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Abstract

Tikhonov regularization is the most commonly used method for extracting distance distributions 

from experimental double electron-electron resonance (DEER) spectroscopy data. This method 

requires the selection of a regularization parameter, α, and a regularization operator, L. We 

analyze the performance of a large set of α selection methods and several regularization operators, 

using a test set of over half a million synthetic noisy DEER traces. These are generated from 

distance distributions obtained from in silico double labeling of a protein crystal structure of T4 

lysozyme with the spin label MTSSL. We compare the methods and operators based on their 

ability to recover the model distance distributions from the noisy time traces. The results indicate 

that several α selection methods perform quite well, among them the Akaike information criterion 

and the generalized cross validation with either the first- or second-derivative operator. They 

perform significantly better than currently utilized L-curve methods.
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1. Introduction

Double electron-electron resonance (DEER) spectroscopy, also called pulsed electron-

electron double resonance (PELDOR) spectroscopy, measures the magnetic dipolar coupling 

between two or more paramagnetic centers, such as spin labels attached to proteins [1–3]. 

DEER data analysis usually involves the removal of a background signal followed by a 

transformation of the oscillatory time-domain signal into a distance-domain probability 

distribution function describing the distances between nearby paramagnetic centers (1.5-10 

nm).

There exist several different approaches for extracting distance distributions from DEER 

data: Tikhonov regularization [4–7], Gaussian mixture models [8–10], Tikhonov 

regularization post-processed with Gaussians [11, 12], Tikhonov regularization combined 

with maximum entropy [13], Bayesian inference (based upon Tikhonov regularization) [14], 

regularization by limiting the number of points in the distance domain [15], wavelet 

denoising [16], truncated singular-value decomposition [6, 17], and neural networks [18]. 

Among them, Tikhonov regularization is the most widely employed method.

In this paper, we are concerned with the determination of optimal settings for Tikhonov 

regularization. This involves the choice of a regularization operator L and of a value for the 

regularization parameter α. An optimal choice of L and α ensures good distance distribution 

recovery and prevents overfitting the data; a bad choice causes poor recovery and either 

under- or overfitting to the data. There are several operators to choose from, and many 

methods are available for selecting α, each based on a defensible rationale. However, they 

vary greatly both in terms of theoretical justification and empirical track record. Therefore, 

the selection of the method/operator combination ought to be based on a thorough 

comparison of their performance for a practically relevant benchmark set of data analysis 

problems.

Tikhonov regularization was introduced to NMR for de-Pake-ing [19], for the extraction of 

internuclear distances from dipolar time-domain signals such as those from REDOR [20], 

for the determination of orientational distributions from 2H NMR data [21, 22], and 

relaxation rate distributions [23, 24]. These approaches used the self-consistent method for 

selecting α, as introduced and implemented in the program FTIKREG [25, 26]. In the 

context of extracting distance distributions from DEER data, Tikhonov regularization was 

initally mentioned in 2002 [27, 28], and first applications appeared in 2004 [4, 5]. In these 

papers, the regularization parameter was selected manually or using FTIKREG. A thorough 

paper examining Tikhonov regularization and introducing the use of the L-curve maximum-

curvature criterion appeared in 2005 [6]. A different L-curve method, the minimum-radius 

criterion, was introduced in 2006 in the program DeerAnalysis [7] and is used in its current 

release (2016).

Despite the long history and the widespread use of Tikhonov regularization for DEER data 

analysis, there has been no systematic assessment and efficiency comparison of 

regularization operators and regularization parameter selection methods. This is what we 

present here. We evaluate a large number of regularization parameter selection methods and 
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three regularization operators with respect to their performance against a large set of 

synthetic DEER time-domain data derived from model distributions obtained by in silico 
spin labeling of a PDB crystal stucture of T4 lysozyme. We examine and compare all 

methods by their efficiency in recovering the underlying model distributions. The results 

indicate that the performance of the methods varies significantly, and that there are methods 

that perform better than the currently employed L-curve α selection methods.

The paper is structured as follows. Section 2 summarizes the principles of Tikhonov 

regularization for DEER and introduces the necessary notation. Section 3 explains the 

construction and characteristics of the large test set of distance distributions and associated 

synthetic DEER time-domain traces. Section 4 describes the assessment methodology. 

Section 5 presents the results and discusses benefits and drawbacks of various methods in 

light of these results. The paper ends with recommendations regarding the preferred 

methods. Mathematical details of the various regularization parameter selection methods are 

listed in the Appendix.

