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Transcriptomic analyses with high temporal resolution provide substantial new insight into hormonal response networks. This study
identified the kinetics of genome-wide transcript abundance changes in response to elevated levels of the plant hormone ethylene in roots
from light-grown Arabidopsis (Arabidopsis thaliana) seedlings, which were overlaid on time-matched developmental changes. Functional
annotation of clusters of transcripts with similar temporal patterns revealed rapidly induced clusters with known ethylene function and
more slowly regulated clusters with novel predicted functions linked to root development. In contrast to studies with dark-grown
seedlings, where the canonical ethylene response transcription factor, EIN3, is central to ethylene-mediated development, the roots of ein3
and eil1 single and double mutants still respond to ethylene in light-grown seedlings. Additionally, a subset of these clusters of ethylene-
responsive transcripts were enriched in targets of EIN3 and ERFs. These results are consistent with EIN3-independent developmental and
transcriptional changes in light-grown roots. Examination of single and multiple gain-of-function and loss-of-function receptor mutants
revealed that, of the five ethylene receptors, ETR1 controls lateral root and root hair initiation and elongation and the synthesis of other
receptors. These results provide new insight into the transcriptional and developmental responses to ethylene in light-grown seedlings.

Transcriptomic data sets have changed the way we
understand molecular events that mediate important
biological responses, including hormone responses

(Fortes et al., 2011; Eremina et al., 2016) and develop-
mentalmechanisms (Hale et al., 2016; Gupta et al., 2017).
The addition of another dimension, time, magnifies the
insights we can obtain from transcriptomic data. The
transcriptome is highly dynamic; the same compari-
son of transcriptomes between treatments or con-
ditions might yield very different results depending
on the time of sampling. A time-course approach
uses this complexity as an advantage. By examining
changes in a transcriptome at multiple time points,
we can see the progression of transcriptional changes,
revealing patterns and pathways (Yosef and Regev,
2011). This temporal resolution also provides layers
of information beyond apparent up- or down-
regulation. It also allows greater confidence in the
reproducibility of those data as changes are repli-
cated across time. Even more significantly, we can
observe when changes in a transcript’s levels peak,
and group transcripts based on kinetics, as well as the
direction of change. These kinetic patterns can then
be correlated with other biological information, such
as gene function, protein-protein interactions, targets
for transcription factor binding, and the timing of
events on a cell, tissue, or organism level (Nagano
et al., 2012). In particular, this approach can be useful
for connecting early signaling events, later tran-
scriptional changes, and their ultimate developmen-
tal responses.
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Plant responses to the gaseous hormone ethylene are
an excellent model for studying these relationships
between signaling, transcriptional changes, and de-
velopment. The ethylene signaling pathway was un-
covered by molecular genetic approaches, taking
advantage of the profound developmental changes
observed in dark-grown seedlings in response to ele-
vated ethylene (Bleecker et al., 1988; Guzmán and
Ecker, 1990); yet, the transcriptional changes that con-
nect signaling and development are incompletely
characterized, especially in light-grown tissues. In the
model plant Arabidopsis (Arabidopsis thaliana), there are
five ethylene receptors that act as negative regulators of
the pathway (Chang et al., 1993; Schaller and Bleecker,
1995; Hua and Meyerowitz, 1998; Sakai et al., 1998).
These five ethylene receptors are not equal, with sub-
functionalization observed for different responses in
different tissues and developmental stages (Wang et al.,
2003; Binder et al., 2004b, 2006; Qu et al., 2007; Liu et al.,
2010; McDaniel and Binder, 2012; Wilson et al., 2014a;
Bakshi et al., 2015). This subfunctionalization is likely
due to diversity in receptor structure and signaling
capabilities (O’Malley et al., 2005; Wang et al., 2006;
Shakeel et al., 2013; Bakshi et al., 2015). In air, these
receptors act through a RAF-like kinase, CTR1 (Kieber
et al., 1993), to inhibit signaling through the EIN2 pro-
tein, whose catalytic activity is not yet known (Alonso
et al., 1999; Qiao et al., 2009, 2012; Ju et al., 2012). The
application of ethylene inhibits the receptors, leading to
lower CTR1 activity, which, in turn, causes a reduction
in the phosphorylation of EIN2; this leads to a decrease
in the ubiquitination of EIN2 and a rise in EIN2 protein
levels, allowing for the proteolytic release of the
C-terminal portion of the protein via an unidentified
protease (Kieber et al., 1993; Qiao et al., 2009, 2012;
Chen et al., 2011; Ju et al., 2012; Wen et al., 2012). The
C-terminal portion of EIN2 modulates two transcrip-
tion factors, EIN3 and EIN3-LIKE1 (EIL1), leading to
the majority of ethylene responses (Chao et al., 1997;
Solano et al., 1998; Alonso et al., 1999; Guo and Ecker,
2003; Yanagisawa et al., 2003; Binder et al., 2004b;
Gagne et al., 2004; Qiao et al., 2012). In dark-grown
shoot tissues treated with ethylene, it has been ob-
served that EIN2 stabilizes the EIN3 transcription factor
(An et al., 2010; Wen et al., 2012), which has a central
role inmediating the ethylene triple response (short and
wide hypocotyl and exaggerated apical hook; Alonso
et al., 2003; Guo and Ecker, 2003; Yanagisawa
et al., 2003). Some EIN3 targets are known, and in
dark-grown seedlings, EIN3-regulated transcriptional
changes have been observed to occur in waves (Chang
et al., 2013). What is less clear is the role of EIN3 in
ethylene responses in all contexts, such as roots or other
tissues in light-grown seedlings, and which transcriptional
responses to ethylene drive these tissue growth condition-
specific developmental responses.

