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Abstract

Background: Risk of the outcome is a mathematical determinant of the absolute treat-
ment benefit of an intervention, yet this can vary substantially within a trial population,
complicating the interpretation of trial results.

Methods: We developed risk models using Cox or logistic regression on a set of large
publicly available randomized controlled trials (RCTs). We evaluated risk heterogeneity
using the extreme quartile risk ratio (EQRR, the ratio of outcome rates in the lowest risk
quartile to that in the highest) and skewness using the median to mean risk ratio (MMRR,
the ratio of risk in the median risk patient to the average). We also examined heterogen-
eity of treatment effects (HTE) across risk strata.

Results: We describe 39 analyses using data from 32 large trials, with event rates across
studies ranging from 3% to 63% (median = 15%, 25th-75th percentile =9-29%). C-statis-
tics of risk models ranged from 0.59 to 0.89 (median =0.70, 25th-75th percentile =0.65-
0.71). The EQRR ranged from 1.8 to 50.7 (median = 4.3, 25th-75th percentile =3.0-6.1).
The MMRR ranged from 0.4 to 1.0 (median=0.86, 25th-75th percentile =0.80-0.92).
EQRRs were predictably higher and MMRRs predictably lower as the c-statistic increased
or the overall outcome incidence decreased. Among 18 comparisons with a significant
overall treatment effect, there was a significant interaction between treatment and
baseline risk on the proportional scale in only one. The difference in the absolute risk
reduction between extreme risk quartiles ranged from —3.2 to 28.3% (median =5.1%;
25th-75th percentile =0.3-10.9).
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Conclusions: There is typically substantial variation in outcome risk in clinical trials, com-
monly leading to clinically significant differences in absolute treatment effects. Most pa-
tients have outcome risks lower than the trial average reflected in the summary result.
Risk-stratified trial analyses are feasible and may be clinically informative, particularly

when the outcome is predictable and uncommon.

Key words: Risk prediction, heterogeneity of treatment effect, subgroup analysis, personalized medicine, patient-

centered outcomes research

Key Messages

* Outcome risk is a mathematical determinant of the treatment effect yet can vary substantially across a trial popula-
tion, making it unclear how treatment effects might vary in the trial population.

* Using simple risk models based on baseline patient characteristics, among a sample of trials from publicly available
sources, we found that outcome rates in the highest risk quartile were as high as 50-fold those in the lowest risk quar-

tile; in fully a quarter of the trials, this ratio exceeded 6.

* Because outcome risk in the trials was generally skewed (log-normal or logistic-normal), with a small group of high-
risk patients accounting for a large number of outcomes, the outcome risk in most patients was almost always less

than that reflected by the trial summary results.

* Whereas we did not often detect treatment effect heterogeneity on the proportional scale across patients at different
baseline risk in this set of trials, substantial differences in absolute treatment effects were common; differences in ab-
solute treatment effects between the extreme quartiles of risk exceeded 10% in a quarter of trials that showed benefit.

* Displaying results across subgroups defined by risk is feasible and can lead to clinically important findings.

Introduction

A fundamental incongruity in evidence-based medicine
(EBM) is that evidence is derived from groups of people yet
medical decisions are made for individuals. Popular
approaches to EBM have encouraged the direct application
of average effects estimated in clinical trials to guide deci-
sion making for individuals, as though all patients meeting
trial inclusion criteria are likely to experience similar ef-
fects from treatments. This simplistic attitude has proven
remarkably durable and compelling, despite the variation
in patient characteristics and outcomes seen in clinical
practice.”

The most commonly used method of examining
whether treatment effects vary in a trial population is to
serially divide patients into subgroups based on potentially
relevant pre-treatment characteristics. The main problem
with this conventional approach is that there are too many
potentially influential characteristics. This leads to myriad
‘one-variable-at-a-time’ subgroup analyses, which are typ-
ically both underpowered and vulnerable to false-positive
results due to multiple comparisons.>* It can also be diffi-
cult to understand how to apply such analyses to individ-
uals in clinical practice, because patients have multiple
characteristics that vary from one another simultaneously.

