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Gene-by-environment interactions in urban
populations modulate risk phenotypes
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Jean-Christophe Grenier 1,2, Elias Gbeha1, Kimberly Skead1, Audrey Smargiassi5, Markey Johnson6,

Youssef Idaghdour7 & Philip Awadalla1,2,8,9

Uncovering the interaction between genomes and the environment is a principal challenge of

modern genomics and preventive medicine. While theoretical models are well defined, little is

known of the G × E interactions in humans. We used an integrative approach to compre-

hensively assess the interactions between 1.6 million data points, encompassing a range of

environmental exposures, health, and gene expression levels, coupled with whole-genome

genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a

substantial impact of the environment on the transcriptome and clinical endophenotypes,

overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways

affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry.

Finally, we capture four expression quantitative trait loci that interact with the environment

(air pollution). Our findings demonstrate how the local environment directly affects disease

risk phenotypes and that genetic variation, including less common variants, can modulate

individual’s response to environmental challenges.
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Environmental exposures, coupled with genetic variation,
influence disease susceptibility, and deconstructing their
respective contributions remains one of the principal chal-

lenges in understanding complex diseases1–7. Individuals with
different genotypes may respond differently to environmental
variation and generate an array of phenotypic landscape8–14. Such
gene-by-environment interactions are thought to be pervasive
and may be responsible for a large fraction of the unexplained
variance in heritability and disease risk9,15,16. Yet, disease risk,
owing to either environmental exposures and/or their interactions
with genotype, remains poorly understood2,17,18.

Canada’s precision medicine initiative, the Canadian
Partnership for Tomorrow Project (CPTP: http://www.
partnershipfortomorrow.ca) is a cohort comprising over
315,000 Canadians, and captures over 700 variables, ranging from
longitudinal health information to environmental exposures, to
determine genetic and environmental factors contributing to
chronic disease. The program includes the Quebec regional
cohort, CARTaGENE, which has enrolled over 40,000, pre-
dominantly French-Canadian (FC) individuals between 40 and 70
years of age19–21, to date. Drawing from this founding population
of individuals with largely French ancestry, we selected 1007
individuals to determine mechanisms by which genomes, the
environment, and their interactions contribute to phenotypic
variation. After attributing a regional and/or continental ancestry
to each individual using genome-wide polymorphism data, we are
able to capture the effect of different environmental exposures on
gene expression and health-related traits, while simultaneously
controlling for genetic relatedness and migration. Further, in
order to capture gene-by-environment interactions through eQTL
analyses, we combine whole-transcriptome RNA-Sequencing
profiles with whole-genome genotyping and extensive fine-scale
environmental exposure data.

Results
Population history reveals a fine-grained regional structure.
Individuals selected for analyses include those living across dif-
ferent regions in Quebec: Montreal, the largest urban center in
the Quebec province (MTL, 4500 individuals/km2); Quebec City,
a smaller urban center (QUE, 1140 ind/km2); and Saguenay-Lac-
Saint-Jean, a less urbanized region (SAG, 800 ind/km2). Differ-
ences in the regional environment within and across these cities,
including ambient pollutant concentrations, are known to be
associated with various health outcomes22,23. The majority of the
Quebec population is of FC descent; a group of individuals des-
cending from French settlers that colonized the Saint-Lawrence
Valley from 1608 to the British conquest of 175924. Despite
considerable expansion, the population remained linguistically
and religiously isolated while remote regions were colonized by
small numbers of settlers, such as SAG25,26 and contributed to the
establishment of subpopulations. These sequential population
bottlenecks impacted the genome of FCs through increasing the
relative deleterious mutations load27, while reducing overall
genetic diversity in the population relative to the European
population28. Using high-density whole-genome genotyping
assays (Illumina Omni 2.5), we confirm that FCs (n= 689) form a
distinct genetic cluster relative to those of European descent (n=
136) (Fig. 1a, Supplementary Fig. 1a–c), as has been previously
observed27. Within this FC group, we capture fine-scale regional
genetic variation across Quebec (Fig. 1c, b and Supplementary
Fig. 1d), consistent with Quebec settlement history and local
ancestry.

Ancestry contributes marginally to regulatory variation. We
were particularly interested in the extent to which individual

regional-ancestry and regional-environment account for tran-
scriptional variation in the Quebec population. In an attempt to
reduce batch effects in our RNA sequencing experiment, the
sampling protocol was standardized across all clinics and all
manipulations were performed in the same laboratory. Further-
more, participant’s fasting blood samples were collected by
CARTaGENE between 9 a.m. and 11 a.m. Individuals were ran-
domized across sequencing lanes to reduce false associations with
traits owing to sequencing differences across lanes. Corrections to
mitigate remaining batch effects, unwanted technical and biolo-
gical variation in gene expression were applied (Supplementary
Fig. 4)29 (Methods). Using whole-genome genotyping, we are able
to distinguish between “FC-locals” and “FC-regional migrants”
(Fig. 1b, Supplementary Fig. 1d, Supplementary Table 2). We
define “FC-locals” as individuals of regional ancestry identical to
the region they reside in and “FC-regional migrants” as FC
immigrants from a different regional ancestry. Among FC-locals,
an increasing number of genes are significantly differentially
expressed between Mtl- vs Que-locals, n= 505, Que- vs Sag-locals
n= 2167, up to n= 6649 and Mtl- vs Sag-locals (Fig. 2a) (p value
< 0.05/15,632, log-fold change > 0.5). Additionally, a greater
number of genes are differentially expressed between individuals
having the same regional ancestry but who reside in different
regions (FC-locals vs FC-regional migrants with the same genetic
ancestry, but residing in different regions), and we find this
pattern in nearly all pairwise comparisons of this nature (Fig. 2b).
On the other hand, when we performed comparisons between
FC-locals and FC-regional migrants, we find very few differen-
tially expressed genes in nearly all comparisons (Fig. 2c).

We replicate these findings by performing comparisons of
Europeans and FC-locals residing within the same region and
find very few differentially expressed genes between them (Fig. 2d,
Supplementary Fig. 5). The lack of differentially expressed genes
is not attributable to differences in statistical power as we are able
to identify up to 75% of our differentially expressed genes using
only 30% of our FC individuals (n= 200) (Supplementary Fig. 6).
Furthermore, results are consistent after performing differential
expression analyses between regions using a resampling-based
method (1000 replicate permutations for each pairwise compar-
ison between regions), thus reducing the possibility that
undetected sampling differences between regions, or outlier
individuals, drive those patterns. Differentially expressed genes
between regions are enriched for genes implicated in oxygen and
gas exchange, G-protein-coupled receptors, and inflammatory
response (Supplementary Fig. 7, Supplementary Table 3).
Although we initially captured both genotypic and transcriptional
variation correlated with geographic structure among the FC
subpopulations, these results indicate that shared regional
environmental exposures influence peripheral blood expression
profiles to a greater extent than regional or local (and continental)
ancestry, and point to potential critical exposures contributing to
pathways, phenotypic variation, and possibly disease
development.

