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Abstract

Although often conflated, determining the best treatment for an individual (the task of a

doctor) is fundamentally different from determining the average effect of treatment in a

population (the purpose of a trial). In this paper, we review concepts of heterogeneity of

treatment effects (HTE) essential in providing the evidence base for precision medicine

and patient-centred care, and explore some inherent limitations of using group data (e.g.

from a randomized trial) to guide treatment decisions for individuals. We distinguish

between person-level HTE (i.e. that individuals experience different effects from a treat-

ment) and group-level HTE (i.e. that subgroups have different average treatment effects),

and discuss the reference class problem, engendered by the large number of potentially

informative subgroupings of a study population (each of which may lead to applying a

different estimated effect to the same patient), and the scale dependence of group-level

HTE. We also review the limitations of conventional ‘one-variable-at-a-time’ subgroup

analyses and discuss the potential benefits of using more comprehensive subgrouping

schemes that incorporate information on multiple variables, such as those based on pre-

dicted outcome risk. Understanding the conceptual underpinnings of HTE is critical for

understanding how studies can be designed, analysed, and interpreted to better inform

individualized clinical decisions.
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The emerging areas of comparative effectiveness research1

and precision medicine2 share the same core mission: deter-

mining which treatment works best, for whom and under

what circumstances. Thus, the concept of heterogeneity of

treatment effects (HTE) - the idea that treatment effects

can vary across patients - is at the centre of both compara-

tive effectiveness research and precision medicine.1,3

There has been increased attention to HTE, and the term

seems to be used differently by various stakeholders.

Clinicians, for example, intuitively understand that no two

patients are identical, and perceive pervasive HTE in their

practice. In contrast, statistical analyses of clinical trials

even when based on very large studies rarely identify factors

that reliably predict differential treatment effectiveness.

This leaves clinicians with an evidence base composed prin-

cipally of average trial results, which is incongruent with

their intuition derived from treating patients who vary both

in their apparent responses to treatment and in clinical

characteristics that determine the probability of good and

bad outcomes, with and without a particular treatment.

Precision medicine holds the promise that a fuller

understanding of inter-individual molecular variation can

account for the variation in individual treatment effects,

but herein we discuss conceptual and methodological chal-

lenges that have so far limited our ability to leverage even

readily available clinical information to provide more

patient centred evidence, and which will not be resolved,

and are likely to be amplified, by the addition of new

molecular data. Many of the concepts presented here are

not new, but they are not widely appreciated and are often

overlooked in the broad discussion of ‘-omics’, in clinical

trial reporting and in guideline development. We hope that

the synthesis of ideas from various sources can facilitate

the interpretation of HTE analyses, aid clinical decision-

making and guide future research.

Person-level HTE is ubiquitous but
unobservable

The choice among multiple treatments should ideally be

guided by comparing an individual’s potential outcomes

under each treatment. When comparing a new treatment

versus usual care to prevent a binary adverse outcome, at

most four types of individuals can exist in a given popula-

tion (Box 1): those who would not experience the outcome

regardless of treatment (‘immune’), those who would expe-

rience the outcome regardless of treatment (‘doomed’), and

those who would experience the outcome only under treat-

ment or only in its absence (‘harmed’ or ‘saved’, respec-

tively).4,5 Perfect decision making would be possible if the

category to which each patient belongs was known

upfront. In fact, in general it is impossible to know who

belongs in which category even after treatment has been

administered and outcomes observed. For example, in the

treatment group patients may be either ‘harmed’ or

‘doomed’ if they experience the outcome, and either

‘immune’ or ‘saved’ if they do not. This is a consequence of

the fundamental problem of causal inference: only one of

the potential outcomes can be observed for a given patient

whereas outcomes under other treatments remain counter-

factual.6 Thus, person-level treatment effects cannot be

identified, even in large well-conducted randomized trials

(with the potential exception of N-of-1 trials).

