Table VIII.
Classification methods
Blood smear |
Classification methodology | |
---|---|---|
Thin | Unsupervised | K-mean clustering68 |
Quaternion Fourier transform (QFT)56 | ||
Supervised | Thresholding35,42,47,57,69,71,75,80,82,85,96,105,118 | |
Bayesian classifier45,79,93,112,117,130 | ||
Annular ring ratio method43,54 | ||
Naive Bayes tree36,111,119,128 | ||
Logistic regression tree108,111,128,161 | ||
Linear programming155 | ||
Euclidean distance classifier102 | ||
K-nearest neighbors classifier40,49,60,77,79,128,144 | ||
Decision tree58,64,76,89,101,127 | ||
Template matching23,74 | ||
Ada-boost17,129 | ||
Nearest mean classifier (NM)128 | ||
Fuzzy interface system109 | ||
Normalized cross-correlation32 | ||
Support vector machine (SVM)29,31,46,49,59,65,81,112,117,122,125,136,149,165,167 | ||
Linear discriminant (LD)40,128 | ||
Crowd source games30 | ||
Neural network53,84,86,87,90,95,97,99,100,106,111,114,116,124,150,161,169 | ||
Deep learning51,52,124,164,170 | ||
Thick | Unsupervised | K-mean clustering98 |
Supervised | Naive Bayes tree111 | |
Randomized tree classifier137 | ||
Nearest mean classifier (NM)98 | ||
Thresholding132,139,142,143 | ||
Support vector machine (SVM)55,136 | ||
Neural network141 | ||
Genetic algorithm55 |