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Topological hybrid silicon microlasers
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Henning Schomerus® & Liang Feng?

Topological physics provides a robust framework for strategically controlling wave confine-
ment and propagation dynamics. However, current implementations have been restricted to
the limited design parameter space defined by passive topological structures. Active systems
provide a more general framework where different fundamental symmetry paradigms, such
as those arising from non-Hermiticity and nonlinear interaction, can generate a new land-
scape for topological physics and its applications. Here, we bridge this gap and present an
experimental investigation of an active topological photonic system, demonstrating a topo-
logical hybrid silicon microlaser array respecting the charge-conjugation symmetry. The
created new symmetry features favour the lasing of a protected zero mode, where robust
single-mode laser action in the desired state prevails even with intentionally introduced
perturbations. The demonstrated microlaser is hybrid implemented on a silicon-on-insulator
substrate, and is thereby readily suitable for integrated silicon photonics with applications in
optical communication and computing.
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new era in condensed matter physics, providing intriguing
insights into the world of low-dimensional quantum sys-
tems featuring, e.g., the quantum Hall effect and quasiparticles
with fractional statistics, and paving the way to engineer new
states of matter, such as topological insulators and super-
conductors!. Inspired by this groundbreaking work, topological
mechanisms of optical mode formation have been proposed?. The
subsequent investigations of passive topological photonic systems
have facilitated unidirectional transport channels in photonic
crystals®, optical cavity arrays®®, as well as helical waveguide
lattices®, and the demonstration of robust topological defect states
in metamaterial arrangements and dielectric resonators”, among
a host of other intriguing effects>!? that even extend to acoustic
systems' . However, these pioneering studies have been limited in
scope, ex3ploring only a small subset of the full design parameter
space!>1°,
Active optical systems involving feedback mechanisms provide
a much wider arena. Most recently, considerable effort has
been made to transplant the topological notions into lasing sys-
tems!4~16, in which topological robustness collides with other
physical considerations, posing diverse unexplored fundamental
questions about the interplay between topological features, non-
Hermitian physics!’~2%, and the break-down of the superposition
principle. The answers to these questions transform our under-
standing of topological robustness by revealing unique connec-
tions between topology and other types of fundamental
symmetries arising from non-Hermiticity (naturally pertinent to
active systems), thus opening the door for improving robust
optical device functionality, a key incentive in the research of
integrated photonics over the past few decades. This new

The discovery of topological band theory has ushered in a

paradigm dictates a fresh look at the basic notion of topological
protection in order to take into account the expanded design
parameters space’>3!, and to establish a connection between
topological physics and various separate activities on non-
Hermitian photonic systems>2~34,

Here, we experimentally explore the utility of topological
concepts to active systems and demonstrate an on-chip hybrid
silicon microlaser whose mode competition naturally favours
robust laser action arising from a topological defect. Different
from a recent breakthrough demonstration of topological edge-
mode lasing where the edge state is selectively excited, our
microlaser is based on the strategic combination of non-
Hermitian and topological symmetries, supporting arbitrary
pumping strategies (either uniform or selective pumping).

Results

Topological microlaser array on a hybrid silicon platform. Our
topological laser structure is an array of coupled microring
resonators (Fig. 1a), motivated by a non-Hermitian variant®>2¢ of
the paradigmatic Su-Schrieffer-Heeger (SSH) model*®%, a tight-
binding Hamiltonian whose topological features arise from a
sequence of alternating couplings and that adapts flexibly to
many physical settings*®?°. The coupling profile is precisely
controlled by the separations between adjacent rings in an
alternating fashion, which in turn determine the strength of the
evanescent wave tunnelling rate. A spacing defect in the centre of
the array creates a topological zero mode that decays exponen-
tially away from the defect, and only populates every other
resonator. In comparison to the edge mode®®, our defect mode is
well isolated from leakage at the end; furthermore, such spacing
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Fig. 1 Topological hybrid silicon microlaser. a Schematic of a topological laser array made of nine microring resonators with alternating weak (t;) and strong
(t) couplings, emulating an SSH model. A layer of 10-nm Cr (shown in yellow) is deposited on top of every second element to introduce distributed gain
and loss. The red halos represent the intensity profile of the oscillating zero mode that resides at the central site and decays exponentially away from the
centre, with zero intensity in every second element. b Spectral features of the topological laser array, highlighting the lasing selectivity of the topological
zero mode. Due to the charge-conjugation symmetry, the spectrum is symmetric around the imaginary axis. The blue circles represent the calculated