Nevertheless, we can use randomized trials to estimate

average treatment effects.7–9 Box 1 shows how person-

level treatment effects, although unidentifiable, are aggre-

gated to yield average treatment effects using three com-

mon measures: the risk difference (RD), relative risk (RR)

and odds ratio (OR).10–12 Randomization makes treatment

groups comparable on average (more precisely, ‘exchange-

able’), but it does not affect the degree of heterogeneity

among patients in each treatment group. Indeed, each

group will usually include patients from several of the cate-

gories shown in Box 1. We refer to this variation at the

individual level as person-level HTE. Clinicians believe

that it is important and ubiquitous, and logic demonstrates

that it is unknowable.

It is easy to forget individual patients when interpreting

estimates of overall effects from clinical trials. For example,

if each of the four categories in Box 1 was equally repre-

sented in the population, the ‘true’ average treatment effect

would be exactly zero, and we might falsely conclude that

Key Messages

• Person-level treatment effects cannot be identified in randomized clinical trials and population average treatment

effects may not apply to all patients.

• One-variable-at-a-time subgroup analyses are highly prone to false-positive results due to multiple comparisons and

false-negative results due to inadequate power, and have limited ability to inform decisions for individuals, because

individuals vary from one another in multiple ways simultaneously.

• Subgroup analyses that incorporate information on multiple variables, such as those based on predicted outcome

risk, may yield more patient-centred results.
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the treatment was totally ineffective and innocuous. Yet, in

this fictitious example, 25% of patients experience benefit

and another 25% experience harm from treatment. Thus,

by examining estimates of the average treatment effect, we

learn something about the whole population, not about

each individual. Trial findings are often used to support

uniform treatment recommendations for all patients, even

when ideally optimized care would result from targeting

just one of the four patient types (i.e. the ‘saved’).

Fortunately, some targeting of treatment is possible by judi-

cious consideration of treatment effects within subgroups.

Group-level HTE: examining treatment
effects in subgroups

A comparison of treatment effects across subgroups of RCT

participants quantifies HTE over levels of a subgrouping

variable (e.g. sex, age, disease severity). When treatment

effects vary across levels, we say that the variable is an effect

modifier; this form of group-level HTE corresponds to the

epidemiological concept of effect measure modification.13–

15 The purpose of examining group-level HTE is to indi-

vidualize treatment decision making. For example, we can

obtain sex-specific treatment effects that apply to men or

women. Yet, dividing the population into subgroups reveals

the reference class problem,16,17 a key problem in using

group results to select treatments for individuals:18,19 that

each patient has innumerable characteristics, and therefore

can belong to an indefinite number of different subgroups.

It follows too that there is an indefinite number of ways to

disaggregate a trial population into subgroups. This makes

obtaining individualized treatment effect estimates prob-

lematic, because for any individual patient each alternative

disaggregation can produce a different result for each of the

reference classes to which that patient belongs. Selection of

the best subgrouping scheme is a critical, but largely

ignored, issue in HTE analysis, to which we return later.

Another important issue in group-level HTE analysis is

scale dependence: the way we measure the treatment effect

within each subgroup has implications on whether HTE

across subgroups is present or not.20,21 In our hypothetical

randomized trial, the treatment effect can be

estimated using the event proportion in the new treatment

(pnew) and the usual care group (pusual) (Box 1). Because

commonly used effect measures (RD, RR, OR) are differ-

ent combinations of these two proportions, lack of HTE

on one measure will indicate the presence of HTE on the

others (when the overall effect is not null and baseline risk

varies across subgroups). The relationships among alterna-

tive measures of effect in the presence of HTE can be com-

plex and often counteri-ntuitive.22

The scale-dependence of group-level HTE is easily seen

when we examine effect heterogeneity across subgroups

that vary with respect to baseline risk. Figure 1 shows how

the RD, RR and OR behave when one of them is fixed (i.e.

homogeneous) over the range of baseline risk. For any

non-zero treatment effect, there will always be HTE on

some measure whenever there is variation in baseline risk.

