking, most of the features used are tried and trusted features that have already been 

applied in other, often nonmedical, application domains. For example, Haralick’s texture 

features, local binary patterns, co-occurence matrices, histogram of gradients, and many 

others have been successfully used across a wide range of applications. This also includes 

morphologic shape features and moments.

Most notably, here is the use of different color spaces, which leads to sets of more malaria-

specific features, depending on the color space used. Although most articles remain in the 

standard RGB color space, we think that there is a perfectly good reason to use a different 

color space better suited to extract the typical staining colors, which often range from a blue 

or purple to brownish shade. The HSV color space is favored by many articles, and several 

other articles use the green channel of RGB to extract staining-related color information in 

gray scale.

Table VII shows the features used for thick smears. Because of the smaller number of 

publications for thick smears, a smaller number of features has been experimented with in 

the literature. Nevertheless, authors have used similar, if not identical, features compared 

with the ones used for thin smears, experimenting with established features as well as 

different color spaces.

Some articles compute a large set of many different features, and then for practicality 

reasons cut down on these features by selecting the most discriminative feature subset using 

feature selection strategies. Specifically, the feature selection techniques used to reduce 

feature dimensionality include principal component analysis, F-statistic, 1-way analysis of 

variance, information gain, and support vector machine-based recursive feature elimination.
98,111,112,114,116,119,125

However, such classical approaches to feature computation and selection run the serious 

danger of being superseded soon by techniques not relying on handcrafted features, such as 

deep learning in particular, which we will discuss in the section titled Deep Learning.
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Parasite identification and labeling

Table VIII lists all classification methods that have been used for either discriminating 

between infected and uninfected red blood cells in thin smears or identifying parasites in 

thick smears.

Virtually all classification methods popular in the last decade have been applied to malaria 

diagnosis, ranging from decision trees and basic artificial neural networks over support 

vector machines to random tree classifiers. Very few articles have developed classification 

technologies specifically for cell discrimination or parasite detection. Most of the malaria-

specific domain knowledge lies in the interplay of segmentation, features, and classification.

Comparing the performance of the published systems is very hard. The systems have been 

evaluated on blood slides from entirely different origins with largely varying parameters for 

image acquisition and slide preparation. Very often the evaluation set is too small or too 

limited to allow making a statement about the general system performance. Currently, there 

exists no publicly available image benchmark set, small or large, which could be used for 

fair comparisons of systems. Therefore, although many articles are reporting quite high 

performance numbers in terms of accuracy, sensitivity, specificity, and area under the 

receiver operating characteristic curve, we prefer not to compare these numbers in this 

survey article.

We can observe a trade-off between the processing pipeline’s run-time performance and its 

accuracy. Typically, as the accuracy of a technique increases, its computational complexity 

increases all the same. For example, sophisticated level-set methods for cell segmentation 

perform better than Otsu thresholding but also require a longer runtime. Furthermore, feature 

computation can affect system efficiency. Some articles therefore apply feature selection 

methods to reduce feature dimensionality and remove nondiscriminative features, which can 

improve both accuracy and efficiency. Finally, the runtime of cell classification depends on 

the classification architecture used. For example, a support vector machine’s classification is 

much faster than the classification by a deep neural network. Although many articles do not 

report runtimes for their systems, we think that most of the cited systems will perform their 

task many times faster than a microscopist, or at least will perform faster than a human after 

a little optimization of their implementation. We have also found 2 articles in which the 

authors developed dedicated hardware devices with motorized stage units to increase 

throughput.142,164

In combination with software, this will fully automate the slide screening process so that a 

microscopist does not need to move the microscope dish to take an image of the next field. 

This will also result in a higher throughput that can increase the sensitivity of the system by 

allowing to inspect more fields in the same time.

To improve system accuracy, there seems to be a trend to follow the mainstream 

classification method at the time of publication to take advantage of the latest classification 

architecture and performance improvements it brings. Consequently, we are now seeing the 

first deep learning articles entering the scene, as listed in the next section.
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DEEP LEARNING

Deep learning is the latest trend in machine learning, which has already boosted the 

performance in many nonmedical areas. Deep learning can be seen as an extension of the 

well-known multilayer neural network classifiers trained with back-propagation, except that 

many more layers are used. There are also different kind of layers that are used in typical 

successions. Deep learning typically requires large training sets. This is the reason why 

medical applications have been among the last applications to adopt deep learning, as 

annotated training images are significantly harder to obtain because of expert knowledge 

requirements and privacy concerns. The first article to apply deep learning to malaria 

diagnosis is by Liang et al.,51 who use a convolutional neural network to discriminate 

between infected and uninfected cells in thin blood smears, after applying a conventional 

level-set cell segmentation approach. This is an ideal application for deep learning because 

images of segmented red blood cells are a natural input for a convolutional neural network. 