In part for these reasons, subgroup analyses are usually
‘exploratory’ and rarely actionable, leaving the clinician to
assume that all patients meeting trial inclusion criteria
should be similarly treated. EBM is thus methodologically
canalized to ‘one-size-fits-all’ recommendations, a problem
increasingly recognized even as EBM has become the dom-
inant paradigm.*™® This remains a central challenge to be
addressed if EBM is to become more personalized and pa-
tient-centred.*~°

We recently proposed a framework for assessing hetero-
geneity of treatment effect (HTE) that seeks to address these
issues.” The framework prioritizes the analysis and report-
ing of multi-variable risk-based HTE and suggests that other
subgroup analyses should be explicitly labelled either as pri-
mary subgroup analyses (well-motivated by prior evidence
and intended to produce clinically actionable results) or sec-
ondary (exploratory) subgroup analyses (performed to in-
form future research). Whereas other recommendations or
guidance documents have (appropriately) emphasized the
risks of overinterpreting the results of subgroup analyses,®’
and the different goals of such analyses,'” our framework is
novel in that it also suggests that presenting summary results
without examining and reporting how treatment effects
change across subgroups with heterogeneous outcome risk
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is under-utilizing trial data and tantamount to incompletely
reporting trial results.

Despite compelling theoretical arguments, a risk-
modelling approach is rarely applied. Empirical evidence
for its importance remains anecdotal and there are con-
cerns about the feasibility of routine and broad application
of this analytical approach in datasets collected in typical
randomized trials. To address these concerns, we examined
the distribution of outcome risk across a broad range of tri-
als and examine how the effects of therapy were related to
this risk.

Methods

We searched for publicly available individual participant
datasets of randomized clinical trials from the National
Heart, Lung, and Blood Institute (NHLBI),'" the National
Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK),'? the journal Trials and GlaxoSmithKline.'? We
required that eligible studies had enrolled at least 1000
participants (some subcohorts entered in our analyses had
fewer than 1000 participants) randomized to at least two
treatment groups, and had a binary (or time-to-event) clin-
ical (i.e. not surrogate) outcome.

Predicting outcome risk using baseline covariates

Risk modelling for each trial was informed by examining
previously developed published predictive models
‘matched’ to each trial on the basis of the index condition
of the population and the primary outcome.'* We identi-
fied risk predictors that had been used in the published
models and the corresponding variables in the trial data-
sets. Because trial datasets were often not fully compatible
with externally developed predictive models, we developed
‘internal models’ on the trial data using risk predictors that
were as close as possible to those in published models. To
verify that the use of internal models would not bias esti-
mates of HTE across risk groups, we performed a series of
simulations described in a separate publication.'” Briefly,
the simulations revealed that, across a range of scenarios,
analyses based on internal models developed on trial par-
ticipants yield results similar to analyses based on external
models developed on non-trial participants sampled from
the same population.

All available established risk predictors were entered
into a regression model to predict the primary outcome for
all patients in the trial. Both trial arms were used in model
development, without using the treatment assignment indi-
cator, to avoid differential model fit between the trial
arms, potentially inducing a spurious risk-by-treatment
interaction.'” To minimize model complexity for trials for

which there were many established predictors, non-
significant risk predictors were ranked in order of signifi-
cance and removed until no more than 20 variables were
entered into the model (this was needed in only 3 of the 32
trials). No other formal variable selection process or at-
tempt at model re-specification was performed.

In trials with non-statistically significant overall treat-
ment effects for the primary outcome and a statistically sig-
nificant treatment effect for a binary (or time-to-event)
clinical secondary outcome, an additional regression model
was fit to predict the secondary outcome. When treatment
effects for multiple secondary outcomes were statistically
significant, we selected the outcome identified as most clin-
ically relevant in the published trial report.

To minimize bias due to missing data, multivariate nor-
mal multiple imputation was used when a complete case
analysis would exclude more than 5% of trial participants.
Risk factors with missing information from more than
20% of trial participants were not used in analyses.

