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Abstract

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) and 

dialysis in the Western world. Early DKD, including microalbuminuria and renal hyperfiltration, 

are common in adolescents with type 2 diabetes (T2D). Furthermore, youth-onset T2D carries a 

higher risk of progressive DKD than adult-onset T2D of similar diabetes duration. DKD is 

characterized by a long clinically-silent period without signs of disease. Therefore, a major 

challenge in preventing DKD is the difficulty in identifying high-risk T2D patients at an early 

stage.

The Type 2 Diabetes in Adolescents and Youth (TODAY) study demonstrated a high initial 

prevalence that increased over time, irrespective of treatment arm. This key observation 

underscores the importance of discovering new therapeutic targets to supplement conventional 

management, in order to reduce DKD risk.

In this review, we focus on early DKD in T2D and summarize potential novel biomarkers and 

therapeutic targets.
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Introduction

Diabetic kidney disease (DKD) remains a leading cause of morbidity and mortality in people 

with type 2 diabetes (T2D) (1–3). The 2011 US Renal Data System reported that DKD 

accounted for 44.5% of all cases of end-stage renal disease (ESRD) (4). In 2009, overall 

Medicare expenditure for people with chronic kidney disease (CKD) and diabetes accounted 

for $18 billion (4). The prevalence of DKD has remained fairly stable over the last 20 years, 

despite increasing prevalence of T2D (5, 6), likely related to improved glycemic, blood 

pressure and weight control, since evidence-based therapies directly targeting DKD are 

scarce. Markers of early DKD, including microalbuminuria and renal hyperfiltration, are 

common in youth with T2D (7). For example, we previously reported a prevalence of 34% 

for microalbuminuria and 24% for renal hyperfiltration in adolescents with T2D with a mean 

age of 15 years (7). Moreover, the Type 2 Diabetes in Adolescents and Youth (TODAY) 

study demonstrated that microalbuminuria is common in youth with an average T2D 

duration of only 6 months and reported a 2.5 fold increase in the occurrence of 

microalbuminuria over an average follow-up of 3.9 years (8). Since signs of DKDare already 

present at diabetes diagnosis in youth with T2D, early interventions may be the most likely 

to prevent progression of DKD.

Youth-onset T2D carries a particularly high risk of progressive DKD, which is significantly 

greater than youth with type 1 diabetes (T1D) or adults with T2D of similar disease duration 

(8–15). In fact, adolescents with T2D have a two-fold increased risk of microalbuminuria 

compared to youth with T1D (8, 10, 16). Risk factors for DKD in T2D include female sex, 

obesity, triglycerides, hyperglycemia, hypertension, cardiovascular disease, insulin 

resistance, and elevated uric acid (17–21) [Figure 1].

There are limited longitudinal data available on the natural history of DKD in youth with 

T2D (22). Microalbuminuria may precede the onset of T2D in insulin-resistant obese 

adolescents (23, 24). In addition, hyperfiltration is thought to be a major contributing factor 

for DKD in T2D, reflecting underlying increased intraglomerular pressure leading to 

structural changes over time, such as mesangial expansion and glomerular basement 

membrane thickening (25). Obesity and impaired glucose tolerance are associated with 

hyperfiltration (25–29), suggesting that renal injury occurs very early in the disease process 

(30), possibly prior to development of T2D. It is also noteworthy that a significant 

proportion of patients do not follow this classical trajectory of microalbuminuria and 

normal-to-elevated glomerular filtration rate (GFR), followed by proteinuria and GFR 

decline; instead, these patients exhibit an accelerated GFR decline in the absence of 

proteinuria (17–21). The loss of renal function in the absence of albuminuria highlights the 

need to identify alternate biomarkers that better capture early DKD risk.
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By the time GFR is below 60mL/min/1.73m2, approximately half of renal function is lost, 

with well-established renal structural changes that are usually refractory to therapeutic 

strategies, including improved blood pressure and glycemic control (31, 32). While there are 

reports demonstrating associations between glycemic control, insulin sensitivity, and DKD 

in youth with T2D (7, 8), additional longitudinal data are required to further characterize 

these relationships and to identify novel and modifiable risk factors that contribute to the 

development and progression of early DKD. Understanding these risk factors may enable us 

to identify individuals at high risk of early DKD and to intervene prior to permanent kidney 

injury. In this review, we focus on early DKD in T2D and summarize risk factors, early 

biomarkers and therapeutic targets for this condition.