For example, when the treatment has a homogeneous

effect on the RR scale, absolute benefit (on the RD scale)

will increase linearly as baseline risk increases. The central

panel of the figure demonstrates another, less appreciated,

issue: as baseline risk varies, homogeneity of treatment on

the RR scale cannot be present for each of two comple-

mentary outcomes (e.g. both death and non-death), when

baseline risk varies.23

Identifying and interpreting HTE

Most often HTE detection in clinical trial analyses relies on

the assessment of statistical interactions.24–28 These analy-

ses compare treatment effects across strata of a covariate

and produce P-values for a test of the null hypothesis of no

effect heterogeneity.25,29 In interpreting these statistical

interactions, it is important to keep in mind the narrowness

of the hypothesis being assessed: whether the treatment

effect is constant across levels of a specific subgrouping var-

iable on a given scale. Clinical interpretation of HTE is typ-

ically complicated by the fact that interactions are usually

examined analytically on relative scales (primarily for com-

putational convenience), but it is generally agreed that the

absolute risk difference (RD) or its inverse, the number

needed to treat, is the most relevant effect metric for clinical

decision making. 11,30–32 Thus, regardless of whether a sub-

group analysis yields statistically significant HTE, what

determines whether HTE is of clinical consequence is

whether or not variation in the RD across different sub-

groups of patients spans a decisionally important threshold

- a threshold that will depend on the potential harms of

therapy, patient values and (in some cases) economic con-

siderations. This condition might be fulfilled even in the

absence of statistically significant HTE on a relative scale

(e.g. when baseline risk varies substantially), and not ful-

filled even in its presence (e.g. when treatment is clearly

beneficial for all subgroups despite relative risk variation).

As an aside, we stress that the presence of statistical

interaction does not imply that manipulating the subgroup-

ing variable will affect the outcome. Even in a randomized

study, differences in the treatment effect over a subgroup-

ing variable may be due to uncontrolled relationships

between the variable, factors for which it operates as a

proxy, and the outcome.30,33,34 For example, if acute

stroke patients with extreme hypertension are shown to
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benefit less from thrombolytics, it does not imply that

acute blood pressure lowering will improve effectiveness.35

Although important for understanding disease and treat-

ment mechanisms, establishing the presence of causal inter-

actions is not a requirement for using HTE analyses to

guide clinical decisions.

Challenges in the detection of clinically-
relevant HTE

In the context of precision medicine and comparative effec-

tiveness research, the goal of HTE analysis is to inform

clinical decisions by providing estimates of treatment effect

that are more specific to individuals. Disaggregating trial

results to provide reliable patient-centred estimates of

treatment effectiveness in practical data analyses is chal-

lenging. Many of these challenges relate to the fundamen-

tal conceptual issues discussed, and also the complexity of

the phenomena under study, not the choice of a particular

statistical approach. That said, reliance on conventional

‘one-variable-at-a-time’ subgroup analysis—where each

potentially influential variable is serially considered in iso-

lation—are particularly problematic and can lead to avoid-

able erroneous inferences. Below we review these issues

and suggest an approach based on risk modelling, which at

least partially addresses many of these challenges.
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Figure 1. An illustration of the scale dependence of HTE. When treatment effect is non-null and baseline risk varies, HTE is inevitable on at least two

out of three of the most commonly used scales for treatment effect. The graphs above show that when one measure of treatment effect is held

constant, the other two must vary substantially as the baseline risk changes. The centre panel also demonstrates that when the treatment effect is

non-null and baseline risk varies, when the RR is held constant for ‘event occurrence’, then there will exist HTE for the complementary outcome (i.e.

