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Abstract
Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers.

Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking.

Tumor tracking should be performed by controlling ‘‘importance recognition’’: the understanding that soft-tissue is an

important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that

uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the

devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as

important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image

segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an

error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95

on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of

25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor

contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated.

Keywords Tumor contouring � Markerless tumor tracking � Supervised deep learning � Image recognition �
Data augmentation � X-ray fluoroscopy

1 Introduction

Several motion-management techniques have been devel-

oped to irradiate targets that move due to respiratory

motion, such as lung and liver tumors. The first break-

through in this field was the respiratory-gating irradiation

method, which used a patient’s external respiratory signal

[1]. The second breakthrough was the development of a

real-time tumor-tracking method that uses X-ray fluo-

roscopy [2, 3]. This method can deliver accurate irradiation

because it directly detects fiducial markers implanted near

a tumor. However, this method has some problems: marker

implantation is invasive [4], markers produce metal arti-

facts on computed tomography (CT) images that result in

treatment-planning errors [5], and markers locally disturb

the dose profile by interacting with the treatment beam

[6, 7].

Many studies of the tumor-tracking method without

fiducial markers have been reported [8–24]. However, to

our knowledge, these methods are not often used in clinical

practice. This is because these methods are more prone to

mistracking compared to methods that use fiducial markers.

In many cases, the mistracking is caused by the projected

bone structures; bones are enhanced as obstacles in fluo-

roscopic images due to a high Z-dependence on the pho-

toelectronic effect, the primary interaction with kilovoltage

(kV) X-rays. Tracking methods that use bone-suppressed

fluoroscopic images have been reported recently [15–17].

These bone-suppressed images were generated using a

dual-energy fluoroscopy system [15, 16] or by a special
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software using an artificial neural network (ANN) [17].

Since this method suppressed the obstacle features in

images, improved tracking accuracy could be expected.

However, we believe that the bone-suppression method is

unnecessary for tumor tracking if other methods can

directly recognize important and unimportant features for

tracking, as that occurs in human image recognition. In

other words, we can achieve robust tumor tracking by

controlling computer object recognition of the tumor as

important and bone as unimportant. We define this as

‘‘importance recognition control’’.

Recently, deep learning has been advanced as a high-

performance technique for image recognition and image

segmentation [25–28]. This technique may enable mark-

erless tumor tracking with minimal mistracking due to

obstacles. Additionally, since the reported image segmen-

tation method can detect the object’s shape in images using

pixel-level classification [26, 28], it may achieve real-time

markerless tumor ‘‘contouring’’, unlike conventional sim-

ple tracking.

Deep learning is categorized as a data-driven opti-

mization method. Hence, an adequate training dataset

should be used to apply the method to real-time markerless

tumor contouring. In radiotherapy, three-dimensional (3D)

or four-dimensional (4D) CT imaging is conducted in

advance for treatment planning. The deep-learning training

should use these patient-specific CT data, because the data

contain the individual features of the tumor, surrounding

tissues, and bone structures. There is no reason to use other

patients’ data for training, unlike general medical appli-

cations such as computer-aided diagnosis (CAD). How-

ever, as deep learning requires at least several hundred

training data points [25–28], preparing a training dataset

from one specific patient has been difficult until now. For

example, only 10 digitally reconstructed radiographs

(DRRs) can be obtained from standard respiratory-phase

4D CT data. These training datasets are too small to meet

the requirements of effective deep learning. This difficulty

is the ‘‘data augmentation’’ problem in the research field of

deep learning.

Accordingly, to achieve markerless tumor contouring

using deep learning, we must determine how to control

importance recognition and how to increase the available

training data. Here, we briefly explain our new strategy to

solve those problems. Although a detailed understanding of

deep learning is difficult, the essence of deep learning in

image recognition can be regarded as the detection of

common features from a large number of images using co-

occurrence probability. For example, supervised deep

learning, the method used to train a dataset using both

training data and ground-truth data, detects some co-oc-

curring features between the two datasets. Here, it can be

hypothesized that different co-occurrence probabilities

induce different importance recognition. For example, if a

target feature in training images is located at the same

position of ground-truth features in supervised images, this

strong positional relationship may induce the recognition

that this feature is ‘‘important.’’ In contrast, if an obstacle is

located randomly at an incorrect position in a large number

of training images, this positional decorrelation between

training images and supervised images may induce the

recognition that this feature is ‘‘unimportant’’. In this

paper, we call this devised method the ‘‘random overlay

method.’’ This method can be applied for the markerless

tumor tracking because the feature of tumor as target and

that of bone structures as obstacles can be separated using

patient-specific 3D CT data obtained before treatment

planning. In addition, as treatment planning has already

been completed, the projected image of a gross tumor

volume (GTV) or a clinical tumor volume (CTV) may be

used as the supervised image for deep-learning training.