Environment shapes regulatory profiles and clinical traits. To
test whether environmental exposures contribute to the geo-
graphic variation associated with transcriptional profiles and
clinically relevant phenotypes across Quebec, a large collection of
fine-scale environmental data (Supplementary Fig. 8 and 9,
Supplementary Table 4): satellite-land-use regression models
(particulate matter 2.5 (PM2.5) and nitrogen dioxide (NO2)),
community land-based measures (ozone (O3) and sulfur dioxide
(SO2) for air pollution) are collated. Community level estimates of
socio-economic indices (social and material deprivation, popu-
lation density), and built environment features (greeness, food
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availability, walkability, park density, street network) are also
incorporated. A total of 12 environmental exposures, all of them
measured or estimated at the level of three-digit postal code
(these areas in Canada include several houses or a neighborhood,
and their sizes are inversely proportional to population density)
(Supplementary Table 4), are included. Indeed, we observe that
these environmental exposures capture broad environmental
correlates and variance across the Quebec province (Supple-
mentary Fig. 9). In an attempt to pinpoint if particular envir-
onmental exposures contribute more to the gene expression
differences across regions, we use this fine-scale information for
the analytical treatment of individual exposures specific to the
individual and ignore broader geographic sampling categories
(i.e., regions).

We find that the expression profiles of differentially expressed
genes between regions are largely associated with gradients of

annual ambient air composition across Quebec (Fig. 3, Supple-
mentary Fig. 9). A north–south urbanization gradient is indeed
reflected by higher annual concentrations of PM2.5 and NO2 in
downtown Montreal (data derived from satellite-land-used
regression models), however, higher concentrations of SO2 and
O3, (land-based measures) are observed in SAG (Supplementary
Figs. 8 and 9). The higher annual concentrations of SO2 in SAG, a
smaller urban center, are related to the presence of several large
industrial complexes22,30. It is widely known that ambient air
pollution covaries with season, and we account for blood
collection date in our models (Supplementary Fig. 4c). However,
we cannot fully exclude a possible residual contribution of season
on gene expression patterns.

We apply coinertia analyses31 (CoIA) to our multidimensional
data to capture associations between 57 clinical endophenotypes
(Supplementary Table 5), environmental exposures
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Fig. 1 Genetic and transcriptomic variation within the CARTaGENE cohort sample. a Principal component analysis (PCA) of individuals of European
descent, including FCs (n= 887). Individuals are labeled according to self-declared ancestry based on the origin of four grandparents. b PCA on the
haplotype chunk61 count matrix of French-Canadians (n= 689) reveals three groups corresponding the region of residence, with SAG individuals showing
less overlap with either of MTL or QUE individuals, in line with their historical isolation25, 26. c Genotypic cline for individuals by location of residence
(three-digit postal code) sampled across the province. Color indicate the average value of the first principal component from a PCA on genotypes in each
three-digit postal code district level (n= 157). d Transcriptomic cline for individuals by location of residence sampled across the province. Colors represent
the average value of the first principal component from a PCA on the transcriptome in each three-digit postal code district level (n= 189). e Proportion of
transcriptomic variance (PVCA) in FCs explained by low-level phenotypes and their interactions
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(Supplementary Fig. 12), and expression levels of differentially
expressed genes and their regulators (Supplementary Fig. 10). All
phenotypes are standardized health tests captured by CARTa-
GENE, and all self-reported disease diagnostics were cross-
validated with electronic health records of the participants19.
Consistent with previously documented effects of air pollution on
cardiac and respiratory traits32,33, we find that arterial stiffness
measures, asthma and stroke prevalence, monocytes counts, low-
density lipoprotein (LDL), respiratory function (FEV1), as well as
liver enzyme levels (Alanine aminotransferase level (ALT),

aspartate aminotransferase level (AST), and gamma-glutamyl
transferase (GGT)) show the strongest associations with annual
SO2 and O3 ambient levels (Supplementary Fig. 10). In our
cohort, the gradient of SO2 exposure is associated with detectable
detrimental effects on cardio-respiratory phenotypes, more so
than ambient annual PM2.5 and NO2 levels (Supplementary
Fig. 10), and is the environmental variable that has the highest
replicability of association with gene expression (Fig. 3). As a
result of these strong associations of annual SO2 ambient levels
with detrimental cardio-respiratory phenotypes, and as O3 levels
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Fig. 2 Environmental impacts on gene expression profiles override that of genotype. Contrasting the effects of ancestry and regional environment on
differential gene expression. a Between FC-locals (different regional ancestry, different regional environments). b Between FC-locals and FC regional
migrants (same regional ancestry, different regional environments). c Between FC-locals and FC regional migrants (different regional ancestries, same
regional environment). d Between FC-locals and Europeans (different continental ancestries, same regional environment). Pink dots are genes with FDR
(q value) below 5% and red dots are genes with p value < Bonferroni-corrected p value (3.20 × 10−6)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03202-2

4 NATURE COMMUNICATIONS |  (2018) 9:827 | DOI: 10.1038/s41467-018-03202-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


are more dependent on other various ambient factors (sunlight,
other NOx emissions), we focus our high-resolution analyses on
the participant’s weekly SO2 exposure.

We use a 2-week exposure to SO2 pollution, obtained from
averaging over a 14-day window preceding the time-point of each
individual blood sampling (Supplementary Fig. 14). The large
temporal fluctuations in weekly SO2 ambient concentrations
allow us to include individuals from SAG that were exposed to
low levels of SO2 (despite SAG having high annual averages), and
MTL individuals exposed to high levels of SO2 (despite MTL
having lower annual averages), or vice-versa. In that way, we can
single out the effect of the local environment itself, predominantly
attributable to SO2 exposure, to the broader regional effect
detected earlier. Using a robust resampling approach to balance
the number of individuals in each category, we are able to identify
with confidence 170 differentially expressed genes between high-
and low-SO2-exposure individuals; these are also found to be
differentially expressed between regions (Fig. 2a, Supplementary
Table 6).

Furthermore, while multivariate models show that gene
expression variation for those 170 genes is significantly associated
with 2-week SO2, they do not show an association with smoking,
socioeconomic status, or with most built environment character-
istics (Supplementary Table 6). We perform a sensitivity analysis
using MTL-only samples, thereby removing the potential
influences of geographic region and regional ancestry. We
replicate these associations with pollution, and the lack thereof,
for smoking and socio-economic status (Supplementary Table 6).
These results indicate that the regional effect on the gene
expression is mostly associated with ambient air pollution, and

less so, or not at all, with diseases, smoking, or the socio-
economic factors that were measured. Those 170 differentially
expressed genes are again enriched in oxygen-transport activities,
and in several pathways involved in leukocyte migration during
chronic inflammation, including CXCR chemokine activity and
G-protein-coupled receptors (Supplementary Table 6). Circulat-
ing blood leukocytes can migrate to sites of tissue injury by
responding to proinflammatory cues and are known to migrate
through the blood flow to lung epithelial cells during inflamma-
tory response34.