2. DEER and Tikhonov regularization

DEER measures the electron spin echo intensity V as a function of the position in time of 

one or more pump pulses, t. For dilute samples of doubly-labelled proteins or complexes, V 
is a product of an overall amplitude, V0, a modulation function due to intra-complex 

coupling, F, and a background modulation function due to the interaction between spins on 

different complexes, B:

(1)

λ is the modulation depth parameter related to the excitation efficiency of the DEER 

experiment. When utilizing Tikhonov regularization, a background model is typically fitted 

to V(t)/V0 and divided out, yielding the isolated intra-complex modulation function S(t) 
after scaling by λ. S(t) is normalized such that S(0) = 1 in the noise-free limit.

In the absence of orientation selection, exchange coupling, differential relaxation, and multi-

spin effects, S(t) is related to the distance distribution between the two spins on the complex, 

P(r), by

(2)

where

(3)

and . P(r) integrates to one: .
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When S is discretized as an nt-element vector with elements Si = S(ti), and P as an nr-

element vector with elements Pi = P(ri), the integral transformation from P to S is 

represented by the matrix-vector multiplication

(4)

where K is the nt × nr kernel matrix. Its elements are Kij = K(ti, rj) · Δr, with the distance 

increment Δr. Usually, nr is set equal to nt.

The matrix K is close to singular, and the calculation of the inverse of KTK—needed to 

obtain P from S in an ordinary least-squares fitting procedure—is very inaccurate. To enable 

the solution, Tikhonov regularization is used:

(5)

This is a form of penalized least-squares fitting. The first term is the least-squares term 

capturing the misfit between the model KP and the data S. The second term penalizes for 

unwanted properties of the solution P and depends on a specific form for the regularization 

operator L and a specific value for the regularization parameter α. The fit is constrained by 

the requirement that all elements of P be non-negative (P ≥ 0). The subscripts in PαL 

indicate that the solution depends on the particular choices of α and L.

L defines the criterion by which P should be penalized. Physically reasonable distance 

distributions between spin labels on proteins are smooth on a tenths-of-nanometer scale. 

Three L choices are possible that all encourage smoothness and penalize roughness of P, in 

one sense or another. The second derivative, represented by the (nr−2) × nr second-order 

difference matrix

(6)

penalizes sharp turns in the distribution, which arise from sharp peaks. The first derivative, 

represented by the (nr − 1) × nr first-order difference matrix

(7)
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penalizes steep slopes, which are also associated with sharp peaks. Note that the matrices 

defined in Eqs. (6) and (7) do not contain Δr. Lastly, the nr × nr identity matrix L0 = I can be 

used. It penalizes tall peaks, which tend to be narrow due to the overall normalization of P.

The value of α determines the balance between the two terms in Eq. (5). Large α values lead 

to oversmoothing of P and a poor fit to the time-domain data S, while small α values lead to 

unrealistically spiky distributions (undersmoothing) and overfitting of the data. Therefore, a 

proper choice of α is essential. A large number of α selection methods are described in the 

literature, and we include many of them in our performance analysis. They are described in 

the Appendix.

The optimal values of both α and L, αopt and Lopt, are the ones which together best recover 

the underlying true distribution P0, i.e. the ones for which the model recovery error (mre), 

defined as

(8)

is minimal. For synthetic data, as used in this study, this error and thereby αopt and Lopt can 

be determined, since P0 is given. However, in experimental practice P0 is not known, and 

one has to resort to other methods to choose a form for L and a value for α.

3. The test set

In order to test α selection methods and regularization operators on DEER data from 

practically relevant distance distributions, we numerically generated a large set of synthetic 

noisy DEER time-domain signals based on a crystal structure of T4 lysozyme (PDB ID 

2LZM, 1.7 Å resolution); its structure is shown in Fig. 1. We use this protein since it is 

currently one of the most thoroughly investigated proteins by DEER and other EPR 

techniques [29–37] and is of a size commensurate with the typical DEER distance range of 

1.5 to 6 nm. We in silico labeled the 2LZM protein structure with the nitroxide spin label 

MTSSL which is to date, by a wide margin, the most commonly used label for DEER. In 

this section, we detail the construction of the test set.

3.1 Construction of model distributions

Using scripts based on MMM 2017.1 [38–40] with the default 216-member rotamer library 

R1A_298K_UFF_216_r1_CASD for MTSSL at ambient temperature, we calculated rotamer 

distributions for all 164 sites on the protein. For each site, this yielded co-ordinates of the 

mid-points of the N-O bonds of all 216 rotamers and their associated populations, as well as 

the site partition function. In order to keep the test set realistic, we eliminated all sites with 

low predicted labelling probability (partition function smaller than 0.05), leaving 129 sites. 

These sites are indicated in Fig. 1.