The statistical analysis model (Cox proportional haz-
ards regression for time-to-event outcomes or logistic re-
gression for binary outcomes) was selected on the basis of
the primary analysis of the clinical trial and determined by
the nature of the trial data. In general, we included vari-
ables as main effects in their original scale, unless pub-
lished predictive models specified the use of interactions or
variable transformations.

Model performance was assessed with respect to dis-
crimination, calibration and overfitting. Discriminatory
ability was quantified using the c-statistic.'® Calibration
was assessed visually using calibration plots. Overfitting
was assessed with bootstrap validation.!” We report the
number of events per variable in each trial as an indicator
for the risk of overfitting.

We evaluated the distribution of predicted risk in the
overall study population and separately in each treatment
arm. Visual examination of the risk distribution was facili-
tated by the use of box plots of the predicted risk of the
outcome. In addition, we plotted histograms of the empir-
ical distribution of predicted risk in each study to assess
how closely the distribution conformed to the truncated
log-normal (for risk predicted by proportional hazard
models) or the logistic-normal distribution (for risk pre-
dicted by logistic regression models).

To describe and quantify risk heterogeneity using clinic-
ally interpretable metrics, we used two indexes, the extreme
quartile risk ratio (EQRR) and the median-to-mean risk
ratio (MMRR). To calculate the EQRR, we stratified the
trial population into equal-sized quartiles according to the
baseline predicted risk from the model.'"® We then calcu-
lated the ratio of the predicted outcome risk in the extreme
quartiles (high-risk quartile outcome probability divided by
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the low-risk quartile outcome probability, EQRR pedicted)-
We also calculated the same index based on the observed
outcome rate (EQRRpserved) Within strata defined by pre-
dicted risk. Greater EQRR values indicate greater risk het-
erogeneity in the risk-stratified patient population. The
MMRR is a clinically interpretable measure of skewness cal-
culated as the ratio of the median predicted outcome prob-
ability to the mean predicted outcome probability. As the
MMRR deviates from one, it reflects the degree to which
the summary (average) result may not reflect the effects in
the ‘typical’ patient in the trial. We also calculated Pearson’s
median skewness coefficient [3*(mean-median)/standard de-
viation], a more common measure of skeweness.

We also examined the relationship between the out-
come prevalence and the c-statistic, and the EQRR and
MMRR, visually and using linear regression.

Evaluating HTE over predicted outcome risk

Additionally, we analysed the relationship between treat-
ment effect and predicted outcome risk. We estimated
treatment effects within each risk quartile on relative and
absolute scales. Specifically, we estimated relative treat-
ment effects using logistic regression (using odds ratios as
the measure of effect) or Cox regression (using hazard
ratios as the measure of effect); we estimated absolute
treatment effects using linear probability models for binary
outcomes (using absolute risk reduction as the measure of
effect). For time-to-event analyses, we calculated absolute
risk reduction as the difference in Kaplan-Meier survival
probabilities between the intervention and comparator
treatment arms.'” We tested the null hypothesis of no HTE
over predicted outcome risk using a product term (‘inter-
action’) between the fitted value of the linear predictor
(from the risk model) and the treatment assignment indica-
tor. We also compared relative and absolute risk reduction
between the extreme risk quartiles in each trial. We sum-
marized these metrics for the subset of trials with statistic-
ally significant overall treatment effects, i.e. those trials
showing statistically significant benefit or harm on either a
primary or a secondary outcome.

Statistical analyses were performed using SAS version
9.3, R open-source software version 3.1.2 (The R
Foundation for Statistical Computing) and Stata version
13.1 (Stata Corp., College Station, TX).