To disentangle the effects of SO2 exposure from the effects of
region on gene expression, we conducted a sensitivity analysis
and show that not only is this pattern observed across the whole
Quebec province, but it also replicates within Montreal (Supple-
mentary Table 7), suggesting that SO2 exposure, rather than the
region itself, is modulating these associations. We find that the
expression of the 170 DEGs (between high- and low-exposure to
SO2) is also associated with four key clinical traits (Forced
expiratory volume (FEV1), lung disease, liver enzymes, and
arterial stiffness) (Supplementary Fig. 12). Additionally, when the
effects of these four clinical traits are regressed out from gene
expression, SO2 exposure remains significantly associated with
gene expression (Supplementary Table 7). This suggests that SO2

exposure itself modulates some of the variation in gene
expression, and this variation is not only associated with the
underlying health status.

The four clinical traits that were found to be associated with
differential gene expression (FEV1, lung disease, liver enzymes,
and arterial stiffness), are consistently reported as influenced by
air pollution by other studies35–39. Chronic diseases developing
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Fig. 3 Differentially expressed genes are associated with local ambient air pollution. Coinertia (CoIA) analysis between gene expression (columns) and
fine-scale environmental variables (rows). CoIA analyses were performed on genes that were significantly differentially expressed among regions and the
regulators of those genes (RDEG). CoIAs were computed between differentially expressed genes profiles and fine-scale environmental data
(Supplementary Figs 11 and 12). We performed two sets (Group 1 and Group 2, each composed of a random draw of half the cohort) of CoIAs: each set
included 10,000× resampling of 200 individuals (without replacement, from Group 1 or Group 2), and the CoIAs were performed between environment
and gene expression for each of the 10,000 iterations. Supplementary Fig. 11 depicts the resampling scheme. The heatmap represents, for each Group 1 or
Group 2, the median of each environment–gene associations from the cross-tabulated values distribution. Associations from Group 1 and Group 2 largely
cluster together, indicating a strong signal of the association between fine-scale air pollution levels and gene expression. A permutation test (n=
10,000 steps) indicates the that the correlations between the matrices are significant (p= 0.00089 and p= 9.9 × 10−5 for Group 1 and 2 respectively)
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from these detrimental endophenotypes (asthma and cardiovas-
cular diseases) are well documented to be associated with air
pollution levels12–14,22,37. Gamma-glutamyltransferase (GGT) has
been reported to occur in atherosclerotic plaques40, is elevated
following pollution exposure41,42, and is predictive in a dose-
dependent manner of cardiovascular risk43. Interestingly, we find
GGT levels to be associated with the differentially expressed genes
across SO2 exposure environments, in particular those genes
enriched in blood coagulation and platelet regulation (Supple-
mentary Fig. 12), Collectively, these results reveal associations
between environmental pollutants, endophenotypic traits, as well
as transcript levels, and that the type and direction of associations
are consistent with detrimental effects of air pollution, or a
correlated variable, on health status.

Environment modulates the penetrance of genetic variants.
Environmental factors not only directly affect phenotypic varia-
tion, but can also modulate associations between segregating
genetic variants and phenotypes1,44,45. To discover gene-by-
environment interactions in both FCs and Europeans, we identify
eQTLs for which the effect size is modulated by exposure with
one of four ambient air pollutants (env-eQTLs): PM2.5, NO2, O3,
and SO2. First, we identify canonical eQTLs using 5,313,384
genotypes and show a high replication for proximal canonical
eQTLs (cis-eQTLs) with previously discovered cis-eQTLs (Sup-
plementary Table 8).

To identify gene-by-environment interactions with air pollu-
tion (env-eQTLs), we use a randomly generated discovery cohort
(n= 416) to perform regressions of gene expression levels
(eGenes) on cis-SNPs (eSNPs), pollution level, and the interaction
between eSNP and pollution (see Supplementary Fig. 15, for a
schematic representation of the procedure/design). We use a
four-step process that accounts for multiple testing: (1) we
compute Bonferroni-corrected p values, adjusting for the number
of eSNPs tested for each gene, (2) we retain the lowest
Bonferroni-corrected p value for each eGene and transform this
set into q values46 to determine statistical significance (FDR <
0.05, to correct for the 15,632 total genes tested in the cohort).
This results in the identification of ten unique significant
eSNP–eGene pairs (with nine unique eGenes). (3) We then
examine these candidate pairs in our replication cohort (n= 417),
where four out of the ten pairs are significantly replicated
(q value < 0.05) with the same direction of effect in both the
discovery and replication cohorts. Last, (4) all four replicated
eSNP–eGenes associations (eGenes, n= 3; eSNPs, n= 4) remain
significant using empirical p value estimates through permuta-
tions on the combined cohort (n= 833 individuals) (Supplemen-
tary Table 9).

Following the application of this stringent filtering, we identify
and replicate three eGenes (four eSNP–eGene pairs) for which air
pollution (either PM2.5, NO2, SO2, or O3) modulates the
association between the genotype of at least one eSNP and the
eGene expression (Fig. 4, Supplementary Fig. 16, Supplementary
Table 9). One eGene, atad2, is identified as interacting with both
NO2 and SO2 ambient levels. zp3 is a glycoprotein interacting
with proteins in the extracellular space. Interestingly, two eGenes
are ATPases with epigenetic activities, regulating chromatin
structure (smarca2) or assisting in chromatin and histone binding
of transcription factors (atad2)47,48.

Among the significant env-eQTLs (FDR q value < 0.05 in
discovery and replication cohorts) (Supplementary Fig. 16,
Supplementary Table 9), we identify an interaction with NO2

and the SNP–gene pair rs10156534-smarca2 (Fig. 4a). Further-
more, we find a deletion (chr9: 3,177,272) in an enhancer
downstream of smarca2 that is significant for an interaction with

NO2 levels (Fig. 4c). SMARCA2 protein is part of the large
chromatin remodeling complex SNF/SWI (Fig. 4b), and is
required for the transcriptional activation of genes repressed by
chromatin by mobilizing nucleosomes. The SNF/SWI complex is
a tumor-suppressor gene complex and is also required to activate
other tumor-suppressor genes. In addition, it has been found to
be potentially contributing to a range of inflammatory diseases,
including childhood asthma and systolic blood pressure. Inter-
estingly, as discussed above, we find, in CARTaGENE, that
spirometry phenotype (FEV1) and arterial stiffness, which are
tightly linked to asthma and blood pressure respectively, are
associated with differential expression of genes across regional
environments. This suggests that environmental differences in air
quality may act on the regulation of several genes and pathways
and promote pro-inflammatory states which can lead to
cardiorespiratory dysfunction.