For each of the resulting 8256 site pairs, we calculated the associated model distance 

distribution, consisting of a sum of Gaussian lineshapes, with centers corresponding to the 

inter-rotamer distances, intensities corresponding to the products of the respective 
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populations, and with a uniform full width at half maximum (FWHM) of 0.15 nm to account 

for structural heterogeneity around the energy minimum of each rotamer due to librational 

motion [38]. Each distribution was discretized with a high resolution of Δr = 0.005 nm, 

corresponding to 1/30 of the FWHM. To keep the test set experimentally realistic, we 

discarded all distributions with more than 5% integrated population below 1.7 nm. This 

guarantees that there is no population below 1.5 nm. Site pairs with population at such short 

distances are always avoided in experimental studies in order to avoid potential distortions 

due to exchange coupling and incomplete excitation.

This procedure resulted in a set of 5622 model distance distributions. Their properties are 

summarized in Fig. 2. The distribution modes (location of the distribution maxima) range 

from 1.7 to 6.1 nm, and the inter-quartile ranges (iqr; range of central 50% integrated 

population) are between 0.09 and 1.1 nm wide. Long, short, narrow, wide, unimodal, 

multimodal, symmetric, and skewed distributions are all well-represented in the test set. 

Skewness is relatively evenly distributed across both the mode and iqr. The number of 

significant peaks is evenly distributed across modal distance, but there is a positive 

correlation between iqr and number of peaks. Fig. 3 shows several representative example 

distributions.

An alternative strategy of constructing a test set would be to generate completely artificial 

distributions without reference to a protein where the center, width, multi-modality, and 

skewness is varied either systematically or randomly. However, such a test set will be less 

experimentally relevant. Figure 2 shows that the structure-based test set used here covers a 

sufficiently diverse range of distribution centers, widths, and shapes.

3.2 Generation of time-domain traces

Each model distribution was used to generate a set of time-domain traces S with varying 

maximum evolution times tmax, time increments Δt, noise levels σ, and noise realizations, 

subject to the constraints that: (1) each S must be long enough to permit accurate recovery of 

the longest distances in the corresponding P, and (2) that the sampling rate must be high 

enough to recover the shortest distances. The starting time for all time traces was set to tmin 

= 0. We used multiple values of tmax and Δt for each model distribution in order to be able to 

assess whether or not any α selection methods display uneven performance with respect to 

these parameters.

To choose a set of appropriate tmax for a given distribution, we take as an upper limit tmm = 

3T⊥,95, where T⊥,95 is the period corresponding to the perpendicular-orientation dipolar 

frequency of the 95-percentile distance, i.e., T⊥,95 = (r95/nm)3/(52 MHz). The factor 3 

prolongs the time in order to completely capture the long-distance tail of the distribution, 

which has the lowest frequencies. With this, we choose the set of tmax according to the 

following procedure: if tmm > 6.4 μs, then tmax is 6.4 and 3.2 μs; if 3.2 μs < tmm < 6.4 μs, 

then tmax is 3.2 and 1.6 μs; if 1.6 μs < tmm < 3.2 μs, then tmax is 1.6 and 0.8 μs; if 0.8 μs < 

tmm < 1.6 μs, then tmax is 0.8 μs; and if tmm < 0.8 μs, then tmax is 0.4 μs. Figure 4 shows an 

example distribution for which tmm = 2.36 μs, hence tmax is 1.6 and 0.8 μs. Note that even 

the shorter tmax value of 0.8 μs is long enough to accommodate a full oscillation of period 

T⊥,95 = 0.786 μs.
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To find a reasonable set of time increments Δt for each distribution, we first determined the 

longest allowable increment, Δtmax, that correctly samples all frequencies in the signal. This 

is dictated by the highest dipolar frequency in the time-domain signal, which corresponds to 

the shortest distance in the distribution. We use the period T‖,05 of the parallel-orientation 

dipolar frequency corresponding to the 5-percentile distance. According to the Nyquist 

theorem, Δtmax must be less than T‖,05/2 to avoid frequency aliasing. To capture the short-

distance tail of the distribution and to obtain enough time-domain points to achieve 

reasonable distance resolution in the Tikhonov fits in all cases, we chose Δtmax = T‖,05/6. 

This resulted in values from 8 ns to 280 ns. Δtmax now guides the choice of Δt: If Δtmax > 

200 ns, then Δt is 50, 100, and 200 ns; if 100 ns < Δtmax < 200 ns, then Δt is 20, 50, and 100 

ns; if 50 ns < Δtmax < 100 ns, then Δt is 10, 20, and 50 ns; if 20 ns < Δtmax < 50 ns, then Δt is 

10 and 20 ns; if 10 ns < Δtmax < 20 ns, then Δt is 10 ns; and if Δtmax < 10 ns, then Δt is 5 ns. 