Results

A total of 32 trials met our inclusion criteria (Table 1).
Most trials were in the field of cardiovascular disease,
including trials evaluating interventions in atrial fibrillation,
coronary heart disease, acute myocardial infarction, heart

failure, hypertension and acute stroke. We also included tri-
als of other conditions, such as prediabetes, acute kidney
failure, chronic hepatitis C and prostatic hyperplasia. The
number of patients in the analysed trial cohorts ranged from
715 to 33357, and totalled 180291. Trials had been con-
ducted over a span of several decades; the earliest trial had
been published in 1979 and the latest in 2008. Of note, our
trials generally did not include interventions with harms
anticipated to affect the primary outcome (e.g. as in carotid
endarterectomy, which both prevents and causes stroke).
One trial had more than one patient cohort (DCCT?'),
one trial had more than one primary outcome (IST>?) and
five trials had non-statistically significant results for their
primary outcome but significant results for a secondary out-
come (ACCORD,*”® ALLHAT HTN,** BEST,” DIG,*®
SOLVD?”?*%). Thus, we developed a total of 39 separate
risk models. The median number of risk factors used
in these models was 10 (average=10.9; range=4-20)
(Table 2). The median number of events per variable was
51.3 (average = 107.0; range = 12.5-907.1), suggesting that
models were unlikely to overfit the data. The median c-stat-
range = 0.59-0.89).
Bootstrap validation produced optimism-corrected c-statis-
tics in the range of 0.58 to 0.88 (median=0.68, 25th-75th
percentile = 0.64-0.70). The difference between original

istic  was 0.69 (average=0.70;

and optimism-corrected c-statistics ranged from 0.001 to
0.02 (median=0.007, 25th-75th percentile =0.004—
0.009), the absence of substantial
overfitting.

again suggesting

Distribution of predicted outcome risk in large
randomized trials

The median overall event rate across the trials was 15%
range = 3-63%).
describing the risk heterogeneity of the population are

(average =20%; Summary statistics
shown in Table 2. The median EQRRperveq Was approxi-
mately 4, but more than a quarter of all analyses had an
EQRRpserved OVer 6 and the range extended to 50. Values
of EQRR pyedicred corresponded closely to the observed val-
ues. Whereas the median MMRR was 0.86 (indicating that
the typical patient was at 86% the outcome risk compared
with the average), this index ranged as low as 0.4—and
only twice exceeded 1 (ATN,*’ IST>* 6-month outcome),
both times for trials with high outcome rates (52.6% in
ATN and 62.6% in IST).

We found the overall outcome rate in the trial and the
c-statistic were strong predictors of the risk distribution. In
linear regression, the outcome rate and c-statistic were
shown to strongly predict the EQRR (R?=0.86) and the
MMRR (R?>=0.78) (Table 3). As discrimination im-
proved, and as the overall outcome rate was lower, EQRR
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increased and MMRR decreased in a predictable fashion.
Indeed, we found that knowing these two parameters
(overall outcome incidence and c-statistic) essentially de-
termine the full distribution of predicted risk, because the
risk distributions were close to the log-normal (for risk pre-
dicted using Cox models) or logistic-normal shape (for risk
predicted using logistic regression models) (Figure 1). This
can be seen by comparing the histograms and kernel den-
sities of the predicted values (in black) against the log-
normal (red) or logistic-normal densities (blue) fit to the
same values via maximum likelihood, which were fairly

similar in most studies.

HTE over-predicted outcome risk

Among the 18 trials with statistically non-significant re-
sults, two trials showed statistically significant HTE over
the estimated linear predictor from the risk model. In the
AMIS trial,*® high-risk patients with acute myocardial in-
farction appeared to get more benefit from aspirin than
low-risk patients (P=0.02) on the proportional scale; in
IST,* for the combined outcome of death or dependency
at 6 months, low-risk patients appeared to obtain more
benefit than high-risk patients (P=0.04) on the propor-
tional scale.

Table 2. Summary of results for 39 risk distributions

Median 25th-75th  Mean Range

percentile
Overall event rate 0.15 0.09-0.29 0.20  0.03-0.63
Model risk predictors 10 7-16 10.9  4-20
Events per variable 51.3 32.3-84.7 107.0 12.5-907.1
c-statistic 0.69 0.65-0.71 0.70  0.59-0.89
EQRR observed 4.3 3.0-6.1 6.1 1.8-50.7
EQRR predicted 4.0 3.1-5.4 53 1.9-35.2
MMRR 0.86 0.80-0.92 0.84  0.42-1.04
PMSC 0.74 0.60-0.86 0.70  —0.24-1.56

EQRR, extreme quartile risk ratioo MMRR, median-to-mean risk ratio;
PMSC, Pearson’s median skewness coefficient.