Deep learning does not require the design of handcrafted features, which is one of its biggest 

advantages. Other authors who have applied deep learning to cell segmentation are Dong et 

al.124,170 and Gopakumar et al.,164 who used convolutional neural networks, Bibin et al.,52 

who used deep belief networks, and recently Hung et al.173 who presented and end-to-end 

framework using faster Region-based Convolutional Neural Network.

Because deep learning is the overarching machine learning technique nowadays, we can 

expect many more publications to appear soon for cell classification, cell staging, cell 

segmentation, and other sub-problems in automated malaria diagnosis.

MOBILE SMARTPHONES FOR MALARIA DIAGNOSIS

The ideal hardware solution for microscopic malaria diagnosis in resource-poor settings 

would be a small portable slide reader into which a blood slide could be inserted and which 

would then output the parasitemia. Although modern technology is heading this way, we are 

still far from having a field-usable device. In particular, the relatively high optical 

magnification needed (up to 1000×) for malaria diagnosis in combination with oil 

immersion is a major miniaturization obstacle, unless alternatives are found. The next best 

solution are small camera-equipped computing devices, such as smartphones, which can be 

attached to a magnifying device and can then compute the parasitemia automatically, using 

image analysis and machine learning. Modern smartphones have become powerful 

computing devices and their cameras provide sufficient resolution for malaria diagnosis. 

Moreover, Android phones have become relatively cheap and are often already in the 

possession of health-care workers, even in resource-poor settings. Although cellular network 

connectivity can help with the information exchange between field workers and hospital, it is 

not immediately needed for malaria diagnosis and the actual cell counting. Small 

magnifying devices that can be attached to a smartphone’s camera, allowing true optical 

magnification compared with mere digital zooming, are commercially available. However, 

from the authors’ experience, these devices are still lacking in the image quality provided. 

Therefore, a more practical approach is to simply attach the smartphone to the eyepiece of a 

regular microscope with an adapter so that blood slide pictures can be taken with the 

smartphone’s camera.
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A few experimental set-ups along these lines have been reported in the literature. In Ref 126 

Breslauer et al. built a mobile phone-mounted light microscope and demonstrated its 

potential for clinical use by imaging P. falciparum-infected and sickle red blood cells in 

brightfield and Mycobacterium tuberculosis-infected sputum samples in fluorescence with 

LED excitation. In all cases, resolution exceeded that necessary to detect blood cell and 

microorganism morphology. For tuberculosis samples, they took advantage of the digitized 

images to demonstrate automated bacillus counting via image analysis software.

In Ref 156 Pirnstill and Cote present a cost-effective, optical cellphone-based transmission 

polarized light microscope system for imaging the malaria pigment known as hemozoin, 

which is a disposal product of the parasite’s blood digestion. It can be difficult to determine 

the presence of the pigment from background and other artifacts, even for skilled 

microscopy technicians. The pigment is much easier to observe using polarized light 

microscopy. However, implementation of polarized light microscopy lacks widespread 

adoption because the existing commercial devices have complicated designs, require 

sophisticated maintenance, tend to be bulky, can be expensive, and would require re-training 

for existing microscopy technicians. The cellphone-based polarimetric microscopy design 

presented by Pirnstill and Cote shows the potential to have both the resolution and the 

specificity to detect malaria in a low-cost, easy-touse, modular platform.

Rosado et al. presented an image processing and analysis methodology using supervised 

classification to assess the presence of P. falciparum trophozoites and white blood cells in 

Giemsa-stained thick blood smears.136 Using a support vector machine and a mix of 

geometric, color, and texture features, their automatic detection of trophozoites achieved a 

sensitivity of 80.5% and a specificity of 93.8%, whereas their white blood cell detection 

achieved 98.2% sensitivity and 72.1% specificity.

In Ref 137 Quinn et al. presented their 3-dimensional printable design of an adapter to attach 

a smartphone to a microscope, although all images for their experiments were taken with a 

dedicated microscope camera, which offered a higher pixel resolution than their smartphone 

camera. They presented a workflow for automated analysis of thick blood smears, which 

involved the computation of morphologic and moment features and an ensemble tree 

classifier trained on these features to discriminate between abnormal patches containing 

parasites and normal patches. The performance they reported was 97% area under the 

receiver operating characteristic curve.