For the example distribution in Fig. 4, Δtmax = T‖,05/6 = 31.3 ns, so Δt was set to 10 and 20 

ns.

To generate the noise-free time trace for a particular combination of tmin, tmax, and Δt (with 

nt = 33, 41, 65, 81, 129, 161, 321, or 641 points), we used in Eq. (4) the high-resolution 

model distribution (n0 = 1341 points) and generated the nt-element time trace using an nt × 

n0 kernel matrix. Therefore, the model distributions used for this forward modeling have a 

higher resolution than the ones obtained via Tikhonov regularization (Eq. (5)) of the 

simulated noisy data, with nr = nt. This avoids circular reasoning and committing the 

“inverse crime” [41, 42]. Fig. 4 shows the synthetic time-domain traces resulting from the 

above rules for an example distribution.

The combinations of Δt, tmin, and tmax resulted in a total of 20701 noise-free time-domain 

traces with between 33 and 641 points. A few traces with fewer than 33 points were thrown 

out, since such short traces are not acquired in practice.

Finally, we generated 30 noisy traces from each noise-free trace. We utilized uncorrelated 

Gaussian noise [14] with standard deviations σ = 0.02, 0.05, and 0.1. These noise levels span 

the range typically obtained experimentally for proteins. In experimental settings, the 

background removal step typically increases the magnitude of the noise at the end of the S(t) 
trace relative to the start. This effect is more pronounced for steeper background functions 

and can be negligible for shallower ones. We did not attempt to simulate this characteristic 

of the data. For each noise level, m = 10 noise realizations were generated using a random-

number generator. For reproducibility, seeds for the random-number generator are stored as 

part of the test set.

Altogether, with these selections for tmax, Δt, σ, and m, the 5622 model distributions P0 

resulted in 621030 noisy time-domain traces S. These constitute the final test data set.

4. Performance evaluation

For each of the traces in the test set, we use 60 different variants of α selection methods to 

determine an appropriate regularization parameter value αsel and the associated Tikhonov 

solution. Mathematical details of the methods are given in the Appendix. Each method is 
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referred to via a short acronym, which is listed in Table 1. We evaluate each α selection 

method for each of the three regularization operators L (identity, first derivative, and second 

derivative). Thus, we examine Tikhonov regularization along both its degrees of freedom (L 
and α), with a total of 180 approaches.

Each method determines α by minimizing or thresholding some cost function over α. To 

search for these points, we use an α range from 10−3 to 103 with 61 points on a logarithmic 

scale, i.e. 10 points per decade (1 dB increments). All methods require the data S as input 

and need to calculate PαL over the entire α range for each L. For this, PαL can be 

determined with or without the constraint P ≥ 0 in Eq. (5), and we test both variants in all 

cases. Several methods require knowledge of the time-domain noise standard deviation, σ. 

The cost functions of a few methods are equipped with a tuning or scaling parameter that 

can be adjusted to increase stability.

The analysis procedure also requires the choice of a distance range and resolution for PαL. 

We use a range of 1.0 nm to 7.0 nm for all cases. These limits encompass the full ranges of 

all model distributions in the test set. The number of points in the distance domain, nr, is 

determined separately for each case and is set equal to the number of points in the time-

domain trace, nt.

Since the goal of analyzing the time-domain data is to reveal the underlying model 

distribution, we base our performance evaluation of the various selection methods not on α 
(which is a nuisance parameter whose numerical value is physically irrelevant), but on the 

model recovery error defined in Eq. (8). It quantifies how close the calculated Tikhonov 

solution, PαL, for a given α and L is to the model distribution P0. This error is generally 

non-zero, since noise in the data and the fundamental ill-posedness of the problem prevent 

full recovery of the model from the data, no matter which α and L are used. As the actual 

performance measure, we use the inefficiency [43]

(9)

with . This measure relates the model 

recovery error for a given L and the particular α value chosen by a selection method to the 

smallest possible model recovery error, obtainable with αopt and Lopt. This error, and the 

associated optimal solution Popt are found by minimizing the mre as a function of α and L. 

The inefficiency equals 1 when PαL = Popt and is greater otherwise. The closer the 

inefficiency is to 1, the better the method.