The random overlay method will also solve the data aug-

mentation problem because the method easily enlarges the

training images.

In this study, we propose a real-time tumor-contouring

method that uses deep learning to prevent mistracking

caused by obstacles. This method is based on the hypoth-

esis that a new random overlay method of data augmen-

tation induces the opposite importance recognition by deep

learning. The purpose of this study was to prove this

hypothesis and verify the accuracy of tumor contouring

with minimal mistracking caused by bone structures using

simulated X-ray fluoroscopic images.

2 Methods

2.1 Overview of workflow

This section focuses on the overall workflow and aims of

the method. The overall workflow of the proposed real-

time tumor-contouring method using deep learning with

importance recognition control is shown in Fig. 1.

First, we assume that a target and some surrounding

important objects can be separated from an obstacle. When

tracking a tumor, a soft-tissue DRR and a bone-structure

DRR were separately created by projecting patient-specific

3D CT data after selecting an appropriate threshold for the

CT value; details of the DRR and threshold will be pro-

vided in Sect. 2.3.2. Second, we generated a large number

of random overlaid images as training images for deep

learning from the soft-tissue and randomly arranged bone-

structure DRRs. This method can create the large number

of training images required for effective training of deep

learning from the 3D CT data of a single patient. Simul-

taneously, the projected tumor region was segmented as a
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region of interest (ROI) in supervised images. For example,

the projected GTV or CTV was appropriate in a segmented

region in clinical use. The mathematical expressions of a

pair of images are as follows:

Itraining x; yð Þ ¼ Isoft x; yð Þ þ Ibone xþ dx; yþ dy
� �

ð1Þ

Isupervised x; yð Þ ¼ 1 ðtargetÞ
0 ðothersÞ

�
; ð2Þ

where Isoft, Ibone, Itraining, and Isupervised are the soft-tissue

DRR, bone-structure DRR, training image, and supervised

image, respectively, dx and dy are random integers that

independently shift the bone-structure DRR in the x and

y directions, respectively.

Next, more than 1000 pairs of training and supervised

images were processed using a convolutional neural net-

work (CNN). The CNN could generate an individually

optimized classifier after deep-learning training. Finally,

from this classifier and a fluoroscopic image, we were able

to obtain an output image in which all pixels were classi-

fied as ‘‘tumor’’ or ‘‘not tumor,’’ as shown in Fig. 1. This

pixel classification was identical to the tumor contouring.

The tumor position was calculated as the centroid in this

output image.

As mentioned in the introduction, the purpose of the

random overlay method is to control importance recogni-

tion using different co-occurrence probability of features

between training images and supervised images. As the

tumor region in the training images was the same as the

ROI in the supervised images, a strong positional correla-

tion existed between them. However, no positional corre-

lation existed between the bone structures in the training

images and the ROIs in the supervised images of the ran-

dom overlay method. Thus, as deep-learning training pro-

ceeded, we could expect that this strong correlation, or the

absence of a correlation, automatically created different

levels of importance recognition for tracking.

2.2 Details of deep learning and image
segmentation

The CNN calculations in this study were performed using a

computer (Linux OS: Ubuntu 16.04; CPU: Xeon E5649,

Intel Corp., CA, USA; memory: 48 GB) with a dual

graphics processing unit (GPU; GeForce GTX 1080,

NVIDIA Corp., CA, USA) and the deep-learning frame-

works Caffe [25] and SegNet [26]. Although the main

applications of SegNet are object recognition and image

segmentation for self-driving cars, some medical applica-

tions of both SegNet and Caffe have been reported [27, 28].

The actual layer architecture of the CNN used in this study

is shown in Fig. 2.

The CNN was composed of four encode processes, four

decode processes, and a softmax layer. The total number of

layers was 30. The kernel size of the convolution layers

was 7 9 7. The pooling and upsampling amplitudes were

1/2 9 1/2 and 2 9 2, respectively. These parameters were

essentially the same as those described by Kendall [26].