‘no event occurrence’, shown by the dotted line). When held constant, the RD¼�0.1, the RR¼ 0.8 and the OR¼ 0.66. Results are shown over baseline

outcome risks ranging from 0.1 to 0.9.
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Problems related to one-variable-at-a-time

approaches

Under-representation of explainable heterogeneity

The conventional approach to exploring group-level HTE

is to serially test for interactions between treatment and

each potential effect modifier for example, comparing men

with women, old with young, smokers with non-smokers

and so forth. Whereas patients have multiple characteris-

tics that vary simultaneously, one-variable-at-a-time analy-

ses look for differences between groups that differ

systematically only on a single variable. Because most vari-

ables are expected to account for small differences in treat-

ment effects, the magnitude of HTE over any single

variable may be small and not reliably detectable.

Inadequacy for supporting patient-centred care

Each patient belongs to multiple subgroups, some of which

may be associated with increased benefit from treatment

whereas others may not. Thus, it can be difficult to apply

the results of one-variable-at-time subgroup analyses to

individuals. For example, if treatment is more beneficial

for female (compared with male) and younger (compared

with older) patients, the optimal treatment for a young

male patient is not immediately obvious. Ideally, all factors

that potentially modify the treatment effect should be

examined jointly.

Problems related to hypothesis testing

Multiplicity of comparisons and spurious findings

Because patients have a nearly limitless number of charac-

teristics, only a subset of which are likely to influence treat-

ment effects, when one-variable-a-time analyses are

combined with P-value-based criteria for identifying effect

modifiers, the risk of false-positive findings (due to multi-

ple comparisons) is increased. Solutions that control the

false-positive error rate have been proposed, but generally

require even larger datasets.

Statistical power for HTE detection

Randomized clinical trials are typically powered to reliably

detect the main effects of treatment (e.g. at 80% or 90%).

In general, HTE analyses require a much larger sample size

compared with analyses of the overall effect, to have rea-

sonable power.25,36,37 The problem of low power is exa-

cerbated when variables that have small influence on the

treatment effect individually are evaluated one at a time;

underpowered subgroup analyses can appear to support

‘consistency of effects’ across each subgrouping variable,

while providing little information about whether clinically

relevant HTE would be detectable when considering

multiple variables jointly. Thus, claims of ‘consistency of

effect’ should generally be viewed as reflecting data and

analytical limitations, rather than as an accurate or com-

plete description of HTE.

Less widely appreciated is that the low power of sub-

group analyses not only decreases the likelihood of finding

interactions, but also decreases the credibility of any ‘posi-

tive’ results. In many research settings, particularly when

performing multiple exploratory analyses (i.e. testing of

multiple variables when true effect modifiers are rare),

most statistically significant between-subgroup differences

are expected to be false-positives (Figure 2).

Towards more informative HTE analyses

Because the problem of spurious subgroup results from

multiple comparisons is well appreciated, guidance for

analysing, reporting and interpreting HTE has generally

focused on improving the credibility of subgroup analy-

ses.38–40 There is broad agreement across published recom-

mendations that subgroups be fully defined a priori (to

prevent data dredging), that they be limited in number,

that formal tests for interaction be performed (using an

appropriate test procedure and possibly corrected for mul-

tiple comparisons) and that results should be interpreted

with caution.25,41,42 The main problem with these solu-

tions is that they generally address only one aspect of the

central dilemma of HTE: minimizing the risk of a false-

positive finding (i.e. finding a statistically significant inter-

action when the null hypothesis is true). Although the

importance of the second aspect potentially over-

generalizing the summary results to all patients meeting

inclusion criteria is increasingly recognized,43–49 guidance

to address this has been less satisfactory.