The eSNP–eGene pair rs62518566-atad2 is an env-eQTL that
interacts with SO2 and NO2 exposition (Supplementary Fig. 16d
and e). ATAD2 protein belongs to a large family of ATPases that
contains a bromodomain; that is, a protein domain that reads
epigenetics marks on chromatin and affects gene regulation48. It
is a regulator of chromatin dynamics and acts as a co-activator of
estrogen and androgen receptors. atad2 is associated with several
human diseases, and serves as a marker of poor prognosis in a
variety of different cancers49,50.

Variant frequency and the environmental impact on traits.
Allelic frequency has an inverse relationship with phenotypic
variation, and, in particular, on eQTLs susceptibility to environ-
mental modifications. First, an inverse relationship between effect
sizes on transcript abundances and lead eSNP minor allele fre-
quencies (MAFs) is observed in our cohort (Supplementary
Fig. 17). This pattern is consistent with natural selection acting to
stabilize gene expression51–53. Second, using the estimated cor-
relations from a CoIA analysis between all SNPs in cis of sig-
nificant eGenes and endophenotypic traits, we test whether the
size of the correlations are related to the MAF of the SNP. To do
so, we classify the SNPs as common (MAF > 0.1), and less com-
mon (MAF between 0.05 and 0.1) and, for each endophenotype,
calculate the odds ratios of observing less common variants
(compared to common) for stronger endophenotypic associa-
tions. We find that less common variants are overrepresented for
stronger associations between eSNPs and some endophenotypic
traits (Supplementary Fig. 18). More specifically, respiratory
(Asthma and FEV1/FVC ratio) and cardiovascular (Stroke, per-
ipheral AIX) phenotypes show larger changes in values in indi-
viduals with less common variants at env-eQTL loci
(Supplementary Fig. 18). These results suggest that SNP allele
frequency is negatively correlated with endophenotypic trait
changes when influenced by environmental perturbations, which
is coherent with previous studies and theoretical predictions53,54.

Our findings illustrate that the impact of the geographic region
of residence on the blood transcriptome overrides that of
ancestry. Moreover, ambient air pollution exposures are likely
contributing to this regional effect in Quebec and may explain the
differences in some clinical traits among regions such as asthma
prevalence. Fortunately, in Quebec, and in many parts of the
developed world, air quality has improved since the 1980s30,55.
However, there has been a sharp increase in anthropogenic
pollution levels in many parts of Asia caused by the rapid
industrialization and increased use of fossil fuel energies. In the
context of global climate change, air pollution and hazardous air
quality events are predicted to become more frequent and cause
additional morbidity and mortality23. More broadly, our work
shows how environmental exposures modulate gene expression
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directly, can act upon the penetrance of genetic variants, and can
affect clinically relevant phenotypes in humans.

Methods
Contact for reagent and resource sharing. Further information and requests for
reagents may be directed to the Biobank CARTaGENE which regulates the access
to the data and biological materials (http://www.cartagene.qc.ca/en/contact-us).

Study population. The study protocol was approved by the Ethical Review Board
Committee of Sainte-Justine Research Center and all participants provided
informed consent. CARTaGENE biobank comprises more than 40,000 participants
aged between 40 and 60 years, recruited at random among three urban centers in
the province of Quebec. CARTaGENE is a regional cohort within the Canadian
Partnership for Tomorrow Project, including over 315,000 participants, with var-
ious measures obtained from blood parameters, biological function, disease history,
lifestyle, and environmental factors19.

Sample selection. For freeze 1, we selected 708 individuals from the CARTa-
GENE’s biobank samples with available Tempus Blood RNA Tubes (ThermoFisher
Scientific) and Framingham risk scores, ensuring an equal representation of ages
and gender. Two-hundred-and-ninety-two additional samples were subsequently
selected from CARTaGENE (freeze 2) based on their RNA and complete arterial
stiffness (AIx) measures availability. These samples were selected for having high
AIx values as well as average AIx values to complement the first freeze of samples
with the intention of achieving a broad range of arterial stiffness values across the
complete study cohort. All samples were collected in the same year, with a stan-
dardized protocol in all sampling clinics19. All blood samples were collected in the
morning, on fasting participants.

Genotyping and QC. In total, 928 samples with RNA-Seq profiles that passed
quality control (QC) thresholds were genotyped on the Illumina Omni2.5 array to
obtain high-density SNP genotyping data. A total of 1,213,103 SNP were retained
after filtering and QC (Hardy–Weinberg p value > 0.001, MAF > 5% and percent of
missing data < 1%).
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Fig. 4 NO2 exposure modulates the effect of the top genetic variant rs10156534 on smarca2 expression. a The expression level of smarca2, an ATP-
dependant helicase involved in several cancers, is modulated by the genotype at rs10156534 and NO2 exposition levels. b SMARCA2 is part of a highly
connected gene network, the SNF/SWI complex, which acts to remodel chromatin structure and is required to activate transcription of repressed genes. c
Several enhancers around smarca2 are found nearby or at location where eSNPs were significant for an interaction with pollution. The upper whiskers
extend from the third quartile to the largest value no further than 1.5 * inter-quartile range from the third quartile. The lower whiskers extend from the first
quartile to the smallest value at most 1.5 * inter-quartile range from the first quartile
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RNA sequencing. Whole blood samples were collected from participants in 2010.
Total RNA was isolated using the Tempus Spin RNA isolation kit (ThermoFisher
Scientific) and a globin mRNA-depletion was performed using the GLOBINclear-
Human kit (ThermoFisher Scientific). The quality and integrity of the RNA
samples were verified using an Agilent Bioanalyzer 2100 and all samples had an
RNA integrity number (RIN) > 7.5. A RIN above 7.5 is indicative of high quality
RNA in the sample and for which RNA degradation is minimal, indicating optimal
transport and preservation conditions. Our RIN threshold is more stringent than
other large-scale consortium studying gene expression in tissues51,56. TruSeq RNA
Sample Prep kit v2 (Illumina) was used to construct paired-end RNA-Seq libraries
with 500 ng of globin-depleted total RNA. Recommended Illumina protocols were
followed for quantification and quality control of RNASeq libraries prior to
sequencing. Paired-end RNA sequencing was performed on a HiSeq 2000 platform
at the Genome Quebec Innovation Center (Montreal, Canada). Sequencing was
performed for freeze 1 (708 samples) using three samples per lane, and for freeze 2
(292 samples) using six samples per lane yielding about 60 million reads per
samples. All RNA-seq experimental steps following blood draw were conducted in
the same central laboratory, and samples were distributed randomly over
sequencing lanes (Supplementary Fig. 3a, b), thereby reducing the introduction of
experimental bias at these steps.