Risk factors for DKD in youth with T2D

i. Microalbuminuria

Microalbuminuria, defined as albumin-to-creatinine ratio ≥30mg/g or an albumin-excretion-

rate ≥200ug/min, has been used as a marker of renal and systemic vascular dysfunction (33) 

and metabolic risk in adults and adolescents with prediabetes and T2D (34), (35). The 

implications of having microalbuminuria are, however, controversial, since 

microalbuminuria regresses to normoalbuminuria in a significant proportion of adults with 

T2D (36). Proposed determinants of albuminuria regression include blood pressure and 

glycemic control (36) but are not well defined in adolescents with T2D. In adults with T1D, 

estimated insulin sensitivity at baseline was predictive of microalbuminuria regression over 

6-years of follow up [odds ratio: 2.5, 95% confidence interval 1.3–4.9, p= 0.006] (37). 

Similarly, in our cross-sectional analysis of adolescents with T2D, one standard deviation 

increase in measured insulin sensitivity by the hyperinsulinemic-euglycemic clamp 

technique was associated with lower odds of having microalbuminuria [odds ratio: 0.41, 

95% confidence interval 0.17-0.99, p=0.047] (7). For these reasons, insulin sensitivity may 

hold promise as a modifiable risk factor for microalbuminuria in adolescents with pre-

diabetes and T2D.

ii. Renal hyperfiltration

Early DKD phenotypes, such as renal hyperfiltration and rapid GFR decline, are considered 

strong risk factors for progression to CKD and ESRD and may predict progressive DKD 

prior to loss of renal function (38–42). For that reason, GFR may be a more clinically 

relevant measure of early nephropathy than albuminuria in diabetes. As a result, the 

American Diabetes Association, National Kidney Foundation and International Society of 

Nephrology recommend annual measurement of estimated GFR to identify and monitor 

DKD (43–45).

Renal hyperfiltration is typically defined as a GFR of between 120 mL/min and 150 

mL/min/1.73m2, or greater than 2 standard deviations above the mean GFR in normal, 

healthy individuals (46), and is thought to represent the earliest hemodynamic abnormality 

seen in diabetes (27, 38, 47). Individuals with T2D frequently exhibit a significant increase 

in GFR, with the prevalence of renal hyperfiltration reported to range between 5-40% (27, 

38), predisposing this population to progressive renal disease (27). The pathogenesis of 
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hyperfiltration in T2D is incompletely understood but has been attributed to glomerular 

hemodynamic and tubular factors (48). Hyperfiltration has also been documented to occur in 

individuals with glucose intolerance before the diagnosis of T2D (49, 50). Additionally, 

obesity and impaired glucose tolerance are associated with renal injury that is 

pathophysiologically and histologically similar to classical diabetic nephropathy (27–29, 

51), suggesting that the renal insult may begin prior to the development of frank 

hyperglycemia (30). For example, a recent report demonstrated increased estimated GFR in 

adolescents with pre-diabetes and overweight adolescents compared to lean controls (35).

iii. Rapid GFR decline

Rapid GFR decline, commonly defined as annual loss greater than 3mL/min/1.73m2 or 

>3.3%/year, is considered a stronger predictor of progressive DKD than albuminuria in T1D 

(52–57), but data in T2D are less consistent (58). In Pima Indians with T2D, rapid GFR 

decline is frequently present prior to the onset of macroalbuminuria and the GFR slope over 

time is reported to be almost as predictive of ESRD as albuminuria (58). In contrast to data 

from adults with T1D, progression to ESRD was strongly dependent on progression to 

macroalbuminuria (58). Given the importance of rapid GFR decline and current lack of data, 

longitudinal assessments of GFR trajectories in adolescents with T2D are needed.

iv. Estimation and measurement of GFR in T2D

Although there are several equations available to estimate GFR in children and adolescents 

using endogenous filtration markers (serum creatinine and/or cystatin C), to our knowledge 

no single equation has been specifically developed or validated in adolescents with T2D. 