Skandarajah et al. built a custom mobile phone microscope that is compatible with phones 

from multiple manufacturers.123 They demonstrated that quantitative microscopy with 

micron-scale spatial resolution can be carried out with multiple phones and that image 

linearity, distortion, and color can be corrected as needed. Specifically, they showed that 

phones with greater than 5 megapixel cameras are capable of nearly diffraction-limited 

resolution over a broad range of magnifications, including those relevant for single cell 

imaging. Furthermore, they found that automatic focus, exposure, and color gain standard on 

mobile phones can degrade image resolution and reduce accuracy of color capture if 

uncorrected, and they devise procedures to avoid these barriers to quantitative imaging.
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Dallet et al. describe a mobile application platform for Android phones that can diagnose 

malaria from Giemsastained thin blood film images.54 The main imaging component 

consists of elaborate morphologic operations that can detect red and white blood cells, and 

identify parasites in the infected cells. The application also recognizes the different life 

stages of parasites and calculates the level of parasitemia. The application takes less than 60 

seconds to give a diagnosis, and has been tested and verified on several version and types of 

Android mobile phones and tablets.

The authors of this survey article have developed a smartphone application to compute 

parasitemia in Giemsastained thin blood film images.51,167,171 To segment individual red 

blood cells, we applied marker-controlled watershed to thin blood smears to efficiently 

detect and segment individual cells, separate touching cells, and meet the demand of real-

time processing. In the cell detection step, we apply a multiscale Laplacian of Gaussian filter 

on the green channel of an RGB color slide image. The local extrema of the Laplacian of 

Gaussian response indicate the approximate centroids of the individual cells that will serve 

as the approximate centroids for the marker-controlled watershed segmentation step. The 

cell foreground mask is estimated using Otsu thresholding, and cell edges are extracted by 

computing the gradient magnitude over the minimum values of the green and blue channels. 

Then, in the segmentation step, we apply watershed transform on cell markers, foreground 

masks, and edge information to segment and separate touching cells. For cell classification, 

we follow a deep learning approach and use a convolutional neural network for 

discriminating infected from uninfected cells.51,171

Cesario et al. discuss mobile support for vector-borne diseases in areas where specialist 

health care is scarce.93 They focus on the image analysis and classification component of a 

system that aims to reduce the chance of misdiagnosing less common diseases as malaria 

and to assist health professionals. Their article largely describes work in progress toward the 

image analysis and classification component, but feedback from healthcare professionals has 

been generally positive.

Herrera et al. tested the diagnostic performance of a device for automated interpretation of 

RDTs, which uses smartphone technology and image analysis software.138 The diagnostic 

performance of the device was comparable with visual interpretation of RDTs, without 

significant differences for P. falciparum and P. vivax. Providing standardized automated 

interpretation of RDTs in remote areas, in addition to almost real-time reporting of cases and 

enabling quality control, would greatly benefit large-scale implementation of RDT-based 

malaria diagnostic programs.

In similar work, Mudanyali et al. demonstrated a cellphone-based RDT reader platform that 

can work with various lateral flow immuno-chromatographic assays and similar tests.172 

Their compact and cost-effective digital RDT reader attaches to the existing camera unit of a 

cellphone, where RDTs can be inserted to be imaged. Captured raw images of these RDTs 

are then digitally processed through a software application running on the cellphone for 

validation of the RDT and for automated reading of its diagnostic result. In addition, this 

smart RDT reader platform running on cellphones provides real-time spatio-temporal 

statistics for the prevalence of various infectious diseases, which allows tracking epidemics.
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DISCUSSION

From the very different methods published during the last 10 years, we can see that there has 

been a lot of experimenting done to reach the current state of the art. However, despite the 

large number of publications, the performance numbers that have been published are very 

unsatisfying from a clinician’s point of view. It is actually very hard to quantify the current 

state of the art. Many of the articles just present performance numbers in terms of sensitivity 

and specificity for classification, representing only 1 operating point among many on a 

receiver operating characteristic, which would present a more complete evaluation of any 

method for different sensitivity requirements. Furthermore, the data used for evaluation have 

very often been simply too small to allow a convincing statement about a system’s 

performance. Many different training and test sets have been used to evaluate the proposed 

methods, but the lack of uniformity and standardization across all articles makes a fair 

comparison almost impossible. Extensive field studies on patient level or for tracking 

disease severity over time are needed to establish a baseline for standardized comparisons in 

the future.