One proposed framework50 attempts to address the lim-

itations of the usual approach to subgroup analysis by: (i)

limiting the use of hypothesis-testing subgroup analysis (to

just those few attributes, if any, with previous evidence for

effect modification), while still permitting exploratory sub-

group analyses explicitly labelled as hypothesis-generating

to inform future research; and (ii) prioritizing analyses of

HTE over the predicted risk of the primary outcome,

where risk is predicted using a multivariable outcome

model. The first proposal is based on the understanding

that the credibility of a statistically significant subgroup-

by-treatment interaction greatly depends the prevalence of

true effect modifiers. (Figure 2). The second proposal for

privileging subgroup analyses based on predicted risk is

based on the understanding that outcome risk is a mathe-

matical determinant of the treatment effect (as illustrated

in Figure 1). Because baseline risk usually varies substan-

tially within enrolled populations, HTE must be present on
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some scale (RD, RR or OR) unless the treatment effect is

null. In particular, when outcome risk varies considerably

across the trial population, it is almost inevitable that the

RD, the most clinically relevant effect measure, will also

vary across risk groups. Thus, these analyses avoid many

of the issues of ‘one-variable-at-a-time’ analyses and of

hypothesis testing, since they can reveal important differ-

ences in treatment effect across subgroups, whether there is

statistical evidence of HTE on the relative scale or not. Of

note, whereas the previous framework primarily discussed

the use of predicted outcome risk as a subgrouping variable

(e.g. to stratify patients into subgroups of increasing out-

come risk), it may be more advantageous to flexibly model

the relationship between predicted risk and the treatment

effect (see, for example,51,52 for related methods).

The intuition behind risk stratification is not new53 and

is evident in many common clinical scenarios. For exam-

ple, when considering the use of a new and expensive anti-

biotic (e.g. fidoxamicin) versus vancomycin to treat

C. difficile colitis, the risk of recurrence determines in part

the potential for treatment benefit and is determined, in

turn, by a combination of factors (older age, severity of

diarrhoea and presence of renal insufficiency or previous

among variables examined
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Figure 2. Impact of statistical power and the proportion of ‘true’ modi-

fiers among the variables examined on the credibility of statistically sig-

nificant results in HTE analyses. Plot of the percentage of false-positive

findings among all statistically significant findings as a function of

power to detect an interaction. Coloured lines represent results for vary-

ing percentages of ‘true’ effect modifiers among those assessed (i.e. dif-

ferences in ‘previous probabilities’). For reference, simulations have

shown that when a study has 80% power to detect the average treat-

ment effect, a subgroup analysis for a balanced binary variable (e.g.

males versus females) has only 29% power when the magnitude of the

effect is the same as the main effect.25 Note that positive results of

exploratory analyses performed at this power are likely to represent

false-positives.

Box 1 Potential outcomes for a binary exposure and outcome in a hypothetical trial of a new treatment versus usual

care

Group description Outcome with

new treatment ðY new Þ
Outcome with

usual care ðY usual Þ
Treatment effect

ðY new Þ � ðY usualÞ

Doomed 1 1 0 (no effect)

Saved 0 1 �1 (benefit)

Harmed 1 0 1 (harm)

Immune 0 0 0 (no effect)

Each row represents a response type, defined on the basis of potential outcomes under a new therapy (Ynew) or usual care (Yusual). Occurrence of an adverse

outcome is denoted by ‘1’ and non-occurrence is denoted by ‘0’. The fourth column shows (unobservable) person-level treatment effects.

Although the proportion of each response type within the trial cannot be identified, it is easy to see that the event proportion in each treatment group is

obtained by summing the proportion of two different response types. The event proportion in the new treatment group, pnew, equals the sum of the propor-

tions of doomed (pdoomed) and harmed (pharmed) types in that group; the event proportion in the usual care group, pusual , equals the sum of the proportions

of doomed (pdoomed) and saved (psaved) types. Popular measures of treatment effect can be written in terms of the unidentifiable proportions of these patient

types but can be estimated using observable quantities. For example, the causal risk difference (RD) is simply the difference of the proportion of harmed

and saved types:

RD ¼ pnew � pusual ¼ ðpdoomed þ pharmedÞ � ðpdoomed þ psavedÞ ¼ pharmed � psaved:

Similarly, the causal relative risk (RR) and the odds ratio (OR) can be estimated as