Reads were trimmed for adapters and bad quality bases first using Trim Galore
and were then assembled to a reference genome (hg19, European Hapmap (CEU)
Major Allele release) using STAR (v2.3.1z15)57 using the two-pass protocol, as
recommended by the Broad Institute. The two-pass protocol consists in two
consecutive mappings steps having the same set of parameters with only the
reference that is optimized in the second mapping procedure. The first mapping is
done using the reference gene definition coming from ENSEMBL (release 75).
Then, using the splicing junction database files formed by the first pass mapping
step for all the samples combined together and the same gene definition file, a
second reference is indexed and optimized and is used for the second mapping
step. The number of mismatches allowed across pair is five and a soft-clipping step
that optimizes alignment scores is also done automatically by STAR. The PCR
duplicates were conserved as it was shown that quantification of highly expressed
genes were disproportionately affected by PCR duplicates removal58. Only properly
paired reads were kept (using samtools59) for the analysis, according to STAR
parameters. After these steps, HTseq (v.0.6.1p1)60 was launched separately on each
alignment file using the same gene reference file that was used for the alignments.

All analyses downstream were conducted using R 3.1.2 and R 3.2.2 and
Bioconductor R packages.

Fine-scale population genetic structure within Quebec. To unveil finer scale
patterns of population structure, i.e., differences between individuals with Eur-
opean ancestry versus individuals having a French Canadian ancestry, we also used
ChromoPainter (v0.04)61, a haplotype-based method powerful enough to detect
fine-scale genetic structure. Original genotyping data was used apart from single-
tons, yielding to 1,908,336 SNPs. Singletons were removed as they are non-
informative for phasing and contribute to computation burden for the step of
haplotypes sharing inference performed with ChromoPainter. Genotypic data was
phased with SHAPEIT (v2.r644)62 using the HapMap genetic maps. Coancestry
matrices were obtained from ChromoPainter with parameters estimation step done
with ten iterations on four chromosomes only. ChromoPainter method performs a
reconstruction of every individual genome using chunks of DNA donated by the
other individuals and report matrices of the number and length of those chunks.
We used the chunk count matrix to (1) run FineSTRUCTURE algorithm to build a
tree (as recommended for large data set, we performed 10,000,000 burn-in and
runtime MCMC iterations) (Supplementary Fig. 1D) and to (2) perform a PCA
(Fig. 1a, Supplementary Fig. 1c). Regional ancestry for each FC was determined
based on the three clusters obtained from the fineSTRUCTURE tree, (Supple-
mentary Fig. 1d, Fig. 1b).

In agreement with Quebec settlement history, previous studies of the Quebec
population28,63, and the fineSTRUCTURE tree, a PCA of FC individuals reveals
groupings of sub-populations of individuals that follow a North–South structure
(Fig. 1b, c). The founding event from French settlers followed by the subsequent

colonization of remote regions has led to population differentiation among regions
in Quebec28,63. By further restricting the group of individuals to be analyzed to
only FC (n= 726) and considering their region of residence (either Quebec City,
Montreal, and Saguenay) a PCA on the chunk count matrix reveals three groups
corresponding to region of residence, with the Montreal and Quebec groups
overlapping to a greater extent, in line with their greater geographic proximity
(Fig. 1b, c). Those three groups were also recovered by the fineSTRUCTURE tree
(Supplementary Fig. 1D). Considering all SNPs and the whole haplotypic structure
is the key in seeing differences for those two metropolitan regions that have low
differentiation. We further identified several participants with a regional ancestry
discordant with their region of residence: an indication of recent regional migration
of these participants across Quebec regions (Supplementary Table 2).

Imputation. To increase the power for the association study with gene expression
levels, variant imputation was conducted on 968 individuals for which the geno-
typing was available from the Illumina Omni2.5 array. We pre-phased the geno-
types with SHAPEIT (v2.r64410)62 using the default parameters, on both the
autosomes and the chromosome X. We filtered variants for MAF > 1% and
Hardy–Weinberg p value > 0.0001 and passed the haplotypes to IMPUTE2 (v2.2.2)
64 to perform the imputation using the 1000 Genomes Phase I integrated haplo-
types (Dec 2013). We used the parameters Ne= 11418 and call thresh= 0.9. We
removed variants with a call rate <90%, MAF > 1%, and Hardy–Weinberg p value
> 0.0001. A total of 9,157,622 variants passed the filters. Of these, 8,877,297 variants
were found on the autosomes and included 779,579 insertion-deletion poly-
morphisms (indels) (8.78%) and 8,097,718 SNPs (91.22%). 280,325 variants were
found on the chromosome X, which included 28,504 indels (10,16%) and 251,821
SNPs (89.84%).

To determine the ancestry of each individual from genotyping data, we carried
out a principal component analysis (PCA) with SNPs pruned for LD (pairwise r2 >
0.2 and 50 SNPs window shifting every five SNPs) (Supplementary Fig. 1A),
yielding 146,689 SNPs. The continental ancestry (African/European/Asian/
Canadian/American/Middle-Eastern) of each individual was determined based on
the PCA plot (Supplementary Fig. 1A) and verified as to whether it corresponds to
self-reported ancestry based on the country of origin of four grandparents. If the
country of origin of three out of four grandparents and the PCA continental
grouping were concordant, the individual was assigned to a continental origin.

RNA-sequencing filtering. Genes with counts-per-million below 0.5 in more than
half of the cohort (505 individuals) were removed from the analysis for a total of
15,632 genes retained for all downstream analyses. Individuals that showed obvious
outlier after visual inspection of principal component plots were removed (three
individuals).

Variables contributing to transcriptomic variation. The deep phenotyping of the
CARTaGENE cohort allow for a thorough exploration of the biological and
environmental factors that may influence genome-wide gene expression patterns.
As most statistical procedures assume a normal distribution to the underlying data,
we transformed the normalized counts from freeze 1 to a Gaussian distribution
using a log2cpm transformation using edgeR. We summarize the gene expression
levels by performing a PCA on the normalized expression matrix (ePCA). To
identify variables that contribute to genome-wide gene expression variation, we
performed a stepwise regression (stepwise search from both directions) on ePC1
and ePC2. Results of the stepwise regression are given in Supplementary Table S1, as
well as the results from the replication analyses using freeze 2. We included the
following low level endophenotypes in the stepwise procedure: set, region of residence,
cell counts (lymphocytes, neutrophils, monocytes), arterial stiffness, age, and sex.