5. Results and discussion

5.1 Histograms

Figure 5 shows an overview of the calculated inefficiencies for all 621030 time traces, 60 α 
selection methods, and three regularization operators. Each histogram shows the distribution 

of inefficiencies for a particular combination of method and operator. The methods are 
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sorted by increasing 75th-percentile inefficiency from top left to bottom right. There is a 

wide range of performances. Most methods in the top row achieve low inefficiencies that are 

sharply peaked at 1. Methods shown lower down have a propensity towards worse 

inefficiencies. The high-inefficiency tails of the histograms are not shown, but are protracted 

in many cases, indicating a not insignificant failure rate for those methods. It is apparent 

from the histograms that the L0 operator, shown in blue, tends to perform worse than the 

others for the same method, except for some with overall bad performance. For most 

methods, L1 and L2 appear to give similar results.

5.2 Performance comparison

To compare the method/operator combinations more quantitatively, we use the 99th 

percentile from each inefficiency histogram as the metric. This stringent choice is motivated 

by the consideration that a method/operator combination can be deemed good and safe if it 

delivers overall low inefficiencies with negligible risk of large inefficiencies (i.e. severe 

under- or over-smoothing). Figure 6 shows the results. There is a group of methods that 

perform similarly well, leading to small 99th-percentile inefficiencies just above 2. Mallows’ 

CL (MCL), the Akaike information criterion (AIC) and the generalized cross validation 

(GCV) perform equally well with L1 and L2, whereas the generalized maximum likelihood 

method and its unconstrained variant (GML and GMLu) perform well only with L1. L0 is 

the worst-performing operator for these top methods. The methods ranking below this top 

group are parameterized modifications of GCV and AIC. Since they are inferior to their 

parent methods, they can be disregarded. Currently, the most commonly applied α selection 

methods are based on the L-curve. The results show that the L-curve methods LC, LCu, LR, 

LRu, LR2, LR2u are not competitive with the top group. Their overall tendency is to 

oversmooth. Similarly, the SC and SCu methods display elevated inefficiency for DEER. 

The computational cost of all methods is essentially identical, since it is dominated by the 

solution of the Tikhonov minimization problem for each α.

5.3 Sensitivity to metric

The performance comparison shown in Fig. 6 is based on our particular choice of metric, the 

99th percentile of the ratio of rmsds, defined in Eq. (9). Varying the percentile to 90, 75, or 

50 does not significantly affect the composition of the top group, although it affects the 

detailed rankings (see SI). Altering the definition of inefficiency in Eq. (9) by using the 

difference instead of the ratio, or by using the maximum absolute deviation (mad) instead of 

the rmsd, yields similar results (see SI). Therefore, we conclude that the identity of the top 

methods is insensitive towards the particular choice of ranking metric, and that our 

assessment procedure is overall robust.

5.4 Sensitivity to data characteristics

To check for uneven performance for certain subsets of the test set, we examined the 

performance across noise level, the ratio of iqr to mode (a measure of the damping rate of 

oscillations in S), number of points, and number of modal periods, using the 99th percentile 

rmsd ratio inefficiency metric. The breakdowns are available in the SI. For all values of these 

variables, MCL, AIC, GCV, GML, and GMLu are usually within 5% of the optimal method/

operator combination and never deviate by more than 11%. The specific rankings vary 
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between subsets, but actual performance changes to such a small degree that this is not 

significant. The conclusions reached above regarding the three operators generalize to the 

subsets considered in the SI. In addition to poor performance relative to L1 and L2, L0 also 

displays much higher variation in performance across test subsets. Several variations on 

GCV (mGCV, mGCVu, rGCV, and rGCVu) with varied tuning parameter values, as well as 

AICC, come within 10% of the best case for many of the test subsets. However, none display 

sufficient consistency or quality of performance to surpass MCL, AIC, GCV, GML, or 

GMLu.

Since there is no correlation between the performance of any top method and these subset 

characteristics, the results are therefore likely to be applicable to situations with different 

relative representations of distance distribution characteristics, such as other spin labels or 

proteins with more β sheets than T4 lysozyme.

5.5 Method choice

The performance differences among the top method/operator combinations are so small that 

we cannot identify one as an evident best choice. However, additional considerations can 

provide some guidance. MCL requires the time-domain noise variance σ2 as an input. An 

under- or overestimation of σ2, which is likely in experimental settings, will affect the 

performance and likely degrade it. GML and GMLu depend on a thresholding value to 

remove eigenvalues close to zero, and the choice of this value can affect the performance. In 

contrast, AIC and GCV do not require a priori knowledge of σ2 nor do they depend on 

thresholding or tuning parameters. Therefore, the parameter-free AIC and GCV methods 

with either L1 or L2 appear to be the simplest, best, and safest choices for practical 

applications.

Due to the diversity of distribution shapes and time traces, and due to the wide range of 

inefficiencies, it is impossible to visualize method performances with a few sample datasets. 