eigenvalues of all the nine supermodes of the laser array. ¢ SEM pictures of the fabricated structure consisting of nine rings on a hybrid IlI-V/silicon

platform. Each ring has inner and outer radii of 3.5 and 4.5 um, respectively, and is made of 500 nm-thick InGaAsP quantum well layers on top of a 220 nm
silicon layer grown on a silicon-on-insulator (SOI) substrate. The alternating 200 and 300 nm edge-to-edge separations between adjacent rings realise the
weak coupling t; =78 GHz and the strong coupling t, =134 GHz, compositing an estimated Hermitian topological band gap of 112 GHz in the absence of
loss. In the top panel of ¢, we highlighted the Cr layer with artificial yellow rings for better visualisation of the arrayed structure, since the Cr layer is only
~10 nm thick and difficult to be clearly seen, especially in pictures of low magnification. Scale bars in €: low magnification: 10 um; high magnification: 2 um
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defects can be created as desired anywhere within the structure.
Spectrally, the topologically protected zero mode resides at the
centre of a band gap, where the symmetric features of the passive
band structure arise from a chiral symmetry—a symmetry that
maps the two symmetric bands onto each other!. This symmetrgr
is specifically related to inverting the sign of the couplings’,
which forces the zero mode onto one “bright” sublattice (here,
every second resonator including the defect location)®’. The
distributed gain and loss follows a non-Hermitian charge-con-
jugation symmetry (a non-Hermitian variant of the chiral sym-
metry, which also distinguishes the zero mode in terms of its
lifetime), leading to a response that robustly discriminates
between the topological and non-topological states?® as demon-
strated by linear passive mode guiding of microwaves?’ (see
Supplementary Note 1 for detailed analysis). Considered in the
complex frequency plane, this directly translates into an enhanced
gain of the topological zero mode, therefore favoring it over other
states throughout the nonlinear mode competition process
(Fig. 1b), in which a novel dynamical notion of topological pro-
tection persists (see Supplementary Note 2). In our experiment, a
hybrid III-V silicon semiconductor platform is chosen to deliver
a robust silicon laser for maximising its potential for photonic
integrated circuits. Fig. 1c depicts a scanning electron microscope
(SEM) picture of the fabricated topological microlaser array,
consisting of nine coupled InGaAsP-silicon microring resonators
on a silicon-on-insulator (SOI) substrate. As the number of
resonators is odd, the zero mode is compatible with the boundary
conditions, so that the main effect of the finite system size is the
quantisation of the extended states. In order to generate the
desired gain/loss distribution, a layer of approximately 10 nm
chromium (Cr) is deposited on top of every second resonator
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using overlay electron beam lithography (EBL) (see Methods).
Finally, the gain profile is provided through uniform optical
pumping applied from the top (see Methods).

Characterisation of single-topological-mode lasing. The spec-
tral properties of the laser action are characterised under different
optical pumping levels. While the coupled microring array in
principle supports multiple longitudinal modes, only the zero
mode can emerge above the lasing threshold due to the intro-
duced topology/non-Hermiticity interplay. The measured spectral
evolution of the topological hybrid silicon microlaser clearly
manifests a significant spectral narrowing from broadband pho-
toluminescence to amplified spontaneous emission (ASE), and
finally to persistent single-mode lasing when well above the lasing
threshold (Fig. 2a). Due to the topological robustness associated
with the zero mode, the desired single-mode operation is per-
sistent with the resonant peak remaining well isolated around a
wavelength of ~1523 nm from ASE to lasing, while the corre-
sponding extinction ratio drastically increases to a value of ~20
dB. Fig. 2b shows the light-light curve, where the pump depen-
dence of the total emitted intensity agrees well with the expec-
tations for single-mode laser action, as it only displays a single
threshold without further kinks.