Using the freeze 1 data set of 708 individuals, we quantified the proportion of
the variance in expression attributable to cell counts, age, sex, region, and arterial
stiffness (Supplemental material) by using principal variance component analysis
(PVCA), and found that the region of residence explains ∼16% of the variance in
gene expression, while the effects of age, sex, and cell counts were much lower
(Fig. 1e). These analyses were repeated on an additional 289 participants (freeze 2)
and both of these effects were found to be replicated on expression profiles
(Supplementary Table 1). Similarly, when combining transcriptional profiles for all
individuals, we found that the region of residence explains ∼15% of the variance in
gene expression both in FCs and in Europeans (Supplementary Fig. 2).

Sampling site effect within region. The RNA extractions and library preparation
were performed for all individuals in the same laboratory to reduce technical bias.
However, participants were sampled across four different sampling sites inevitably
situated within geographical regions where participants lived. Our experimental
design was built in such a way that sequencing run was not correlated with region
of residence (Supplementary Fig. 3a). To evaluate whether the sampling site has
any effect on the RNA-Seq quantification data, we performed extensive analyses of
the two sampling sites situated within Quebec City: St-Sacrement (STS, n= 136)
and Enfant-Jesus (EF, n= 129). QUE individuals expression profiles from the
combined data set show that individuals from STS and EF form a single cluster on
a ePCA plot (Supplementary Fig. 3b). Furthermore, a variance component analysis
(PVCA) was performed on the QUE individuals only and including sampling site

Table 1 Summary of k-mean clustering

Pollutant Low exposure High exposure

Cluster
mean by
pollutants

Number of
individuals

Cluster
mean by
pollutants

Number of
individuals

PM2.5 8.95 392 5.97 605
NO2 5.86 160 14.34 837
O3 22.97 775 25.05 222
SO2 0.72 339 1.90 658

Cluster means and number of individuals within each categories
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as an explanatory variable shows that the sampling site explains <5% of the var-
iance within QUE region, while freeze explains 15%, age 5%, and gender 2.5%
(Supplementary Fig. 3c). In comparison, in FCs or Europeans, region of residence
accounts for 15% of variance in gene expression. In addition, we performed a
differential expression analysis between sites within a region (see details below)
using permutations, and found that there are no genes differentially expressed
between clinics within a region, supporting the absence of sampling differences
between clinics affecting gene expression to a detectable and significant level.

Correction for technical and biological unwanted variation. High quality RNA-
sequencing of all 997 individuals reveals a similar geographic structure in tran-
scriptional profiling than population structure from genotyping (Fig. 1c). Investi-
gation of the variance associated to gene expression reveals that region of residency
(variable of interest) explains about 16% (Supplementary Fig. 2a) of the variance
regarding the population of origin (Supplementary Fig. 2b, c), but unwanted vari-
ables explain a certain proportion of the variance (Fig. 1e, Supplementary Fig. 2b, c).

RNA-Seq data generation, and expression data in general, are prone to technical
biases which in some cases can mimic, or be confounded, with biological variation.
The appropriate normalization pipeline in an RNA-Seq experiment will depend on
the experimental design and the hypothesis being tested. Local sequence context
can bias the uniformity of read counts along the genome, and sophisticated
normalization pipeline may be necessary when comparing expression levels across
genes65. Most experimental designs of RNA-Seq studies, like the one presented
here, compares different groups of individuals to each other, therefore the
normalization pipeline should rather focus on removing unwanted variation across
individuals.

We removed the effects of hidden covariates potentially affecting expression
levels using surrogate variable analysis (SVA)29. We used the SVA correction,
retaining five surrogate variable, for the differential expression analyses, correcting
for technical (i.e., runs, sets, number of reads) and biological (i.e., date of
appointment, time of the year, sex, smoking status, cell counts) effects on gene
expression (Supplementary Fig. 4). We performed the same stepwise regression
approach as previously, but on the SVA corrected expression level matrices and
show that we retained the variation associated with region, but removed any effects
of cell counts and arterial stiffness that was present in the uncorrected expression
levels (Supplementary Fig. 4, Supplementary Table 1). The corrections do not fully
compensate for the effect of the freeze (technical), we therefore include this
covariate in all subsequent analyses. Estimating the variance associated with hidden
batch has been shown to remove variation associated with biological and technical
factors and also increase the power to identify eQTLs58,66.

Differential expression analysis. Because of the large proportion of the variance
in gene expression explained by region of residence, we identified genes that are
differentially expressed between pairwise comparisons between the FC-locals from
the three regions (Montreal, Quebec, and Saguenay). Using edgeR67, we performed
a differential gene expression analysis using the 15,632 genes that passed the QC
filters established above. We performed the differential expression modeling using
the following statistical model:

μig ¼ βgRri þ βgRoi þ Bi þ Sg þ ϵig

where Rr is the region of residence, Ro the region of origin, B is the surrogate
variable, representing the batch effect estimated by SVA, and S represent the freeze
effect that is included in the final (see below for further details).

The significance level of the test was estimated as a gene p value below the
Bonferroni-corrected threshold of 3.20 × 10−6 (0.05/15,632). The SVA corrected
expression levels retained the variation associated with region, but removed any
effects of cell counts that was present in the uncorrected expression levels
(Supplementary Table 1).

We performed a power analysis of our ability to detect differentially expressed
genes with smaller samples sizes. Several of our comparisons of regional- or
continental-migrants with FC-locals involve smaller number of individuals
(Supplementary Table 2). We therefore assessed our ability to detect differentially
expressed genes by performing differential expression analyses between groups for
which we found large number of differentially expressed genes, but using a smaller
subset of random individuals (without replacement) of each of these groups. We
randomly selected 15 Mtl-locals and 15 Sag-locals, and performed the DGE
analysis using the same model as above. We also performed the analysis using 50
Mtl-locals and 50 Sag-locals. In each case, we could identify differentially expressed
genes which largely overlap with the differentially expressed genes detected in
comparisons using all individuals (Supplementary Fig. 6). We observe that with an
increasing number of individuals, our power to detect differentially expressed genes
increases and that the identity of the differentially expressed genes detected in each
of these comparisons largely overlap (Supplementary Fig. 6).

We further support the effect of region of residency on gene expression by
performing differential gene expression analysis across regions using permutations
that are even more robust to batch effects. The permutation-DGE analyses confirm
that differences are the greatest between MTL and SAG. Similar permutation
analyses also show that individuals living in the same region but sampled in
different clinics have similar gene expression profiles (Supplementary Fig. 3B),

supporting the absence, if not minor, of effects of sampling procedures on the gene
expression across sampling clinics.