A well-performing system will require the interplay of several factors, such as the 

characteristics of the microscope, the type of staining, the slide preparation, and the image 

analysis and machine learning software. However, no clear winners for each of these factors 

have emerged yet.

Nevertheless, progress has been made as can be seen by the natural development of methods 

used for image analysis and machine learning. In fact, this development has largely followed 

the development in other fields and has adopted major techniques and successfully applied 

them to malaria diagnosis. Many of these methods are general-purpose methods that are 

independent from the application domain. This being said, there has been a lot of fine-tuning 

of these methods to make them perform better for blood smear images, and more so for the 

image analysis methods than for machine learning. There is certainly the potential that some 

of these methods gain importance outside malaria diagnosis, in particular for preprocessing 

and for detecting and segmenting red blood cells in other applications.

For example, the filters used for preprocessing, as listed in Table III, are a good example of 

known methods applied to malaria diagnosis. The same holds for the detection and 

segmentation methods in Tables IV and V, with established methods like k-means clustering, 

Hough transform and active contour models, among others. Watershed in particular was a 

preferred technique to split touching cells. For feature computation, we can find the whole 

gamut of features used in other computer vision areas, ranging from the first Haralick 

features and chain codes to established and widely used local binary patterns and other 

texture measures. The same holds for the classification methods in Table VIII, which nicely 

reflect the historical development of classification methods over the last 10 years. We can 

see the older decision tree methods, followed by the then-popular Ada-boost classification 

strategy and support vector machines, culminating in the modern deep learning networks.
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CONCLUSION

We wrote this survey article on image analysis and machine learning methods to give an 

update on the latest development in automated malaria diagnosis with image analysis and 

machine learning. This is a very dynamic area of research that has seen an extensive number 

of publications in the last decade. However, with the advent of new deep learning 

approaches, which have already left a deep impression, the research is seeing a new exciting 

development that is nothing short of a revolution. So far, only a few articles have been 

published, but it is already evident that this will be the dominating technique in the 

foreseeable future. This will render many of the former classification approaches 

dispensable. Moreover, because deep learning takes the difficult task of designing features 

for classification from the user, many of the handcrafted features used so far may become 

useless. In addition, because deep learning can be used not only for cell classification but 

also for cell segmentation, many of the cell segmentation approaches presented so far could 

become outdated very soon. Even the preprocessing techniques, which play an important 

role, are not safe from this development. One way of thinking is that neural networks can 

learn how to process different staining and lighting variations if only enough training data 

are being presented to the network. Given the recent developments and future possibilities, 

there is in fact a good chance that most of the articles referenced in our and other surveys 

will become a mere historical side note very soon, describing the state of the art before the 

advent of deep learning. All of the deep learning articles published so far have concentrated 

on thin blood smears, but it is very likely that we will see articles for thick films very soon. 

Given the wide acceptance of deep learning, the importance of large annotated data image 

repositories for training is now widely understood, leading to a great support of data 

acquisition efforts. This will likely lead to larger test suites on patient level, allowing for 

more standardized evaluations and extensive field testing. Given these developments, 

automated microscopy is very much in the race toward a cheap, simple, and reliable method 

for diagnosing malaria.
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Abbreviations

GLRLM Gray Level Run Length Matrix

HoG Histogram of Gradient

HSV Hue Saturation Value

IEEE Institute of Electrical and Electronics Engineers

LBP Linear Binary Pattern

LED Light Emitting Diode
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NIH National Institute of Health

NLM National Library of Medicine

NM Nearest Mean

P Plasmodium

PCR Polymerase Chain Reaction

PLOS Public Library of Science

QFT Quaternion Fourier Transform

QPI Quantitative Phase Imaging

RDT Rapid Diagnostic Test

RGB Red Green Blue

RNA RiboNucleic Acid

SBFSEM Serial Block-Face Scanning Electron Microscopy

SEM Scanning Electron Microscope

SightDx Sight Diagnostics

SROFM Sub-pixel Resolving Optofluidic Microscope

SUSAN Smallest Univalue Segment Assimilating Nucleus

SVM Support Vector Machine

WHO World Health Organization
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Fig 1. 
Worldwide malaria death rates (Source: WHO World Malaria Report 2012).
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Fig 2. 
Five different human malaria Plasmodium species and their life stages in thin blood film 

(Source: K. Silamut and CDC).
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Fig 3. 
Parasite stages in a single thin blood smear.