The Schwartz creatinine-based equation from 2009 is the most widely used in clinical 

practice, but with its most accurate range being between 25-75 mL/min/1.73m2 (59), this 

equation is less useful in adolescents with T2D who usually have GFR values above this 

range (27, 38, 40, 41). Stronger agreement with measured GFR was demonstrated with 

cystatin C (e.g. Zappitelli and Berg) (60–62) and combined creatinine and cystatin C 

equations (e.g. CKiD, Zappitelli, Schwartz, Bouvet combined creatinine and cystatin C 

equations) (59–61, 63, 64) compared to creatinine equations (59–64). While both serum 

creatinine and cystatin C are affected by factors other than GFR, cystatin C is considered to 

be less biased by age and weight compared to creatinine-based measurements and correlates 

more closely with direct measures of GFR over a wide spectrum of plasma glucose levels 

(65, 66). Despite the possible superiority of cystatin C compared to creatinine, currently 

available estimates of GFR remain imperfect (67–69) and there are no currently published 

equations validated against measured GFR in youth with T2D.

A recent DCCT-EDIC paper reported that changes in eGFR over a 3 year period may not 

reflect changes in measured GFR (70, 71). This is of particular concern in adolescents and 

young adults with diabetes, in whom renal hyperfiltration is present in approximately 50% 

of individuals (38, 46). The dissociation between changes in eGFR and measured GFR is of 

further concern since rapid changes in GFR may be missed due to a lack of acceptable 

screening methods for subtle changes in renal function (56). Perrin et al. reported that most 

GFR estimations fail to detect a significant proportion of hyperfiltration in patients with T1D 

based on measured GFR and concluded that estimated GFR cannot replace measured GFR 
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in T1D patients with hyperfiltration (72). Recently, MacIsaac et al. demonstrated that, in 

adults with T1D and T2D, estimated GFR by creatinine significantly underestimated early 

decline in measured GFR (73). There is, thus, a clear need to improve calculation of GFR in 

the ambulatory setting. We recently demonstrated that iohexol clearance using dried 

capillary blood spots on filter paper measured GFR accurately in adults with T1D compared 

to the gold standard method of plasma iohexol measurement (74). This method was also 

piloted for feasibility in adolescents and adults with T1D (74, 75) and has the potential to be 

translated to screening for early kidney disease in adolescents with T2D in both clinical and 

research settings (74).

Novel biomarkers for the prediction of DKD

DKD is characterized by a long, clinically silent period without signs or symptoms of 

disease. However, while albuminuria and estimated glomerular filtration rate are currently 

the best means of screening for DKD in adolescents with T2D, there is a need for improved 

methods to detect early mediators of renal injury. Early detection would improve risk 

stratification and ultimately prevent initiation and progression to ESRD. Serum and urinary 

biomarkers that show promise in predicting DKD in adults with T2D are listed in Table 1. 

Circulating TNF Receptors 1 and 2 are particularly promising and strongly predicted ESRD 

in adults with T2D with and without proteinuria (76). Rather than examining single 

biomarkers, improved prediction may also be obtainable with panels of several urinary or 

serum biomarkers. Looker et al recently examined a broad set of 207 serum biomarkers in 

154 Scottish T2D adults with incident cases of progressive GFR decline, and 153 non-

progressing controls from the Genetics of Diabetes Audit and Research Tayside Study (GO-

DARTS). A panel of 14 of these biomarkers (including FGF-21, SDMA, ADMA, β2-

microglobulin, C16-acylcarnitine, and KIM-1) significantly improved upon the predictive 

performance of rapid progression by clinical data alone, with an increase in the area under 

the ROC curve from 0.706 to 0.868 (77). Similar analyses are needed in adolescents with 

T2D.

Urinary proteomics is also a promising method of evaluating DKD risk early in the course of 

illness (78–81). CKD273, a panel of 273 urinary biomarkers, has shown to improve 

prediction of macroalbuminuria in individuals prior to an increase in albumin excretion (78–

81). Furthermore, the addition of multi-peptide biomarkers to eGFR and albuminuria 

significantly improved prediction of CKD (80).