The encode process executed extraction and abstraction of

the object features by reducing the image size, and the

decode process restored the image size. The final softmax

layer classified all pixels as ‘‘tumor’’ or ‘‘not tumor.’’ The

tumor region was identified in the output image as the

segmented region, as shown in Fig. 2.

2.3 Models

We evaluated the robustness and accuracy of our proposed

tumor-contouring method using the following geometric

and simulated fluoroscopy models.

Fig. 1 Overall workflow of the proposed tumor-contouring method. 3DCT three-dimensional computed tomography, 4DCT four-dimensional

CT, DRR digitally reconstructed radiograph, CNN convolutional neural network
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2.3.1 Geometric model

A preliminary validation test was performed to confirm that

this method could segment a target region accurately even

if the target was partially hidden by an obstacle. The

workflow of this validation was the same as the workflow

in Fig. 1; however, the training images, supervised images,

and test images were different.

Examples of the arrangement of objects are shown in

Fig. 3. In this geometric model, the image size and pixel

depth were 128 9 128 pixels and 8-bit, respectively. The

ellipses with a pixel value of 128 were substitutes for the

target tumor, and the bold lines with a pixel value of 0 were

substitutes for bone structure. The pixel value of other

areas was 255. The ellipse was shifted and rotated using a

sine-wave-like trajectory in the vertical (y axis) direction as

a simple simulation of tumor motion and deformation due

to respiration. The amplitude of the sine-wave-like motion

was 30 pixels, peak-to-peak. The obstacle bold line was

overlapped randomly on the ellipses and partially hid their

shape. The range of the random arrangement of the bold

line in both sides of the right and left frames was ± 50

pixels. Additionally, a circle with a pixel value of 64 was

placed randomly with a range of ± 50 pixels to create a

severe condition that induced mistracking. At the same

time, the supervised images were generated as binary

images, which indicated the region of the ellipse. In this

manner, the total combination of object arrangements in

the image was greater than 2 billion. We randomly gen-

erated 2300 pairs of model and supervised images. Next,

these pairs were separated into two groups to execute

cross-validation. The group consisting of the first 2000

pairs was used for training; a second group consisting of

the final 300 pairs was used for testing. As the total image

variation was in excess of 2 billion, there was very little

overlap between the training and test images.

To train this model using deep learning, the training

dataset consisting of 2000 pairs of images was processed

by the CNN. The CNN created an optimized classifier. To

examine the performance of this classifier, the 300 model

Fig. 2 CNN architecture of supervised deep learning. The CNN is composed of four encode and four decode processes. The total number of

layers is 30. CNN convolutional neural network, Conv convolution layer, BN batch normalization layer, ReLU activation function layer

Fig. 3 Five examples of training data. The training dataset consists of

pairs of a training image (upper) and a supervised image (lower). The

training images were created from a target (ellipse) and randomly

overlapped obstacles (bold line and circle). The supervised images

indicate the target position and shape
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images of the test dataset were individually entered into the

optimized classifier. Finally, the 300 output images that

indicated the target region were generated. These 300

output images were compared to the corresponding 300

supervised images that indicated the target’s actual location

and shape.

2.3.2 Simulated fluoroscopy model

The simulated fluoroscopy model was tested to validate the

proposed tumor-contouring method. The test was not per-

formed directly using clinical fluoroscopy because it is

currently very difficult to verify tumor contours in all

clinical fluoroscopy frames; thus, it is difficult to evaluate

the accuracy of the tumor contouring.

The workflow of this validation was the same as the

workflow illustrated in Fig. 1. We randomly selected the

3D CT data of four patients with lung cancer in different

sites (upper right, middle right, lower right, and lower left).

These individual 3D CT data were obtained using exhala-

tion gating by CT (Optima CT580W, General Electric

Company, Connecticut, USA) and a respiratory-gating

system (AZ-733V, Anzai Medical Co., Tokyo, Japan). The

original resolution and size of the CT images were

1.07 9 1.07 9 2.5 mm and 512 9 512 9 (patient-specific

slice number) in the left–right (LR), anterior–posterior

(AP), and superior–inferior (SI) directions, respectively. To

define bone structures as obstacles, we classified all pixels

of CT images into two groups according to a threshold of

200 Hounsfield units (HU). This threshold was selected

because in all patients, the CT values of ribs, which have

the lowest bone density, were greater than approximately

250 HU and the CT values of soft tissue including the

tumor were less than approximately 60 HU. The soft-tissue

and bone-structure DRRs were obtained individually by

separately accumulating these two groups of CT data in the

AP direction with bicubic interpolation. Next, a partial

image of the DRR was extracted to fit the imaging field of

the actual X-ray fluoroscope, which is approximately

300 9 300 mm. The final resolution and size of the DRRs

were 1.5 9 1.5 mm and 256 9 256 pixels, respectively.