Poostchi et al. Page 28

Transl Res. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Poostchi et al. Page 29

Table I

Blood smear types and staining methods for malaria diagnosis

Blood
smear

Staining

Thin Giemsa8,19,29–106

Leishman98,107–120

Leishman-Methylene blue121

Combination of DNA and RNA fluorescent122

Wright123–125

Fluorochrome13,22,24,25,28,126

Romanowsky23

Acridine orange (AO)17

DAPI/Mitotracker127

Toluidine blue14

Unstained128–131

Thick Giemsa8,55,132–143

Leishman98
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Table II

Malaria image acquisition

Imaging techniques

Light microscopy30–32,35–60,63–65,68–70,72–77,79–87,89,90,92,94,95,97–99,103–106,108–112,114,116–121,124,125,129,133,135–137,139–155

Binocolor microscopy71,91,100,101

Fluorescent microscopy13,22,24,25,28,126,127

Polarized microscopy156

Multi-spectral and multi-modal microscopy131,157

Image-based cytometer29

Sub-pixel resolving optofluidic microscopy (SROFM)14

Quantitative phase imaging (QPI)128

Quantitative cartridge-scanner system17

Scanning electron microscopy (SEM)130

Fiber array-based Raman imaging61,158

Serial block-face scanning electron microscopy (SBFSEM)62

SightDx digital imaging scanning66
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Table III

Image preprocessing techniques applied to enhance malaria blood smear images

Blood
smear

Challenges Preprocessing methods Remarks

Thin Noise reduction Mean filtering88,160

Median filtering29,31,34,36,39–42,45–48,63,65,71,73,87,103,108,114,116,117,119,147 Remove impulse noise and preserve 
edges

Geometric mean filtering112,161

Wiener filtering57

Gamma equalization147

SUSAN nonlinear filtering91,100

Gaussian low-pass filtering69,95,135

Nonlinear diffusion filtering58

Gamma transformation123

Interscale orthogonal wavelet-based thresholding162

Perona-Malik denoising model50

Morphological operations36,40,41,45,54,60,81,84,90,104,115,119,124,153 Remove unwanted small objects, 
hole filling, closing and opening

Low image contrast Laplacian filtering46,65,76 Edge detection

Adaptive/local histogram equalization46,47,50,64,68,82,87,133,135,163 Enhance image resolution

Forward discrete curvelet transform87

Contrast stretching techniques39,49,119,133,134 Contrast enhancement

Uneven illumination Low-pass filtering59,60,77,135 Remove high frequency components

Morphological top-hat operation60,90,104 Remove nonuniform illumination 
effects

Cell staining variation Linear model35

Color normalization85 Illumination correction

Gray world color normalization33,79,86,93,112,114,116,161 Normalization of image color profile

Thick Noise reduction Median filtering136,139

Contrast enhancement133,134

Gaussian low-pass filter61

Histogram Equalization61

Laplacian spatial filter142
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Table IV

Segmentation techniques for thin blood smears

Blood
smear

Segmentation techniques Remarks

Thin Otsu thresholding36,40,46–48,57,65,81,103,104,108,118–120,127,144,164 Calculates optimum threshold assuming that 
image contains bimodal histogram

(Adaptive) histogram thresholding29,35,42,44,50,53,71,75,89,96,107,124–126,128–130,139,150 Difficult to determine the thresholding value

Zack thresholding115 Triangle-based method particularly effective with 
a weak peak in the image histogram

Poisson distribution thresholding102 Finding a threshold that separates foreground and 
background using minimum error

Morphological operation32,34,37,38,41,43,45,60,63,74,84,85,87,90,101,135,160,165 Mathematical morphology operations including 
granulometry, opening, closing, etc.

Edge detection algorithm64,82,149 Works well for high-contrast images with sharp 
edges, false edge detections should be filtered out

Hough transform44,69,124,125,129,163 Requires red blood cells circular measures 
including radius, shape

K-means clustering39,49,83,166 Unsupervised learning technique that iteratively 
assigns pixels to K clusters using their feature 
descriptors

Watershed algorithm72,81,105,145,165 Extract continuous boundary regions but 
oversegmentation is the typical issue

Marker-controlled watershed108,111,112,114,116,130,161,164 Mostly applied to separate touching cells

Active contour models52,68,111,113,167 Level-set based approaches that ensures 
topological flexibility, computationally expensive

Rule-based segmentation64 Requires knowledge about cells shape, size, color, 
etc.