Another novel group of biomarkers are gasotransmitters, which include nitric oxide (NO), 

carbon monoxide (CO), and hydrogen sulfide (H2S). These gasotransmitters play important 

roles in the glomeruli for scavenging of reactive oxygen species, blood pressure regulation, 

and inflammation (82, 83). In diabetes, the bioavailability of gasotransmitters is generally 

lowered. For instance, deficiency of endothelial nitric oxide synthase (NOS) results in 

accelerated nephropathy in diabetic mice (84–86) and supplementation of 

tetrahydrobiopterin, a co-factor of NOS, reduces proteinuria and renal injury in T2D rats 

(87). Measurements of NO, CO, and H2S are not routinely available and remain technically 

challenging due to a relatively short half-life (82). Studies in humans are also needed to 

determine whether gasotransmitters are important risk factors for progression of DKD.
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Novel therapeutic targets

Insulin sensitivity

Insulin resistance leads to important hemodynamic changes in the kidney, including 

increased sympathetic nervous system tone, hypertension, and accelerated atherosclerosis of 

the renal microvasculature. We previously demonstrated relationships between measured 

insulin sensitivity, albuminuria, and eGFR and also found lower odds of albuminuria with 

greater insulin sensitivity in adolescents with T2D (7). The association between insulin 

sensitivity and DKD is also increasingly recognized in adults with T2D, with reports 

demonstrating a cross-sectional relationship between measured insulin sensitivity and 

albuminuria (88), greater odds of albuminuria in adult T2D males with the highest quartile 

of HOMA-IR (89), and longitudinal associations between HOMA-IR and incident 

microalbuminuria over 5-years (90).

While insulin sensitivity can be modified by lifestyle changes (diet and exercise), drugs, 

such as metformin, have also been examined in renal studies. The Bypass Angioplasty 

Revascularization Investigation 2 Diabetes (BARI-2D) study showed no benefit of an insulin 

sensitizing strategy on DKD in older adults with coronary artery disease and T2D (91) and 

the use of metformin in adults with T2D and stage 5 CKD has been associated with a 

significantly increased risk of all-cause mortality (92). While these studies showed no 

benefit of insulin sensitization on DKD in T2D, they were conducted in cohorts of older 

adults with multiple cardiovascular risk factors and longstanding nephropathy who may be 

less responsive to changes in insulin sensitivity than early DKD in adolescents with T2D. 

Therefore strategies to improve insulin sensitivity in T2D youth may still be of benefit to 

renal health and deserve further study.

Uric acid

Serum uric acid is a recognized risk factor for DKD in T2D (93, 94). Patients with T2D have 

elevated serum uric acid concentrations compared to their non-diabetic peers (95). 

Moreover, the metabolism of fructose, which is endogenously produced in diabetes from 

excess glucose via the polyol pathway, is associated with the generation of uric acid from a 

side chain reaction driven by ATP depletion and purine nucleotide turnover (96). Evidence 

from animal studies demonstrates that blocking uric acid production protects the kidney 

from tubulointerstitial injury, which may suggest a causal role for uric acid in the 

development of DKD (96). In an Italian cohort of T2D adults with normal kidney function 

and without overt proteinuria, the risk of CKD during a 5 year follow-up was significantly 

higher in participants with hyperuricemia compared with those without (93). In adults with 

T2D and DKD, serum uric acid was also found to predict progression of established DKD 

(94). From a renal therapeutic perspective, a post hoc analysis of the Reduction of Endpoints 

in Non-Insulin Dependent Diabetes Mellitus with the Angiotensin II Antagonist Losartan 

(RENAAL) Trial found that lowering serum uric acid levels with losartan, which reduces 

serum uric acid levels by facilitating urinary uric acid excretion, accounted for 20% of the 

renoprotective benefit of this medication (97). More direct uric acid lowering with xanthine 

oxidase inhibitors, such as allopurinol, significantly reduces proteinuria in T2D patients and 

macroalbuminuria (98) and may also help maintain stable renal function and reduce 
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cardiovascular risk in patients with T2D (99, 100). Studies examining the relationships 

between serum uric acid and DKD in adolescents with T2D are needed to determine if uric 

acid plays a role in the pathophysiology of pediatric T2D. To determine whether uric acid 

lowering translates into renal or cardiovascular protective effects, the Preventing Early Renal 

Function Loss in Diabetes (PERL) study is an on-going multi-center, double-blind, 

randomized clinical trial of allopurinol in individuals with T1D and either albuminuria or 

renal functional decline (101). If PERL produces promising results, similar studies should be 

considered in adolescents and young adults with T2D.