Table 3. Regression model results

In the 14 trials with statistically significant results, 18
unique treatment comparisons were analysed. Although
the relative treatment effects appeared to decrease over
risk quantiles in some trials (e.g. BEST, CPPT and MTOPS
[Figure 2a]) and increase over risk quantiles in others
(ACCORD, CAST and DPP [Figure 2a]), overall there was
no apparent relationship between baseline risk and the
hazard (or odds) ratio of treatment across trials. The me-
dian ratio of the hazard or odds ratio in the fourth quartile
over that in the first quartile was 1.02 (25th-75th percent-
ile=0.70-1.21) (Table 4). We found a statistically signifi-
cant interaction between treatment and the estimated
linear predictor on the proportional scale only in one of 18
analyses -(DPP, metformin vs placebo; high-risk patients
experienced greater benefit than low-risk patients;
P =0.0008). Despite the absence of ‘statistically signifi-
cant’ HTE on the proportional scale, absolute risk reduc-
tion estimates varied substantially over predicted outcome
risk and were generally higher in high-risk strata, ranging
from —1.4% to 18.3% (median=4.7%; 25th-75th per-
centile =0.8-6.1%) in the first quartile of predicted risk
and from 0.8% to 35.0% (median =9.0%; 25th—75th per-
centile =3.3-19.8%) in the fourth quartile. The difference
in the absolute risk reduction between the extreme-risk
quartiles ranged from —3.2% to 28.3% (median=15.1%;
25%_75th percentile =0.3-10.9) across studies. Figure 2b
displays these absolute effects graphically.

Discussion

Our results show that clinically significant risk heterogen-
eity is common even in phase III ‘efficacy’ trials, which are
often characterized as enrolling relatively homogeneous
populations. Whereas statistically significant HTE on the
proportional scale was unusual in this set of trials, in which
interventions generally did not have anticipated harms on
the primary outcome, variability in risk often gave rise to
substantial HTE on the absolute risk scale. Though it is
most common to test for heterogeneity on the proportional
scale, absolute risk reduction (and its inverse, the number
needed to treat) are generally considered the most relevant

log EQRR predicted MMRR
Estimate (SE) t-Value P-value Estimate (SE) t-Value P-value
Intercept —3.88(0.39) -10.05 <0.0001 1.80 (0.12) 15.47 <0.0001
Overall event rate —1.94 (0.24) —7.98 <0.0001 0.66 (0.07) 9.06 <0.0001
c-statistic 8.27(0.57) 14.41 <0.0001 -1.57(0.17) -9.05 <0.0001
R-square 0.86 0.78

EQRR, extreme quartile risk ratio, MMRR, median-to-mean risk ratio; SE, standard error.
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Figure 1. Risk distributions. The histograms show the distribution of the predicted risk for the outcome of interest. Curves shown in red are fitted to
the distribution of predictions generated by Cox models; curves shown in blue are fitted to the distribution of predictions generated by logistic mod-
els. Fitted log-normal curves and fitted logistic-normal curves are also shown for the Cox- and logistic regression-generated curves, respectively. As
can be seen, these log-normal and logistic-normal curves approximate very well the red and blue fitted curves. Note: The FUTURA Trial is not
included in this figure since we could not export individual-level patient predictions from the site in which the data were housed.

scales for clinical decision making.>! We did not use formal
criteria to assess clinically important HTE, but it is note-
worthy that, among treatment comparisons with statistic-
ally significant overall results, 25% showed differences in
absolute risk differences greater than 10% between the ex-
treme quartiles of predicted risk. We considered our ana-
lysis of two trials (MTOPS** and DPP*?), encompassing 5
of our 18 treatment comparisons, to be of sufficient clinical
interest to report in separate clinical manuscripts.®**>*
These papers join a growing list of papers showing clinic-
ally important variation in benefits when trial results are
risk stratified, typically showing that an identifiable sub-
group of higher-risk patients often account for most of the
treatment benefit.?*~*¢

Another consistent finding was that the median pre-
dicted outcome risk in these trials was lower than the mean
predicted risk (i.e. MMRR < 1). Because the summary re-
sults of trials reflect the arithmetical mean risk, rather than

the median risk, this implies that the typical patient is often

at somewhat lower risk—and sometimes at much lower
risk—than one might infer from the overall result. When
proportional effects are similar across risk groups, sum-
mary results may have a tendency to overestimate the de-
gree of benefit on the absolute scale.>*” These concerns are
especially germane when outcomes rates are predictable
and outcome rates relatively low.