We then prepared 2000 pairs of training and supervised

images of each patient. The training images were generated

by overlapping the randomly arranged bone-structure DRR

on the soft-tissue DRR. Examples of a pair of training and

supervised images are shown in Fig. 4. In this model,

tumor movement and deformation due to respiration were

simulated by expanding the soft-tissue DRR in the SI

direction to the fourth power of the sine of amplitude ai.
The mathematical expressions of the training image are as

follows:

Itraining x; yð Þ ¼ Isoft x; aiyð Þ þ 2 Ibone xþ dx; yþ dy
� �

ð3Þ

ai ¼ 1 = f1:1 þ 0:1 sin4ði=45Þg ð4Þ
�10 \ dx\10; �10 \ dy\10; ð5Þ

where i is the frame index. The pixel value of the bone-

structure DRR was doubled to increase the tracking diffi-

culty. The range of the random arrangement was ± 10

pixels, which corresponded to ± 15 mm in both image

directions. The final training images were normalized as

8-bit images. The supervised images were generated by

segmenting the tumor region as an ellipse from the respi-

ratory-expanded soft-tissue DRRs. Finally, we obtained the

individually and automatically optimized classifier after

deep learning training using the individual input dataset.

In the examination, we prepared 300 pairs of test and

supervised images for each patient. The test images were

the simulated fluoroscopic images generated using the

expanded soft-tissue and fixed bone-structure DRRs with-

out using the random overlay method. The mathematical

expression of test image Itest is as follows:

Itest x; yð Þ ¼ Isoft x; aiyð Þ þ 2 Ibone x; yð Þ ð6Þ

Here, the probability of a test image coinciding with a

training image was 1/400, because the range of random

bone arrangements in the training image was ± 10 pixels.

Thus, 99.7% of the test images and training images were

different. The supervised images were generated to learn

the true segmentations using the same method as the

training process. These 300 test images were processed by

the individually optimized classifier and output images

were generated.

2.4 Evaluation methods

The similarity between the segmented tumor regions in the

output images using the proposed method and the true

regions in the supervised images was calculated using the

Jaccard index J:

J ¼ S \ T

S [ T
; ð6Þ

where S is the segmented tumor region and T is the ‘‘true’’

region. The tumor positions identified by the proposed

method were calculated as the centroid of the segmented

tumor region in the output images. The tracking error was

calculated by comparing it with the ‘‘true’’ tumor position.

The correlation coefficient R between this tumor trajectory

and the ‘‘true’’ trajectory was also calculated.

The tracking error and correlation coefficient of the

trajectories were also calculated using the results of the

conventional template-matching method; the normalized
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cross-correlation (NCC) algorithm was used to compare its

accuracy with our proposed method. The template images

were manually selected as rectangular regions that included

the targets in the exhalation-phase images.

3 Results

3.1 Geometric model

The processing times of our method were 10 min for

training and 7 ms/frame for contouring and tracking. Five

sample images among 300 frames are shown in Fig. 5. The

contour lines of the target segmented using our method are

drawn in red, and the tracked positions of the template-

matching method are drawn as blue squares. The results of

the tracking trajectories of each method are shown in

Fig. 6a, and the tracking error and accuracy of segmenta-

tion using our method are shown in Fig. 6b. A statistical

summary of the tracking error, the correlation between the

tracked trajectory and the ground truth, and the similarity

between the segmented result and true value are listed in

Table 1.

The results of segmented images in Fig. 5 show that our

method could detect a nearly perfect shape of the ellipse

targets even if the targets were partially hidden by obsta-

cles. As summarized in Table 1, accurate segmentation

with a similarity of approximately 0.96 according to the

Jaccard index and accurate tracking within an error of

± 0.5 pixels were achieved. Thus, these results clearly

showed that the proposed target-contouring method pre-

vented mistracking caused by obstacles. The hypothesis

that the random overlay method controls importance

recognition was confirmed by these results.

3.2 Simulated fluoroscopy model

The processing times of our method were 90 min for

training and 25 ms/frame for contouring and tracking.