Large-area single-transverse-mode lasing. A large overlap
between the lasing-mode profile and the gain material is desired
in order to achieve high efficiency. In our experiment, therefore,
we intentionally design a large-area single-mode laser with the
transverse dimension of the hybrid ring being 1 ym wide and 720
nm thick (500 nm InGaAsP and 220 nm silicon). In this regard,
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Fig. 2 Topological laser action. a Lasing spectrum of the structure of the topological hybrid silicon microlaser as a function of the pumping power much
below the threshold (top panel), approaching the threshold (middle panel) and well above the threshold (bottom panel). As expected, as the pump power
is increased, the output emission experiences a transition from broadband photoluminescence to a single narrow band lasing with an increased extinction
ratio. b Pump dependence of the laser emission intensity, demonstrating the fingerprint of single-mode lasing: only one threshold with no other kinks in the
light-light curve. Blue dots are experimental data and the red lines are linear fits with least squares of the data before and after the lasing threshold,
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Fig. 3 Intrinsic single-supermode topological laser action. a Multimode lasing from an identically sized microlaser array as the topological microlaser, but
without on-top Cr deposition on every second ring to introduce the distributed gain/loss profile. b Measured lasing mode profile of the topological
microlaser without on-top Cr deposition. ¢ Single-supermode lasing from the topological microlaser under the same pumping condition. d Measured lasing
mode profile of the topological microlaser with the distributed gain/loss profile. The broad spectrum in a is due to mode competition between the
transverse and longitudinal modes of the single-ring resonators, each of which forms its own collective state. In ¢, the distributed gain and loss judiciously
spoils the quality factors of the strongly hybridised modes, topologically favoring only the zero mode centred around A =1523 nm

while each ring supports several transverse modes, the funda-
mental transverse mode selected for the zero mode (TM,;; mode
in our work) occupies a much larger area of gain compared with
the array of single-transverse-mode rings. In order to confirm the
role of topological features in this enriched mode selection pro-
cess, a control experiment was conducted using an identically
sized microlaser array without the designed distributed gain/loss
profile. As expected, the hybridisation through couplings of all
the transverse and longitudinal modes under the uniform
pumping scenario displays a broader emission spectrum with
multiple peaks and a reduced peak intensity (Fig. 3a), with the
total emission homogeneously distributed over the entire struc-
ture (Fig. 3b). In contrast, the zero-mode lasing in the topological
array is highly reliable, despite the mode competition in each ring
and between the rings (Fig. 3c), which is a direct outcome of the
interplay between the topological mode hybridisation and non-
Hermiticity (see Supplementary Note 3). The lasing action of the
topological zero mode is further validated by the measurement of
the spatial lasing mode profile presented in Fig. 3d.

Robust lasing oscillation against local perturbation. One of the
most important features of topological states is their robustness
against defects and disorder. In particular, the spectral features of
the zero mode associated with the passive SSH model are known
to be insensitive to off-diagonal perturbations represented by the
coupling coefficients. In active SSH systems, however, we find
that the system can still display a certain level of immunity
against diagonal perturbations. In other words, the zero-mode
lasing can well survive with onsite perturbations despite a slight
spectral shift of the mode energy (see Supplementary Note 4 for a
quantitative analysis). This behaviour is exemplified in Fig. 4a,
illustrating the modelled spectrum, and in Fig. 4b, showing the
modified zero-mode profile when the resonant frequency of the
third microring from the right is perturbed (as schematically
labelled in the inset of Fig. 4a). To confirm these predictions
experimentally, we introduced a polymer layer on top of the third
ring resonator from the right to introduce a shift in its resonant
frequency (see the SEM image in Fig. 4c) and measured the
emission spectrum (Fig. 4d) and the lasing mode profile (Fig. 4e).
It is evident that the zero-mode lasing still persists with a high
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extinction ratio, without appreciable change in the spatial emis-
sion profile apart from very small intensities leaking to the
otherwise dark sublattice.