RR ¼ pnew

pusual
and OR ¼ pnew=ð1� pnewÞ

pusual=ð1� pusualÞ
:
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episodes of C. difficile).54 Similarly, when considering pri-

mary percutaneous intervention versus medical therapy,

a 45-year-old without comorbidities who presents with sta-

ble vital signs and a small inferior wall ST-elevation myo-

cardial infarction (STEMI) (30-day mortality risk � 1%)

does not have the same potential benefit from treatment as

a 78-year-old man with diabetes who presents with haemo-

dynamic instability and a large anterior wall STEMI

(30-day mortality risk � 25%).55,56 In both these exam-

ples, the pivotal clinical trials included patients with vary-

ing predicted outcome risk, reported a single summary

result and suggested that effects were similar for all

patients meeting enrolment criteria based on one-variable-

at a time subgroup analyses. Only in subsequent, post hoc

risk-stratified analyses did heterogeneity of treatment

effects become apparent.54,56

Whereas we have focused our exposition on trials

examining treatments, the concepts discussed in this paper

apply also to trials comparing alternative test-and-

treatment strategies (e.g. the risk-stratified analysis of the

National Lung Screening Trial57 which found screening to

be substantially more beneficial among patients at high

risk for cancer mortality compared with those at lower

risk). Because design and analysis issues related to trials of

test-and-treatment strategies are fairly complex,58 we do

not address them in this overview.

As in these examples, the distribution of predicted risk

is usually highly skewed on the probability scale, particu-

larly when outcomes are rare and the prediction model dis-

criminates well; most patients are thus at lower than

average predicted risk (i.e. median predicted risk is lower

than mean predicted risk).59 Importantly, observed out-

come risk typically varies substantially (sometimes 5–20-

fold) when comparing individuals with high predicted out-

come risk versus those with low predicted risk.60 Because

of this, examining treatment effects over predicted out-

come risk often reveals clinically informative patterns;61–66

estimates of overall effectiveness are often driven by a

small group of influential (typically high-risk) patients and

the average benefit reflected in the summary result is often

larger than the predicted benefit (especially on the RD

scale) for most patients. These issues are under-appreciated

because trial results are rarely risk-stratified potentially

leading to preventable over- and under-treatment.

Although the risk of the primary outcome without treat-

ment does not determine which of the four categories in

Box 1 an individual belongs to, excellent outcome predic-

tion can identify individuals with very little potential for

benefit (those at very low baseline risk are most likely to

belong to the ‘immune’ or ‘harmed’ categories), because

only patients destined to experience the outcome if not

treated can potentially benefit. Models predicting risk of

the primary outcome can be developed using external sour-

ces of data (e.g. cohort studies based in large registries or

administrative databases). These models can then be used

across multiple clinical trials of similar patient populations

to estimate risk-specific treatment effects. Where multiple

trials examine the same intervention, evidence synthesis

can be facilitated by harmonization of the scheme for

determining subgroups and by access to individual patient

data.

When more is known about the determinants of treat-

ment benefit and harm, models combining variables that

capture other important effect modifiers may provide addi-

tional information. For example, predicted risk of

treatment-related harm may be a treatment effect modifier,

as is the case for the risk of perioperative stroke (captured

by a risk model) or the risk of thrombolytic-related intra-

cranial haemorrhage (captured by a separate model), for

carotid endarterectomy or thrombolysis in acute ischaemic

stroke, respectively.67,68 The general approach is to use

combinations of variables to describe the risk profiles of

those most likely to benefit, by integrating clinical reason-

ing and previous empirical findings with statistical

modelling.