Whereas several trials in our database of trials exhibited
large heterogeneity in predicted outcome risk, overall the
results of our analyses were somewhat less extreme than
previous published examples might have suggested.>*™*°
There are several explanations for this observation. First,
risk heterogeneity may be somewhat restricted in large
phase Il randomized studies if they tend to enroll homoge-
neous patient populations. Second, because we wanted to
limit the risk of overfitting models to data, we favoured
simpler models, which generally had modest discrimin-
atory ability. Finally, previously published examples might
be for results and clinical

‘cherry-picked’ extreme
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Figure 2. A: Hazard or odds ratios across risk quartiles Hazard ratios are shown for all trials except HDFP, which displays odds ratios. Red markers
indicate that the treatment arms were switched (intervention was harmful). The scale for hazard ratio axis is different for DCCT and MTOPS.

significance. It is also important to recognize that express-
ing heterogeneity of risk using a finer grouping of predicted
risk (e.g. quintiles or deciles) would yield ratios that are
more extreme than the EQRRSs reported here.

The observation that indices that describe the distribu-
tion of predicted risk are predictable based on the c-statis-
tic, and the overall event rate of each trial, are as telling as
the specific examples in our study. The predictability of the

risk distribution derives from the fact that the linear pre-
dictor from the risk model conforms fairly closely to a nor-
mal distribution,*® yielding distributions of risk that (to a
good approximation) conform to log-normal (for risk esti-
mates derived from Cox models) or logistic-normal distri-
butions (for risk estimates derived from logistic regression
models). This relationship permits us to anticipate the de-
gree of risk heterogeneity (i.e. EQRR) and the skewness
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Figure 2. B: Absolute risk reduction across risk quartiles Red markers indicate that the treatment arms were switched (intervention was harmful). In
Figure 2B, the scale for absolute risk reduction is different for DPP, MTOPS, and DCCT.
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Table 4. Summary of results for 18 positive treatment com-
parisons (14 trials)

Median IQR  Mean  Range
Hazard (or odds) ratio Q1 0.63 0.52-0.87 0.66 0.16-1.10
Hazard (or odds) ratio Q4  0.69 0.44-0.90 0.64 0.27-0.96
Extreme quartile relative 1.02 0.70-1.21 1.05 0.41-1.82
hazard ratio (Q4/Q1)
Absolute risk reduction 4.73 0.83-6.06 4.50 —1.43-18.27
Q1 (%)
Absolute risk reduction 9.04 3.25-19.84 12.01 0.77-34.99
Q4 (%)

Extreme quartile absolute  5.10 0.33-10.91 7.51 —3.23-28.33
risk reduction difference

(Q4-Q1)

Q, quartile; IQR, inter-quartile range.

(i.e. MMRR) based on knowledge of the outcome rate and
the discrimination (c-statistic) of the model—provided that
the risk model is well calibrated. For example, using our
simple linear regression results, we would anticipate that,
when the outcome rate is 10% and the c-statistic is 0.8, the
EQRR will be approximately 13 and the MMRR will be
approximately 0.6. When risk differs 13-fold between
large population subsets, the overall treatment effect esti-
mated for the trial population is not clinically interpret-
able. When the median risk is 40% lower than the mean
risk, it also seems likely that the average effects may not be
easily translated even to typical patients in the same trial.
Higher c-statistics and lower outcome prevalence would
lead to even more skewed distributions, implying greater
risk heterogeneity.