Vasopressin

Arginine vasopressin (AVP) plays an essential role in regulation of volume status and exerts 

important renal and cardiovascular effects in health and disease. It is recognized that AVP 

infusion induces hypertension, glomerular hyperfiltration, and albuminuria (102–104). 

Unfortunately, measuring AVP is technically difficult due to its relatively small size and 

short half-life. Copeptin is a more stable peptide derived from the same precursor molecule 

as AVP, is accepted as a surrogate marker for AVP, and is useful in the assessment of fluid 

and osmotic status in various diseases. AVP concentrations are higher in adults with T2D 

compared with healthy counterparts (105, 106). High concentrations of plasma AVP are 

known to preferentially stimulate vasopressin V1a receptors (107), which may contribute to 

the cardiovascular and renal complications associated with diabetes. For example, Fenske et 

al. recently reported that copeptin was strongly associated with cardiovascular events and 

mortality in adults with T2D (107). Similar findings were also demonstrated by Riphagen et 

al. who showed that copeptin correlated with cardiovascular and all-cause mortality in adults 

with T2D in the Zwolle Outpatient Diabetes project Integrating Available Care 

(ZODIAC-31) study (108). In adults with T2D, copeptin has also been associated with 

declining GFR in the type 2 DIABetes, Hypertension, CArdiovascular Events and Ramipril 

(DIABHYCAR) (109), and ZODIAC-33 studies (110). To our knowledge, the association 

between copeptin and renal health in youth with T2D has yet to be examined. The 

vasopressin system is not only a modifiable risk factor, but also a promising therapeutic 

target with the recent availability of vaptans (vasopressin receptor antagonists). Vaptans are 

generally well-tolerated, with most commonly reported adverse effects including dry mouth, 

thirst and increased daytime urination (111).

ACE2 and neprilysin

Another important system in DKD is the renin-angiotensin-aldosterone system (RAAS). 

However, RAAS inhibition does not halt or delay progression of DKD in T2D (112–114) as 

effectively as it does in T1D (113). While a primary prevention study failed to demonstrate 

benefit of RAAS inhibitors (2) and another showed harm with dual RAAS blockade (3), the 

identification of angiotensin-converting enzyme 2 (ACE2) has changed our understanding of 

RAAS and introduced potential new therapeutic targets (115). ACE2 is expressed in most 

tissues, but especially abundant in the kidney (116) and cleaves the C-terminal amino acid of 

Angiotensin II to generate the peptide Angiotensin 1-7, which is thought to provide 

renoprotection by counteracting the adverse effects of Angiotensin II (117). Angiotensin 1-7 

is also thought to reduce oxidative stress, inflammation, and lipotoxicity (118). Diabetic 

animal models are associated with Angiotensin II over-activity (119, 120) and studies with 
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downregulation of tubular ACE2 found significant albuminuria and tubular injury (121, 

122). Furthermore, ACE2 activity at the podocytes can attenuate the development of DKD 

(123), suggesting a potential mechanism to counteract diabetes-associated Angiotensin II 

over-activity (119, 120). In fact, DKD is associated with reduced tubular ACE2 expression 

(124) and ACE2 activity is associated with glycemic control and glomerular filtration rate 

(GFR) in adults with DKD (125). For these reasons, studies have investigated ACE2 as a 

potential therapeutic target using recombinant ACE2 and Mas receptor modulators to 

diminish DKD progression, with promising preliminary results (126–130).

A system strongly related to RAAS is the natriuretic peptide (NP) system that counter-

regulates the RAAS. Neprilysin is an enzyme responsible for degradation of NPs (131). 