The kinetics of transcriptional responses to ethylene
are likely to be of importance in Arabidopsis roots,
where developmental responses occur on multiple time
scales. In Arabidopsis, root architecture is defined by

the elongation of the primary root and the development
and elongation of lateral (branching) roots, which are
covered in root hairs. Lateral root development is a
complex process that involves the reprogramming of
differentiated cells in the primary root to dedifferentiate
and form a new root that recapitulates the develop-
mental program of primary roots (Péret et al., 2009).
The development of root hairs from epidermal cells also
provides additional surface area to the root system
(Cutter, 1978). This complex branching architecture
of roots is critical for plant health, as roots are es-
sential for the uptake of water and nutrients into the
plant. Differences in root structure have been corre-
lated with traits such as enhanced drought resistance
(Yu et al., 2008; Zhan et al., 2015), which will be
increasingly important for improved agriculture in a
changing climate.

Ethylene mediates several different developmental
changes in roots, namely, it inhibits primary root
growth and lateral root development but stimulates
root hair development and elongation (Guzmán and
Ecker, 1990; Kieber et al., 1993; Tanimoto et al., 1995;
Rahman et al., 2002; Seifert et al., 2004; Ivanchenko
et al., 2008; Negi et al., 2008, 2010). Ethylene-mediated
inhibition of root elongation can take effect in as few as
5 min (Le et al., 2001), while changes in lateral root
development and root hair formationmay take hours to
become statistically significant (Lewis et al., 2013). To-
gether with previous observations of wave-like tran-
scriptional responses (Chang et al., 2013), this suggests
that the kinetics of transcriptional changes may be an
important layer of information for understanding
ethylene-mediated transcriptional changes and how
they control development.

To provide new insight into the ethylene gene reg-
ulatory networks that control the development of
roots in light-grown seedlings, we performed a time-
course transcriptomic study of Arabidopsis roots.
We treated roots with the direct ethylene precursor,
1-aminocyclopropane-1-carboxylic acid (ACC), and
compared the transcript abundance with that of a time-
matched control. We observed many transcripts that
responded to ACC in a time-dependent manner and
grouped these transcripts according to the kinetics of
changes. By comparing transcripts in this data set with
two others from dark-grown seedlings and roots, we
identified tissue- and environment-specific transcrip-
tional responses. We used these clusters to demon-
strate that EIN3 and Ethylene Response Factors (ERFs)
bind to a subset of root ethylene-responsive transcripts,
targeting the most rapidly and positively regulated
response clusters in these light-grown samples. Exam-
ining these changes with high temporal resolution also
led to insights into gene function and how they might
connect to developmental changes. We also exam-
ined the ethylene receptors, finding different roles for
receptors in distinct root developmental responses.
Together, these experiments provide insight into the
networks of signaling and transcriptional responses
that drive root development.
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RESULTS

ACC-Treated Roots Show Changes in Root Hair Numbers
and Transcript Abundance across a 24-h Time Course

To identify a relevant time course of ACC treatment for
our microarray analyses that spanned the time line of

developmental effects, we examined the kinetics of stimu-
lation of root hair initiation. We transferred 4-d-old seed-
lings to new medium with or without the ethylene
precursor ACC at 1 mM and quantified root hairs at eight
time points: 0, 0.5, 1, 2, 4, 8, 12, and 24 h after transfer (Fig. 1,
A and B). A two-way ANOVA found significant