Regional environmental effects on gene expression. We take advantage of the
presence of individuals from different regional and continental origins in our
cohort to disentangle further the effects of the genetic background and environ-
mental influences on genome-wide gene expression. We first selected individuals of
either FC and European continental ethnicity (Fig. 1a, Supplementary Fig. 1). A
total of 798 individuals including 136 Europeans and 662 FC were selected for
downstream analyses. We stratified the individuals according to their continental
origin (FC vs Europeans), and further stratified the FCs into their assigned genetic
ancestry (MTL, QUE, SAG) obtained from the fineSTRUCTURE analysis (Fig. 1b,
Supplementary Fig. 1D). We then determined their region of residence (MTL,
QUE, SAG) for a total of 12 ancestry-residence groups: we identified individuals for
which their origin (Continental or regional) is discordant with the region they
reside, which we refer to as continental- and regional-migrants respectively
(Supplementary Table 2). We also identified FC individuals for which their regional
origin is concordant to the region they reside, which we refer to as FC-locals (Mtl-
FC-locals, Que-FC-locals and Sag-FC-locals). We performed the differential gene
expression analysis pipeline as described above for different pairs of continental-
migrants, regional-migrants, and FC-locals to disentangle the effects of the genetic
background and the regional environment on genome-wide expression (Fig. 2). We
selected 6649 genes that show differential expression (p value < 3.20 × 10−6) in the
comparison between Mtl-FC-locals and Sag-FC-locals. Using the 12 origin-living
groups and the 6649 genes, we performed an unsupervised clustering and visua-
lized the groupings using a heatmap (Supplementary Fig. 5).

Gene enrichment and reactome analyses. Gene enrichment analyses were per-
formed using the topGO package in R, with a Fisher exact test. Differentially
expressed genes between MTL-locals and SAG-locals were compared against the
15,632 genes expressed in the CARTaGENE cohort that were retained after QC
filters (background). Reactome enrichment analyses were conducted with R the
package reactomePA, and here again, the background set of genes was defined as
the 15,632 genes expressed in blood that pass our filters (Supplementary Fig. 7 and
Supplementary Table 3).

Fine-scale environmental data. We obtained air quality measures in the year of
sampling (2010) from either land-based stations (SO2, ozone) or national LUR
models estimates (PM 2.5 and NO2) incorporating information from land use data
and satellite remote sensing55,68–70. Built environment variables (street network,
population density, food deserts, greenness, walkability) and social and material
deprivation indicators were accessed through the Quebec government data portal
(https://www.inspq.qc.ca/environnement-bati). All environmental data sources are
described in Supplementary Table 4.

Environmental data was available at the three-digit postal code district level
(i.e., Forward Sortation Area, FSA), or was reformatted to this geographic scale.
Postal code districts in Canada are small geographic areas which assist in delivering
mail. Postal codes are a series of six digits that identify a small geographic area in a
municipality, usually grouping just a few houses together or a small neighborhood.
Three-level digits are larger areas that include several houses, a small
neighborhood, or a small village. The population of FSAs in Canada range from a
few hundreds to tens of thousands of individuals. Three-digit postal code districts
can be of different areas, and are smaller in densely populated areas, and larger in
areas of low population density. Maps in Fig. 1c, d and Supplementary Fig. 9 depict
three-digit postal code districts as thin gray lines areas, and each district is colored
with the mean value of interest in each map. Each individual in the CARTaGENE
cohort has a three-digit postal code district associated to it, referring to the location
of its primary residence. We assigned fine-scale environmental measures to each
individual based on its three-digit postal code.

Coinertia analyses. Coinertia analysis (CoIA)31,71 is a multivariate statistical part
of the large family of ordination methods, such as PCA, redundancy analysis
(RDA), or canonical correlation analysis (CCA). CoIA is a general approach and
existing methods such as the ones mentioned above appear as special cases of it31.
These methods have been widely used in ecological research, including CoIA which
has been more recently developed. Collectively, these methods allow for detecting
an underlying data structure between two data tables. CoIA uses a combination of
PCA and multivariate linear regressions to detect linear combinations of variables
from one data table that explain the variance in the second data table. CoIA is more
flexible than RDA or CCA, and overcomes their limitations by allowing for more
variables than the number of samples to be tested31,71, which is generally the case
in genome-wide scale analyses (i.e., more genes than individuals). This makes CoIA
a method of choice to integrate data of diverse types, and of high-throughput like
most omics data.

We first used CoIA analysis to reveal the common structure between
differentially expressed genes (Fig. 3, Supplementary Fig. 11) and the fine-scale
environmental data. We produced two separate principal component analyses
(PCAs) based on continuous encoded matrices of both environmental and gene
expression levels (normalized for library size and sequencing freeze). The data were
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centered and reduced to one unit of variance prior performing the PCA analysis.
We conserved components for each PCA to explain 80% of the variance in the
data. We imputed missing data only for the fine-scale environmental data set (there
were no missing data in the gene expression matrix) using the function imputePCA
from the R package missMDA. The coinertia analysis performs a double inertia
analysis of each data set and then project the variables of the original
environmental and gene expression data sets on the new co-inertia axes.
Relationships between the two matrices were assessed by comparing the CoIA
estimated from the real data set with the CoIA distribution estimated after
bootstrapping. Two sets of 500 of CoIAs were computed independently between
gene expression and fine-scale environmental data. Supplementary Fig. 11 depicts
the resampling scheme. For each Group 1 or Group 2 (n= 497 for each) a total of
10,000× resampling of 200 individuals (without replacement) were performed. We
performed a CoIA for each resampling step. We report the median value of the
distribution of each environment–gene expression pair cross-tabulated values for
each group. Gene enrichment were performed using gProfiler72, and using the
15,632 expressed genes that passed our filters in whole blood as the background
gene set (Supplementary Table 3). We evaluated the significance of the correlations
between the two matrices with a multivariate generalization of the Pearson
correlation coefficient (RV coefficient) using a permutation test (RV-test) with
10,000 steps from the R package ade4.

To identify clinically relevant endophenotypes that are associated with fine-
scale environmental data, we performed a CoIA between 57 clinically relevant
endophenotypes (Supplementary Fig. 10) and fine-scale environmental data. The
57 clinically relevant endophenotypes were selected to encompass physical
measures (BMI, height, age, sex), most systems relevant to the human health
(cardiovascular system, pulmonary functions, hepatic system, renal system, disease
history, vision, immune system) and lifestyle measures (smoking status, alcohol
consumption, nutrition, physical activity). All biochemical endophenotypes were
measured in a single central laboratory. We resampled 10,000 times 493 individuals
from the cohort, and performed CoIA at each step between endophenotypes and
fine-scale environmental variables. We report the median value of the distribution
of each environment–endophenotype pair cross-tabulated values (Supplementary
Fig. 10).

To reveal possible associations between expression levels and endophenotypes,
we then performed CoIAs with a similar resampling scheme between 12 selected
endophenotypes that were the most strongly associated with air pollutants from
Supplementary Fig. 10 (Stroke, Arterial stiffness measures, spirometry measures,
Asthma, monocyte counts, LDL, AST, ALT, GGT) and differentially expressed
genes (results shown in Supplementary Fig. 12).