Neprilysin inhibitors (NEPi) lead to natriuresis, vasodilatation, and reductions in both 

intraglomerular pressure and proteinuria (132, 133). The beneficial renal effects of NEPi 

may be enhanced when combined with RAAS blockade, which led to the development of 

combined NEPi/RAASi agents. While no large-scale human trials have been conducted with 

NEPi or NEPi/RAASi in a CKD cohort to date, animal models show promising results. For 

instance, in a 5/6 nephrectomy model (CKD animal model with unilateral nephrectomy and 

either partial infarction or amputation of the poles of the remaining kidney), AVE7688, a 

vasopeptidase blocking ACE and NEP, increased renal synthesis of nitric oxide, decreased 

synthesis of endothelin-1, and increased tubular ANP release, leading to with reduced renal 

vasoconstriction, proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis (134). 

LCZ696, a combined angiotensin-neprilysin inhibitor, was shown to be superior to enalapril 

in reducing the risks of death and hospitalization for heart failure in adults with and without 

diabetes in the PARADIGM-HF study (135, 136). Renal outcome studies using this 

emerging class are not yet available.

Sodium glucose co-transporter 2

Another important emerging therapeutic area relates to sodium glucose co-transporter 2 

(SGLT2) inhibition. This class of agents has a strong mechanistic basis for renal protection 

in both T2D and T1D. In adults with T1D, SGLT2 inhibition with empagliflozin 

significantly attenuates renal hyperfiltration, likely by restoring the altered tubular-

glomerular feedback mechanism leading to hyperfiltration (137). SGLT2 inhibition blocks 

proximal tubular glucose and sodium reabsorption, which leads to increased sodium delivery 

to the macula densa, thereby reducing GFR and renal blood flow (RBF) via afferent 

arteriolar vasoconstriction (137). Furthermore, in the Empagliflozin Cardiovascular 

Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG RENAL) trial, 

empagliflozin was well-tolerated, reduced HbA1c in adults with T2D and CKD, and exerted 

important blood pressure and anti-proteinuric effects in patients with and without DKD 

(138). Importantly, the EMPA-REG OUTCOME trial, with 7000 individuals from 42 

countries observed for a median duration of 3.1 years, recently reported that empagliflozin is 

the first glycemic lowering therapy to reduce a composite cardiovascular endpoint (defined 

as time to first occurrence of either CV death, or non-fatal myocardial infarction or non-fatal 

stroke). To our knowledge, there are no studies demonstrating attenuation of hyperfiltration 

in T2D with SGLT2 inhibition, but it is likely that SGLT2 inhibitors will affect the tubular-

glomerular feedback mechanisms similarly to what has been observed in T1D.
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Conclusion

The increasing prevalence of T2D worldwide has led to a concomitant rise in DKD (4, 56). 

Left untreated, patients with DKD have a high risk of progressing to ESRD and dialysis – a 

significant public health burden (4). Particularly worrisome is the decreasing age of onset of 

T2D and the presence of DKD even at time of diagnosis. This review examines the current 

literature and data addressing novel biomarkers and potential therapeutic targets in early 

DKD in adolescents with T2D. Longitudinal human research is required to develop 

improved methods of measuring renal function in adolescents with T2D, and to investigate 

the effect of novel pharmacotherapy on long-term clinical outcomes.
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Figure 1. 
Risk factors for diabetic nephropathy in youth with type 2 diabetes
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Table 1

Serum and urinary biomarkers of DKD

Biomarker Reference

Promising serum biomarkers

TNF receptor 1 and 2 (139)

Kidney injury molecule-1 (77, 140)

Fibroblast growth factor 21 and 23 (77, 141)

Symmetric dimethylarginine (SDMA) (77)

Asymmetric dimethylarginine (ADMA) (77)

Promising urinary biomarkers

Neutrophil gelatinase associated lipocalin (NGAL) (142, 143)

Metalloproteinases (144)

N-acetyl-beta-glucosaminidase (145, 146)

Nephrin (147, 148)

Alpha 1-microglobulin (149, 150)
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