Whereas risk modelling can become complex when

more than one ‘risk dimension’ is combined,64,68 simple

risk stratification (based on risk of the primary outcome) is

usually feasible and can often uncover clinically important

information. We have previously argued that reporting just

the summary result, without clearly presenting the absolute

and proportional effects across different risk strata, is tan-

tamount to under-reporting trial results.50,69 When a well-

validated risk model is not available, approaches for risk

stratification using the trial data can be used to assess HTE

and serve as an impetus for developing reliable risk models

for clinical use.70,71

To be sure, the predicted outcome risk under no treat-

ment is in theory unlikely to be the ‘best’ subgrouping

scheme for disaggregating patients. Ideally, one would like

to group patients based on determinants of the treatment

effect predicted outcome risk under one treatment versus

outcome risk under the alternative. However, naı̈ve meth-

ods that attempt to predict person-level effects (i.e. meth-

ods that include treatment assignment in the model) may

lead to biased estimates of the treatment effect within sub-

groups, due to model mis-specification and over-fitting.

Statistical methods that address these issues and rigorous

approaches for model evaluation have been proposed51,72–

74 but practical experience with their application is limited.

Outcome risk models, on the other hand, can be created

using data independent of the clinical trial or by using trial

data ‘blinded’ to the treatment status, protecting them

from this type of bias.70,71,75 Note also that in some

2190 International Journal of Epidemiology, 2016, Vol. 45, No. 6



circumstances trial stratification (or the conduct of totally

independent trials) may be more appropriate than the

modelling approaches we discuss, particularly when there

is prior information that a particular characteristic can

define patient subgroups that are fundamentally distinct in

their response to therapy.

Future Directions

Evidence is derived from groups, yet decisions are made

for individuals. This fundamental mismatch means that we

can never fully escape the problems inherent in cross-level

inference. We summarize some conceptual issues and spe-

cific methodological approaches relevant to HTE analysis

(Box 2), but we acknowledge that major challenges remain

in using trial results to guide patient care.76 Generating

patient-centred evidence will ultimately require changes in

the clinical research infrastructure to support much larger

trials, designed with a view to HTE detection, undergirded

by a more rigorous understanding of determinants of the

outcome based on large and information-rich observatio-

nal databases (e.g. the million-person cohort envisioned

under the Precision Medicine Initiative). Applying this evi-

dence will require a clinical informatics infrastructure sup-

porting clinical decision aids and ‘individualized’ practice

guidelines. Recognizing the substantial obstacles on the

path towards patient-centred care should not be an excuse

for settling on using overall average trial results, when we

can do much better. Addressing the difficulties of HTE

analysis—by fully applying our current set of methods and

by developing new ones—remains one of the most impor-

tant challenges facing clinical research.
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Box 2 Assessing heterogeneity of treatment effects (HTE) in clinical trials and interpreting the results of statistical analyses

• Person-level HTE is ubiquitous but impossible to detect, even when data from well-designed large randomized trials

are available.

• Group-level HTE refers to variation of treatment effects (on some scale) across levels of a covariate. It corresponds to

the epidemiological concept of effect measure modification.

• In clinical trials, we can identify HTE by comparing treatment effects (on a chosen scale) between subgroups (statisti-

cal interaction). HTE and statistical interaction are ‘scale-dependent’.

• When baseline risk varies across subgroups in a trial population and the treatment effect is not null, there will always

be HTE on some scale.

• Statistical interactions should not be confused with causal interactions. Additionally, the presence (or absence) of

statistical interaction should not be equated with the presence (or absence) of clinically-relevant HTE.

• The purpose of statistical analyses for HTE is to identify groups of patients who are as dissimilar as possible between

them with respect to their response to treatment.

• Conventional subgroup analyses which serially examine ‘one-variable-at-a-time’ subgroups under-represent heteroge-

neity, do not provide ‘patient-centred’ effect estimates, are typically grossly under-powered and are prone to both

false-positive and false-negative results.

• Because baseline outcome risk is a mathematical determinant of treatment effect, multivariable risk models can be

employed to evaluate treatment effect across strata defined by baseline outcome risk. For clinical decision making, it

is important to consider treatment effects on the risk difference scale across strata.

• Improved methods for HTE detection are needed to allow flexible modelling of multiple potential modifiers while

avoiding bias. New methods will require very large datasets.
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