Fuzzy rule-based segmentation95 Building rules is not easy when uncertainty is high

Fuzzy divergence segmentation109,117

Neural network106 Requires discriminative and strong features to 
distinguish foreground and background pixels

Template matching35

Adaptive Gaussian mixture model distance transform73

Distance transform168

Ada-boost17

Look-up table77

Normalized-cut algorithms162 Computationally expensive
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Table V

Segmentation techniques for thick blood smears

Blood smear Segmentation techniques Remarks

Thick Otsu thresholding104,136 Calculates optimum threshold assuming that image contains 2 classes following 
bimodal histogram

Histogram threshold132,135,137,141–143 Difficult to determine the thresholding value, usually fused with other methods to 
improve performance

Morphological operations104 Mathematical morphology operations including granulometry, opening, closing, etc. are 
useful to characterize and represent blood cells circular shape, size, boundaries, 
skeletons, texture, gradient, etc.

Fuzzy C-means147
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Table VI

Feature computation for malaria parasite classification in thin blood smears6

Blood
smear

Features
type

Feature Remarks

Thin Color RGB14,23,29,30,40,44,45,59,60,63,72–75,77–79,81–84,93,95,97,103,106,114,120,123,126,131,141,150,154,162,167 Provide color information

HSV38,39,42,47,52,53,59,95,107,115,162

YCbCr160,162,166

LAB49,57,95

Intensity36,41,43,46,48,59,68,69,85,90,99,111,131,153

Color correlogram, color co-occurrence matrix35,79,93,119

Texture Haralick52,108,125 Characterize the overall 
shape and size of the 
erythrocyte without 
taking the density into 
account

Gray-level run length matrices (GLRLM)112,116,119,125

GLCM17,90,112,116,130

Local binary pattern (LBP)31,52,112,116,119

Fractal95,116,117,119

Wavelet transform141

Gradient texture30,40,76,105,141,164

Gray-level co-occurrence matrix52,90,101,117

Entropy88,94,112,116,124,169

SIFT31

Multiscale Laplacian of Gaussian and Gabor102

Morphologic Shape (area, perimeter, compactness ratio, eccentricity, bending energy, 
etc.)17,23,38,42,43,46,58,60,63,71,72,74,78,79,81,84,86,87,90,93,94,96,97,101,106,112,118,122,125,127,128,130,139, 143,144,153,161,168,169

Encodes the spatial 
distribution of the 
intensity in a particular 
regionMoments (zero, central, Hu)46,79,88,92,93,112,116,124,125,141,161

Area granulometry37,40,60,65,100,143,150
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Table VII

Feature computation for malaria parasite classification in thick blood smears6

Blood
smear

Features
type

Feature Remarks

Thick Color RGB136 Provide color information

HSV142

LAB98

Intensity132,135

Texture Haralick55 Characterize the overall shape and size of the erythrocyte without 
taking the density into account

Morphologic Shape (area, perimeter, compactness ratio, 
eccentricity, bending energy, etc.)55,136,137

Encodes the spatial distribution of the intensity in a particular region

Moment (zero, central, Hu)55,137
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Table VIII

Classification methods

Blood
smear

Classification methodology

Thin Unsupervised K-mean clustering68

Quaternion Fourier transform (QFT)56

Supervised Thresholding35,42,47,57,69,71,75,80,82,85,96,105,118

Bayesian classifier45,79,93,112,117,130

Annular ring ratio method43,54

Naive Bayes tree36,111,119,128

Logistic regression tree108,111,128,161

Linear programming155

Euclidean distance classifier102

K-nearest neighbors classifier40,49,60,77,79,128,144

Decision tree58,64,76,89,101,127

Template matching23,74

Ada-boost17,129

Nearest mean classifier (NM)128

Fuzzy interface system109

Normalized cross-correlation32

Support vector machine (SVM)29,31,46,49,59,65,81,112,117,122,125,136,149,165,167

Linear discriminant (LD)40,128

Crowd source games30

Neural network53,84,86,87,90,95,97,99,100,106,111,114,116,124,150,161,169

Deep learning51,52,124,164,170

Thick Unsupervised K-mean clustering98

Supervised Naive Bayes tree111

Randomized tree classifier137

Nearest mean classifier (NM)98

Thresholding132,139,142,143

Support vector machine (SVM)55,136

Neural network141

Genetic algorithm55
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