Exposure windows of weekly SO2. To increase our resolution in air pollution
exposures, we used daily SO2 ambient levels measured in each three-digit postal
code. We calculated the average exposure during the 14 days preceding the blood
draw for each participant. This way, we reduce the effect of random fluctuations
due to technical artifacts or short-term meteorological anomalies that may affect
measurements. Also, changes in gene expression and biomarkers in blood fol-
lowing a pollution exposure has been documented as a relatively fast phenomenon,
occurring after just a few days of exposure36. We then categorized the participants
using a k-means algorithm73 into high exposure or low exposure categories (see
details on the number of participants and cluster centers in the eQTL section
below).

DGE between high- and low-SO2 exposure. To find differentially expressed genes
between high and low exposure individuals, we used the same approach as
described above for identifying differentially expressed genes between regions, with
the following modifications: given the unbalanced number of individuals in each
category (108 high exposure vs 800 low exposure) of exposure, we resampled 100
times 108 individuals with replacement from the low- and high-exposure category
and performed the DGE pipeline. We performed the SVA while retaining variation
associated with SO2 exposure. We combined the results of DGE analysis in a list of
468 differentially expressed genes, and from these candidates, 170 genes were also
identified as differentially expressed between regions (Fig. 2a). Those strong 170
candidates were used for enrichment, CoIA, and multivariate models. We also
identified genes (transcription factors) that regulate our 170 differentially expressed
genes (RDEGs) using cytoscape, and we used them in addition to the differentially
expressed genes in the CoIA analyses.

Multivariate models for SO2 exposure. In an effort to characterize the effects of
confounding variables on pollution exposure, we applied multivariate models on
gene expression levels. First, similar as in the differential gene expression analysis,
we performed a SVA to remove unwanted variation of technical or unknown
biological variables while retaining the variation around SO2 exposure. We then
built multivariate models using the SO2, O3, and PM2.5 14-day exposures, as well
as the remaining 9 non-pollution environmental exposures (Supplementary Fig. 9),
as well as smoking status. Smoking status may indeed cause similar changes in
endophenotypes as pollution exposure. We then selected the endophenotypes

revealed by the CoIA as being the most associated with region and pollution
exposure (Lung disease, Asthma, Stroke, monocyte counts, liver enzymes (AST,
ALT, GGT), Arterial stiffness, spirometry tests, and lymphocyte counts), and tested
whether any of these would explain variation in the 170 candidate genes. Fur-
thermore, after having identified the health endophenotypes that are associated
with gene expression in MTL and in the whole data set (FEV1, liver enzymes, lung
diseases, and arterial stiffness, see Supplementary Figs. 10 and 12), we regressed out
their effect from the expression of the 170 candidate genes, and run the multi-
variate models to test for the effects of environmental variables itself (results col-
lated in Supplementary Table 7).

env-eQTL analysis. Environmental factors not only directly affect phenotypic
variation, but can also modulate associations between segregating genetic variants
and phenotypes1,44,45. To discover gene-by-environment interactions, we identified
eQTLs for which the effect size is modulated by environmental exposure to one of
four ambient air pollutants (env-eQTLs): PM2.5, NO2, O3, and SO2. We categor-
ized the participants using a k-means algorithm73 into two categories, high or low
exposure, irrespective of the pollutant type (Table 1). A k-means algorithm
attempts to partition the individuals into k groups (here, k= 2), such that the sum
of squared Euclidean distances from points to the assigned centroid (cluster mean)
is minimized.

We adopted a strategy (Supplementary Fig. 15) to randomly divide the
CARTaGENE cohort into discovery and replication cohorts. During this process,
for the discovery of eSNP–eGene pairs, we scan the genome at ± 500 kb of the TSS
of gene to find all putative cis-eSNPs. We used the following model where gene
expression (Y) is regressed on a given SNP (S), a given environmental air pollutant
(E) and the interaction between S and E:

Model : Yijk � Sijk þ EijkþSijkEijk

The gene expression level, was normalized using an inverse normal transformation,
and corrected for relatedness and other batch effects using the SVA R package (see
above for further information). Here, we focussed solely on the p value associated
with the Student’s t-statistic for the interaction term SijkEijk. We applied a
Bonferroni correction to the interaction p values for SNP-wise multiple testing
within gene and retained the most significant putative eSNP–eGene pair from each
gene. We then assessed this set of “best” eSNP–eGene p values for significance
across all 15,632 genes at the false discovery rate (FDR) threshold of 0.05 by
transforming the set into q values46). This represented the set of significant
discovery eSNP–eGene pairs to be tested in the replication set. We then reported
the environmental eSNP–eGene pairs that were significant (replicated) in the
replication cohort (q value < 0.05, adjusted for the ten pairs being tested) and had
the same direction of effect in both cohorts (n= 4 out of the 10).

To provide support for the replicated environmental eSNP–eGene pairs that we
reported as significant, we estimated “honest” empirical p values for the whole
sample (discovery+ replication) using permutation: for each eSNP–eGene pair we
performed the same eQTL modeling (Yijk ~ Sijk + Eijk + SijkEijk) and permuted the
expression values (Y) before obtaining the test statistic (Student’s t) for the
interaction term. By repeating this procedure 1000 times for each eSNP–eGene
pair, we built null distributions to assess the original observed (not permuted) t-
statistics. The empirical permutation p value for each eSNP–eGene pair was taken
as the proportion of permutation t-statistics larger than the observed t-statistic
(Supplementary Fig. 16, Supplementary Table 9).

Impact of lower frequency variants. We performed a CoIA analysis between all
eSNPs of significant eGenes and endophenotypic traits. To do so, we resampled
1000 times, without replacement, 420 individuals from the cohort, and performed a
CoIA at each step between endophenotypes showing variation across environments
and the eSNPs. The median value for each endophenotype-eSNP correlation from
the 1000 CoIA was calculated. The CoIA results are the correlations between eSNPs
and the endophenotypic traits values. We then tested whether the strength of these
correlations between eSNPs and endophenotypic traits were related to the MAF of
the eSNP by examining the odds ratio of observing less common variants (MAF
between 0.05 and 0.1, compared to common variants of MAF > 0.1) for stronger
endophenotypic associations (Supplementary Fig. 18). The MAF was estimated
from the complete cohort data.

Data availability. Genotyping, expression, health phenotypes, and exposure data
used in this study are available from CARTaGENE (www.cartagene.qc.ca) or the
CPTP portal (http://portal.partnershipfortomorrow.ca) upon request. The built
environment data set is publicly available from the Quebec government data portal.
The air pollution data set is available upon request to Air Health Effects division,
Government of Canada. All environmental data sources are detailed in Supple-
mentary Table 4.
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