Discussion

We have presented the first demonstration of a topologically
robust single-mode hybrid silicon microlaser. Our work, com-
plementing recent efforts*!*2, shows that the interplay between
topology and non-Hermitian symmetries equips the emerging
topological zero mode with a distinct mode profile that enables it
to fully exploit the distributed gain domains, while simulta-
neously spoiling other states through deliberately introduced
optical absorption. The demonstrated laser action is stable and
immune to moderate perturbations and defects since the zero
mode is topologically protected by the applied symmetries.
Compared to other mechanisms to obtain single-mode lasing, the
present mechanism utilising topological features is unique in
several respects: the lasing mode makes optimal use of the gain
since the defect state resides only on the gain site, and displays a
mode profile that is distinct from the extended states that one
would obtain from other type of defects. The mode is protected
against a large class of symmetry-preserving perturbations, and as
it automatically sits in the centre of a spectral gap it is also more
robust against symmetry-breaking perturbations (as are una-
voidable in the experiment). Finally, the mechanism provides
single-mode lasing for an arrayed supermode as opposed for the
longitudinal mode of a single microring. Interestingly, as
explained in Supplementary Note 2, the special features of the
zero mode hold even when nonlinear gain saturation is taken into
account. Realised in a hybrid III-V/silicon platform, the accom-
plished topological hybrid silicon microlaser supports large-area
single-supermode operation, promising a highly efficient optical
source for integrated silicon photonics to robustly feed power for
chip-scale communication and computing.

Methods

Fabrication of the hybrid silicon laser. The topological microring laser was
fabricated using direct bonding and overlay EBL processes. First, standard cleaning
procedures were performed to prepare InGaAsP/InP and SOI wafers for the direct
bonding, including acetone, isopropyl alcohol cleaning in a supersonic bath, and
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Fig. 4 Effect of disorder on the topological microlaser. a Numerical calculations for the spectrum of a disordered lattice when an onsite perturbation is
introduced to the third site from the right (highlighted in red), as indicated schematically at the top of the same panel. b The mode profile of the topological
eigenstate, normalised with identity norm calculated from the perturbed tight-binding Hamiltonian, where the general characteristics of the zero mode
persist with addition of small light intensities on the previously dark sublattice (labelled in yellow marks). ¢ SEM image of the perturbed topological laser
array with an on-top thick layer of polymer covering the corresponding ring. Scale bar: 10 um. d Measured emission spectrum of the perturbed laser array
showing the maintained single-mode lasing feature against the introduced onsite perturbation. @ Measured mode profile of the perturbed laser array.
Despite the introduced perturbation, single-mode lasing and its spatial profile remain in the whole range of pump power (up to 2.4 GW m~2 that is -3 times
the lasing threshold) used in our experiment. This robustness arises from the topological robustness of the defect even with nonlinearity above the

threshold (see Supplementary Note 2)

O, plasma cleaning. Next, the InGaAsP/InP wafer was bonded with the SOI wafer,
followed by a selective wet etching using HCI to remove only the InP substrate.
Afterwards, a 500-nm-thick InGaAsP active layer was achieved on top of SOI.
Then, the topological microring array was generated using EBL in hydrogen sil-
sesquioxane, followed by chlorine-based dry etching through both InGaAsP and
silicon layers. Another lithography step was then performed with accurate align-
ments, creating patterns in polymethyl methacrylate (PMMA) on every second
microring, followed by deposition of Cr and lift-off of the sacrificial PMMA layer to
realise the distributed gain and loss. We note that the etching process for forming
the microring structure results in roughness on the sidewall, which in general
favours the lasing of the TM modes over TE ones due to the reduced quality factor
of the latter.

Laser characterisation. We performed the characterisation of the lasing spectra
and lasing intensity of the fabricated hybrid microring array based on optical
pumping. The semiconductor laser was pumped by a nanosecond pulsed laser of a
50 kHz repetition rate and an 8 ns pulse duration at the wavelength of 1064 nm,
which provides much stronger peak power to generate sufficient gain compared
with a continuous wave laser and avoids heat accumulation due to its corre-
sponding low duty cycle. To ensure uniform illumination of pumping on each of
the nine microrings, a cylindrical lens and a Mitutoyo 20 X near-infrared (NIR)
long-working distance objective (NA = 0.4) were utilised to span and focus the
pumping beam along the array direction. The lasing emission from the fabricated
laser array was collected by the 4-F system composed by the same NIR objective
and a lens with a 20-cm focal length. Controlled by a flip mirror, the lasing field
can be switched to the monochromator for characterisation of the spectral infor-
mation, or to the infrared charge-coupled device camera for characterisation of the
spatial intensity distribution with the pumping beam eliminated by a long-pass
filter (1400 nm cutoff wavelength).
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Data availability. The datasets within the article and supplementary information
in the current study are available from the authors upon request.
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