Sample images of the result at three respiration phases

(exhalation, inhalation, and middle) among 300 result

images for each patient are shown in Fig. 7. The red con-

tours show the results of the segmented tumor region using

Fig. 4 Five examples of training data for patient 4. The training

dataset consists of pairs of a training image (upper) and a supervised

image (lower). The training images were created from soft-tissue

DRR and randomly overlapped bone DRR. The supervised images

indicate the tumor position and shape

Fig. 5 Example of the tracking results for the geometric model. The red circles show the result of segmentation using the proposed method; the

blue squares show the target position tracked by the template-matching method
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our method. The green and blue squares show the results of

the template-matching method using the regular DRR

template (soft-tissue and bone) and the soft-tissue DRR

template, respectively. The tumor trajectories calculated by

each method are shown in the left side of Fig. 8, and the

tracking error and accuracy of segmentation according to

the Jaccard index are shown on the right. A statistical

summary of the tracking error, the correlation between the

calculated tumor trajectory by our method and the ground

truth, and the similarity between the segmented result and

the ground truth are listed in Table 2.

Figure 8 shows that, of the detected tumor trajectories,

conventional template-matching using the NCC algorithm

failed to detect the correct positions of the tumor with

simulated respiratory motion. In contrast, the proposed

method detected the tumor at approximately the same

position as the ground truth. From the statistical results in

Table 2, the tracking error of the proposed method was

approximately within 1 mm. The correlation coefficient

between the tracked and ground truth centroids was greater

than 0.998 in all cases. In addition, a high similarity of

approximately 0.95 according to the Jaccard index was

demonstrated between the segmented tumor region and the

ground truth. These results confirmed that the proposed

method was accurate and prevented mistracking caused by

bone structure.

4 Discussion

This report presents a real-time tumor-contouring method

that used deep learning to prevent mistracking. The novelty

is the data augmentation method; a random overlay method

was used to control differences in importance recognition.

This method is based on the hypothesis that different

positional correlations of features between training and

supervised images induce different importance recognition

in image recognition by deep learning. Using this method,

we can prepare a large number of training images and

conduct effective deep-learning training. Since training

images are completely associated with the patient, the

generated classifier by deep learning is also optimized for

that patient. Although a detailed understanding of how this

deep-learning method computes image segmentation is

difficult, the results prove four advantages of this method.

The first and most important advantage of this method is

the prevention mistracking caused by obstacles. Despite it

was difficult to track the tumor in the test image because

the enhanced bone structures were overlapped as obstacles,

our method achieved accurate tumor contouring of over

0.95 according to the Jaccard index, and accurate tumor

tracking with an error of approximately 1 mm. These

results prove clearly that our method prevents mistracking

caused by bone structures. This robustness can be achieved

by recognizing that bone features are unimportant for

tracking. Consequently, our hypothesis, that the different

positional correlation of features induces different impor-

tance recognition in deep learning, is justified. Compared

with other studies, the tracking accuracy within an error of

approximately 1 mm using our method is approximately

the same as or superior to bone-suppression methods

[15–17]. It is also comparable to other results of multi-

phase template-matching methods that subtract respiratory-

phase images to improve tumor-motion enhancement and

bone-feature suppression [10–12]. Additionally, our
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Fig. 6 a Centroid trajectory of the segmented region according to the

proposed method (bold line), and the trajectory of the center position

obtained using the template-matching method (dashed line). b The

tracking error (bold line) and Jaccard index (dashed line) according to

the proposed method

Table 1 Summary of the results of the geometric model

Proposed method Template matching

Error (pixel) - 0.01 ± 0.43 (SD) 0.13 ± 15.4 (SD)

Correlation 0.999 0.727

Jaccard Index 0.966 (0.906–0.994) –
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method will effectively minimize mistracking caused by

other obstacles, such as a treatment couch frame projected

onto fluoroscopic images at a non-zero projection angle

[21, 22].

The second advantage of this method is the prevention

mistracking due to low-visibility tumors. In previous tumor

tracking methods using multi-region template-matching

[13, 14], the tracked positions of a few manually selected,

clearer features compensated for the tracking uncertainty.

In contrast, our method does not require manual selection

of some features near the tumor. As all soft-tissue features

in training images have a strong positional correlation with

Fig. 7 Tracking results for simulated fluoroscopy. The red contours

show the segmented tumor region according to the proposed method.