Nevertheless, for the sake of illustration, Figure 7 shows the relative performance of LR2u, 

GCV, and AIC for a typical test dataset. This example is typical in these sense that the 

inefficiency of each method is very close to the method’s median inefficiency. The figure 

shows that the L-curve has a tendency to oversmooth, and that AIC and GCV perform 

similarly well. Fig. S1 in the Supplementary Material illustrates the uncertainty in the 

extracted P(r) based on these α selection methods, quantified using Bayesian inference [14].

6. Conclusions

Our performance analysis of a large number of regularization parameter selection methods 

over a large set of protein-based synthetic DEER data indicates that there are several 

method/operator combinations that perform equally well. Among these, the Akaike 

information criterion (AIC) and the generalized cross validation (GCV) are preferable, as 

they are parameter-free and do not require accurate knowledge of the noise level. They work 

equally well with the first- and second-derivative operator, but not with the identity. L-curve 

methods, some of which are currently widely employed, perform distinctly worse.

Edwards and Stoll Page 10

J Magn Reson. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The structure-based test set developed in this work is useful beyond Tikhonov regularization, 

as it can be used to assess the performance of other existing analysis methods (truncated 

singular-value decomposition, Gaussian mixture models) and of any new solution 

approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Selection methods

Here, we summarize all α selection methods included in this study and give the expressions 

necessary to implement them. Further details about the methods can be found in the cited 

statistics literature.

Most methods are derived assuming an unconstrained Tikhonov regularization, i.e. without 

the P ≥ 0 constraint in Eq. (5). In this case, the solution PαL can be expressed in closed form 

as

(10)

For the physically relevant constrained problem (with P ≥ 0), a closed-form solution is not 

possible, and we obtain PαL via an iterative optimization algorithm [44]. In either case, once 

PαL is obtained, the time-domain fit is

(11)

We apply each method described below in two ways, one using the unconstrained solutions 

and one using the constrained solutions. The methods are referred to by short acronyms (see 

Table 1). A suffix ’u’ is appended to the method acronym when unconstrained PαL are used. 

In addition, if the method contains a tuning or scaling parameter, then its value is appended 

to the acronym as well.

L-Curve methods (LC, LR, LR2)

Several methods select α based on heuristic considerations about a parametric log-log plot 

of the Tikhonov penalty term, η = ‖LPαL‖, against the residual norm, ρ = ‖S − SαL‖, as a 

function of α [45, 46]. Such a plot shows a monotonically decaying η(ρ) and is called the L-

curve since it tends to form a characteristic “L” shape with a visual corner. The optimal 
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value for α is considered to correspond to this corner, since it intuitively represents a 

reasonable balance between the fitting error ρ and the regularization error η. The corner is 

not a mathematically defined quantity, therefore different operational definitions of locating 

this corner exist.

One of them is the maximum-curvature method (LC) [46]. It selects the α corresponding to 

the point of maximum (positive) curvature of the L-curve, given by

(12)

where , , and the primes indicate derivatives with respect to lg α 
or α. This method picks the global maximum of the curvature, even though there can be 

several local maxima.

Another possible definition of corner is the point closest to the lower left corner of the L-

curve plot [45]. DeerAnalysis uses one implementation of this idea [7]. The two coordinates 

 and  are evaluated over a range of α values and then rescaled to the interval [0,1]. The 

corner is determined as the location on the L-curve that is closest to the origin in these 

rescaled coordinates:

(13)

The results from this method depend on the α range. We refer to this method as the 

minimum-radius method and use two variants of it. In the first one (LR), we use the same α 
range as for all other methods (10−3 to 103), and in the other one (LR2), we employ the same 

α range as DeerAnalysis2016. The latter extends from the largest generalized singular 

eigenvalue of K and L, smax, to a value csmax with c = 16ε · 106 ·· 2σ/0.0025, where ε ≈ 2.2 · 

10−16 and σ is the noise level. In order to keep the range large enough, we limit c to ≤ 10−6.

Cross validation (CV, GCV, mGCVc, rGCVγ, srGCVγ)

We use several methods based on the idea of cross validation. Leave-one-out cross validation 

(CV) [47, 48] is conceptually the simplest of them. For a given α, it minimizes the total 

prediction error, which is obtained as the sum of the prediction errors for each individual 

data point. For that, a single data point is excluded and a fit to the remaining data is 

calculated. That fit is judged based upon its ability to reproduce the excluded data point. By 

repeating the method for each data point, the total prediction error is obtained, and the α 
value is selected that minimizes it. This procedure can be condensed into the following 

expression:
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(14)

with the α-dependent influence matrix .