Thus, it does not take extreme assumptions to yield risk
distributions that would make overall clinical trial results
misleading for many patients. The relationship also implies
that a risk-stratified approach might be especially import-
ant and clinically informative when the outcome is predict-
able, based on easily available clinical information, and the
overall outcome rate is low. This conclusion is consistent
with clinical intuition, because when the outcome is rare
and predictable by baseline covariates, it is possible to
identify very-low-risk patients who are unlikely to benefit
from therapy. Analyses of HTE over-predicted risk are also
more likely to be useful for risky or costly therapies, when
identifying patients who are unlikely to benefit may be of
especially high interest.

Despite the fact that only one trial (DPP) showed a ‘statis-
tically significant’ interaction between the linear predictor of
risk and the treatment assignment indicator, we would urge
caution in interpreting the ostensible consistency of effects
on the multiplicative scale. We note that the true relationship
between risk and effect is underdetermined by the data.

Indeed, trial results may often be statistically consistent with
homogeneous effects on both the additive and the multiplica-
tive scales across risk groups—despite the mathematical in-
compatibility of these models and the potential clinical
importance of the different inferences the models may yield.
We believe that consistency of effects across any of these
scales is unlikely to represent the ‘true’ relationship between
the risk of the outcome and the effect of a therapy.

Our study has several limitations. We acknowledge that
the use of quartiles is arbitrary, and tends to underestimate
heterogeneity, compared with using finer strata of predicted
risk or assuming a smooth function of predicted risk. We
present our data in quartiles to facilitate comparisons across
analyses, based on a previously suggested framework.'®
Heterogeneity may be slightly overestimated based on
model overfitting or underestimated based on underfitting;
more careful model building (e.g. exploring non-linearity
and interactions in the risk models) could have given the im-
pression of more extreme risk heterogeneity. We did not ex-
plore non-linear relationships between risk and treatment
HTE.
Additionally, we tried to standardize our modelling ap-

effects, which may have revealed additional
proach but we used only a single model for each trial.
Different models may fit the data equally well, yet results re-
garding HTE may be sensitive to the specific variables
included in the models and whether any of these variables
are treatment effect modifiers. Whereas different models
may vyield different results, the degree to which any particu-
lar covariate modifies treatment is typically unknown—and
when there is a strong a priori reason to believe that a par-
ticular covariate is likely to modify a treatment effect (apart
from its influence on risk) then the relationship of the cova-
riate with the treatment effect should also be examined sep-
arately. Finally, we used a convenience sample of large
trials, which does not represent the full spectrum of clinical
conditions or, specifically, those conditions for which risk
modelling may be most informative. A risk-modelling ap-
proach may be especially informative when treatment can
both prevent and cause the primary outcome of interest
(presumably via different mechanisms).>®3%*" In such con-
ditions, the risks of therapy may outweigh the benefits in
very low-risk patients, and more treatment effect heterogen-
eity would be anticipated.

Despite these limitations, our results suggest that clinic-
ally important differences in effect across predicted risk are
likely to be common in trials with statistically significant
average treatment effects. A common assumption (of un-
clear validity) is consistency of treatment effects across risk
groups on the proportional scale, but the only way of test-
ing this assumption is to actually perform such risk-
stratified analyses. Even when analyses fail to reject the
null of proportional effects across different risk strata, the
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results of risk-stratified analyses can demonstrate clinically
important risk differences which would otherwise be
obscured. Nevertheless, risk-stratified analyses of clinical
trials are still rarely planned as part of the initial study de-
sign; if reviewers, editors and regulators expected (or
required) such analyses to be routinely conducted, the ap-
proach would be more widely adopted.>®

In summary, predicted risk distributions from Cox re-
gression and logistic regression are largely determined
based on c-statistic and outcome rates. Clinically signifi-
cant risk heterogeneity is common even in large ‘efficacy’
trials—particularly when outcome rates are low and c-stat-
istics are high. The median risk in these trials is generally
lower than the average risk. Statistically significant HTE
on the relative risk scale is unusual, but clinically signifi-
cant heterogeneity in absolute effects appears to be com-
mon. A risk stratified approach to trial analysis is feasible
and may be most clinically informative when an uncom-

mon outcome is predictable by baseline covariates.
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