The green and blue squares show the results of the template-matching

method using the regular DRR (soft-tissue ? bone) and the soft-

tissue DRR templates, respectively
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the ground truth in supervised images, following this

hypothesis, it is reasonable to consider that all soft-tissue

features are recognized as important. We can presume that

all soft-tissue features in the fluoroscopic image assist with

Fig. 8 The images on the left show the trajectories of the centroid of

the segmented region according to the proposed method (bold line),

and the trajectories of the center position according to the template-

matching method using the regular DRR template (normal line) and

the soft-tissue DRR template (dashed line). The images on the right

show the tracking error (bold line) and the Jaccard index (dashed line)

according to the proposed method

Table 2 Summary of the results of the virtual fluoroscopy model

Method Patient 1 Patient 2 Patient 3 Patient 4

Proposed method Error (mm) 0.87 ± 1.2 0.56 ± 0.42 - 0.35 ± 0.70 - 0.01 ± 0.22

Correlation 0.998 0.999 0.999 0.999

Jaccard Index 0.950 (0.907–0.978) 0.982 (0.975–0.990) 0.949 (0.872–0.986) 0.988 (0.954–1.000)

Template matching

(soft)

Error (mm) - 13 ± 9.0 55 ± 30 - 12 ± 11 6.0 ± 9.1

Correlation 0.910 - 0.800 0.703 0.790

Template matching

(soft ? bone)

Error (mm) - 18 ± 19 - 6.1 ± 12 - 0.69 ± 13 - 13 ± 14

Correlation 0.090 - 0.969 - 0.078 - 0.339

Error (mm) was converted according to the relationship 1.5 mm = 1 pixel
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image segmentation. Indeed, in spite of the low-visibility

tumors in Patients 2 and 3, our results demonstrated

accurate contouring. In Patient 1, the worst tracking result

was observed during inhalation. It is believed that the

diaphragm extended outside the image and disappeared

during inhalation. This was caused by inadequate simula-

tions that placed the tumor and diaphragm near the edge of

the virtual fluoroscopy image. However, this unfavorable

result was evidence that our proposed method identified the

tumor region using not only the tumor features, but also

features of the surrounding structures. These facts

strengthen the evidence in support of our hypothesis.

The third advantage of the proposed method is that it

provides tumor contouring. Although many studies have

examined tumor tracking and not tumor contouring

[10–22], our method can provide tumor contouring because

the CNN performs pixel-level classification. Our method

has a strong advantage because tumor contouring will lead

to real-time adaptive radiotherapy. Currently, we can

compare our results only with those of Zhang [23], who

tracked tumor boundaries. The similarity of our results,

which were approximately 0.95 according to the Jaccard

index, are comparable to those of Zhang’s method [23].

However, a detailed comparison is difficult because the test

models are different.

The fourth advantage of the proposed method is real-

time processing. The short processing time necessary for

tumor contouring, approximately 25 ms/frame, is superior

to the 500 ms/frame reported by Zhang [23]. Here, we

define ‘‘real time’’ as the achievement of a short processing

time of 33 or 66 ms, corresponding to a specification of 30

or 15 frames/s in general X-ray fluoroscopy. The duration

of a typical pulsed X-ray irradiation in a fluoroscopy sys-

tem is less than 4 ms as reported by Shirato [2]. Thus, it

seems reasonable that our method, with a 25-ms processing

time, will achieve real-time processing of 30 frames/s

although additional processes, such as data transfer

between the fluoroscopy system and the computer, require

less than 4 ms.

We understand that our results were obtained from

preliminary simulated fluoroscopic images, and we must

validate this method using real clinical fluoroscopy. The

anticipated primary difficulty is the different image quali-

ties between the DRRs and the clinical fluoroscopy images.

However, we expect that this problem can be solved by

improving the DRR quality to be similar to the quality of

clinical fluoroscopy images, or by creating a wide contrast

variation in the training images for the input dataset of

deep learning. We consider that this proposed method is

valuable in principle and is a breakthrough in markerless

tumor tracking.

5 Conclusions

We have proposed a real-time, markerless, tumor-con-

touring method using deep learning to prevent mistracking

caused by bone structures on X-ray fluoroscopy. The

novelty of our method is the combination of the devised

random overlay method and supervised deep learning. The

expected effect of the method was to induce importance

recognition for tracking: the understanding that soft-tissue

features are important and bone is unimportant. From the

results of the simulated fluoroscopy model, high-speed and

accurate tumor contouring can be achieved even if a low-

visibility tumor and a strong bone structure are visible on

fluoroscopy. Therefore, the successful effects of this

method of real-time tumor contouring have been proven.

Further studies to validate the effectiveness of this pro-

posed method in clinical fluoroscopy are essential.
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