Generalized cross validation (GCV) [49, 50] is very similar to leave-one-out cross 

validation, but the diagonal matrix element HαL(i, i) in the denominator is replaced by the 

average of all diagonal elements, rendering the method more stable. The expression 

simplifies to

(15)

The modified GCV (mGCVc) [51, 52] method is a simple tunable modification to GCV 

intended to stabilize the method further.

(16)

with the tuning parameter c ≥ 1. We use this with c = 1.2, 1.5, 2, and 3, to test a range of 

stabilizations.

The robust GCV (rGCVγ) method [53, 54] is also designed to exhibit greater stability than 

the GCV method. It is given by

(17)

with the tuning parameter γ ≤ 1. With γ = 1, the method reduces to GCV. As γ gets smaller, 

the method becomes increasingly stable and less likely to undersmooth. We examine γ 
values of 0.1, 0.5, and 0.9, with increasing contributions from the second term.

Strong robust GCV (srGCVγ) [55] is another tunable modification to GCV that is based on 

stronger statistical arguments than rGCV. It selects α via

(18)

with γ ≥ 1. Like rGCV, with γ = 1, the method reduces to GCV. We use γ values of 0.8 and 

0.95.
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Quasi-optimality (QO)

This criterion, from Tikhonov and coworkers [56–58], selects α such that a small change in 

α from that selected value has minimal effects on the resulting PαL:

(19)

The underlying rationale is that the model recovery error is flat at its minimum.

Discrepancy principle (DPτ)

This principle [59–61] is predicated upon the idea that the root-mean-square residual, 

, should be on the order of the noise standard deviation in the data, σ. It 

requires a priori knowledge of σ. The value for α is selected as the largest value such that

(20)

where τ is a safety factor ≥ 1 to guard against under-smoothing in the case σ is 

underestimated. We use this principle with τ = 1 and 1.5.

The transformed discrepancy principle (tDPτ) [62–64] performs the comparison in the 

distance domain, choosing the largest α that satisfies

(21)

where . We use τ = 1.5.

Balancing principle (BP, hBP)

The balancing principle (BP) [65, 66] balances the propagated noise error with the unknown 

model recovery error. Using

(22)

and , it selects αsel as the largest α value that satisfies B(α) ≤ 1. The 

hardened balancing principle (hBP) [66] selects α using

(23)
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Residual method (RM)

This method [43, 67] determines α by minimizing a scaled norm of the residual vector

(24)

where B = KT (I − HαL). The scaling penalizes under-smoothing.

Self-consistency method (SC)

This method [25, 26], utilized in FTIKREG, seeks to minimize the sum of the estimated 

model recovery error and the propagated data noise variance.

(25)

This expression is valid for the unconstrained case. In order to include the non-negativity 

constraint, further steps are necessary. First, αsel for the unconstrained case is determined. 

Next, the constrained solution is determined using this α value and the indices q of the 

active non-negativity constraints are stored. Finally, the columns of K and L with indices q 
are removed and Eq. (25) is re-evaluated.

Generalized maximum likelihood (GML)

This method [68] selects the α that maximizes the likelihood (or, equivalently, minimizes the 

negative log-likelihood) and is given by

(26)

where detnz(·) indicates the product of the non-zero eigen-values, and m is the their number. 

To account for numerical errors, we treat all eigenvalues with magnitude below 10−8 as zero.

Extrapolated error (EE)

This method [69–71] minimizes an estimate of the regularization error via

(27)
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Normalized cumulative periodogram (NCP)

This method [72–74] is based on the idea that the power spectrum of the residuals should 

match the power spectrum of the noise. The unscaled power spectrum (periodogram) for a 

given α is a vector p with elements

(28)

where k = 1, …, nt, dft refers to the discrete Fourier transform. The normalized cumulative 

periodogram is an (nt − 1)-element vector c with elements

(29)

where ‖…‖1 is the ℓ1 norm (sum of absolute values). The zero-frequency component, p1, is 

omitted. c represents the integrated power spectrum of the residuals. The α value is selected 

that minimizes the deviation between c and the integrated power spectrum cnoise expected 

for the noise:

(30)

where cnoise is a (nt − 1)-element vector, with elements cnoise,i = i/(nt − 1) for white noise.

Mallows’ CL (MCL)

This method [75] minimizes an approximation to the model recovery error, derived under 

the assumption of unconstrained regularization and uncorrelated Gaussian noise.

(31)

This requires the knowledge of the noise level σ.

Information-theoretical criteria (AIC, AICC, BIC, ICOMP)

In the context of information theory [76, 77], the set of PαL is regarded as a set of candidate 

models, and criteria have been developed that select a parsimonious model that balances a 

small fitting error with a low model complexity. The general expression is

(32)
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where the second term is a measure of model complexity, which decreases with increasing 

α. The term tr(HαL) can be regarded as the effective number of free parameters in the 

model. The constant c depends on the particular criterion: c = 2 for the Akaike information 

criterion (AIC) [78], c = 2nt/(nt − tr(HαL) −1) for the corrected AIC (AICC) [79, 80], and c 
= ln(nt) for the Bayesian information criterion (BIC) [81]. The information complexity 

criterion (ICOMP) [82, 83] is yet another information-theoretical procedure and is given by

(33)

where  and  are the arithmetic and geometric means of the singular values of (KTK + 

α2LTL)−1. The last term penalizes for interdependence among model parameters. In contrast 

to the other information-theoretical criteria, this one requires knowledge of the noise level σ.
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Figure 1. 
Crystal structure of T4 lysozyme (164 residues, PDB 2LZM, 1.7 Å resolution). Residues 

with low predicted labeling probabilities that were excluded from the test set are shown in 

grey. Several residues are labeled as guides to the eye.
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Figure 2. 
Summary statistics of the 5622 model DEER distance distributions derived from the crystal 

structure of T4 lysozyme (PDB 2LZM). The inter-quartile range (iqr) of r is plotted vs the 

mode of r for each distribution. Color indicates the number of peaks (significant maxima), 

and the symbol indicates the type and degree of skew. The histogram colors correspond to 

the number of peaks.
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Figure 3. 
Examples of distance distributions calculated via in silico double labeling of the 2LZM 

structure of T4 lysozyme with MTSSL. The site pairs corresponding to each distribution are 

listed in the figure.
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Figure 4. 
Generation of time traces (S(t)) from a distance distribution. Top panel: the model 

distribution (for labeled residues 112 and 143). In this case, 3T⊥,95 = 2.36 μs, so tmax was set 

to 1.6 and 0.8 μs in accordance with the rules given in Section 3. T‖,05/6 = 31.3 ns, so Δt was 

set to 10 and 20 ns. Middle panel: the four resulting time-domain traces generated using Eq. 

(4). Bottom panel: three noisy realizations with σ = 0.1, 0.05, and 0.02 for the 3rd (dark 

blue) trace in the middle panel. A total of 120 noisy time-domain traces were generated from 

this particular distribution.
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Figure 5. 
Inefficiency distributions for each α selection method (indicated by their acronyms) and 

regularization operator (color-coded). The panels are arranged from top left to bottom right 

in increasing order of lowest 75th-percentile inefficiency among L0, L1, and L2. For each 

histogram, only the part with inefficiency ≤ 3 is shown, and the often prolonged tails are not 

visible. The histograms are scaled such that the maxima in all panels are identical.
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Figure 6. 
Performance comparison of all combinations of α selection methods and regularization 

operators, based on their 99th-percentile inefficiency. The methods are sorted based on best 

99th-percentile inefficiency among L0, L1, and L2. The gray lines serves as guides to the eye.
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Figure 7. 
Example case comparing the LR2u L-curve, GCV, and AIC methods (dataset 115333). For 

this particular test case, each method features an inefficiency very close to that method’s 

overall median inefficiency (LR2u 1.38, GCV 1.09, AIC 1.09). Left column: the simulated 

data are shown as grey dots, the Tikhonov fit with optimum α is shown as a black line, and 

the Tikhonov fits for LR2u, GCV, and AIC are shown as blue, orange, and purple lines, 

respectively. Right column: the model P is shown in grey, the Tikhonov solution for P with 

optimum α is shown as a black line, and the Tikhonov Ps for LR2u, GCV, and AIC are 

shown as blue, orange, and purple lines, respectively. In all cases, the L2 operator was used.
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Table 1

List of abbreviations for regularization parameter selection methods. To indicate the use of unconstrained P(r) 
in a method, the suffix ‘u’ is appended to the abbreviation. If a tuning parameter is used, its value is appended 

as well.

Acronym Full name

AIC Akaike information criterion

AICC corrected Akaike information criterion

BIC Bayesian information criterion

BP balancing principle

CV leave-one-out cross validation

DP discrepancy principle

EE extrapolated error

GCV generalized cross validation

GML generalized maximum-likelihood

hBP hardened balancing principle

ICOMP information complexity criterion

LC L-curve, maximum curvature

LR L-curve, minimum radius

LR2 L-curve, minimum radius 2

MCL Mallows’ CL

mGCV modified generalized cross validation

NCP normalized cumulative periodogram

QO quasi-optimality criterion

rGCV robust generalized cross validation

RM residual method

SC self-consistency method

srGCV strong robust generalized cross validation

tDP transformed discrepancy principle
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