Figure 1. Kinetics of ACC-induced root hair formation and transcript abundance changes. A, Four-day-old seedlings were
transferred to new medium containing 1 mM ACC for the indicated times. Root hairs were imaged at the indicated times, and the
average number and SE of root hairs for 12 to 18 seedlings are reported. Asterisks indicate significant differences (P , 0.0001)
between ACC-treated roots and the time-matched controls. B, Differential interference contrast images of root hair growth over
time in untreated and ACC-treated Col-0 roots. Size bar = 1 mm. C, A series of histograms representing the SLR distribution of the
449 DE transcripts at each time point demonstrates that most transcripts decrease in abundance upon ACC treatment, with the
most profound changes occurring beginning at 4 h when developmental responses are detected. Three biological replicates are
represented individually.
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differences between control and ACC treatments, and a
Tukey’s posthoc test was performed to determine the time
points at whichACChad a significant effect (Supplemental
Table S1). ACC-treated roots showed significantly more
root hairs than untreated controls at 4 h and at all later time
points (P, 0.0001). This demonstrates that changes in root
hair initiation and elongation in response to ACC occur
during the 24 h after treatment, illustrating that these eight
time points provide a developmentally pertinent time line
for microarray analysis.

To detect genes whose expression is regulated by ethyl-
ene,we performed a transcriptome analysis of roots treated
with ACC, a solid precursor of ethylene gas that could be
added to growth substrates. Previous analyses have indi-
cated that the root transcriptional and developmental re-
sponses to ACC mirror those of ethylene under our
treatment conditions (Negi et al., 2008; Lewis et al., 2011b).
As one goal of these experimentswas to compare responses
to two plant hormones, ethylene and auxin, it was optimal
to use a solid that could be added to the growthmedium to

elevate both hormones. We isolated RNA from roots at the
same eight time points used for root hair quantification. For
each time point, plants were transferred to control medium
or medium containing 1 mM ACC for the indicated times
before root tissue was harvested for RNA extraction and
microarray analysis. This analysis was performed simulta-
neously with a previously published auxin (indole-3-acetic
acid [IAA]) transcriptome time course, sharing common
control samples (Lewis et al., 2013).

The microarray data for each treatment replicate were
analyzed separately. A strict differential expression filter-
ing approach was used to identify genes that were dif-
ferentially expressed (DE) in the treatment comparedwith
controls (Lewis et al., 2013). This process, as outlined in
Supplemental Figure S1, first identified transcripts with a
signal intensity above theAffymetrix background signal at
every time point. The signal log ratio (SLR; log base 2 of
fold change) was calculated for each transcript relative to
an averaged time-matched control. Transcripts with an
SLR . 0.5 (corresponding to a 1.4-fold change, chosen to

Figure 2. Clusters of transcripts with similar profiles of temporal changes with early, middle, and late responses to ACC treatment
can be visualized by heat maps and cluster networks. A, Consensus clusters were labeled (Cluster Number) from largest
(DE cluster 1) to smallest (DE clusters 20–24). GeneCount represents the number of transcripts in a given cluster; the top 10 largest
clusters are highlighted in yellow. The time-course profile for a cluster represents the average SLR at each time point. B, The cluster
network of the 13 largest DE clusters is shown at four representative time points, revealing the degree of similarity of temporal
responses within clusters. Nodes represent individual genes, and edges connect genes that clustered together in at least 83% of
clustering iterations. For full time-course cluster networks, see Supplemental Figure S3. For both A and B, the red-blue scale
represents positive and negative SLRs, respectively; white represents an SLR of zero (see color scale).
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identify robust abundance changes) for at least one time
point, and with a consistent magnitude and pattern of
change, were identified. This filtering resulted in a group
of 449 transcripts with robust and consistent changes.
The identity of each transcript and its abundance relative
to time-matched controls are reported in Supplemental
File S1.
The global distribution of SLRs for DE genes across

the time course indicates that the majority of ACC
transcripts have SLRs close to 0 at the 0-h time point
(Fig. 1C), which is consistent with the control and
treatment groups beginning with similar transcrip-
tional profiles. For the 0.5-, 1-, and 2-h time points, the
peak flattens and spreads, showing that few transcripts
have changes in this early time window. However, at
the 4-h time point, the data set yields a discernible bi-
modal distribution, indicating that many transcripts
have either reduced or elevated abundance relative to
the time-matched controls at this time point. This tim-
ing is consistent with the timing of ACC-induced root
hair formation (Fig. 1A). It is interesting that most
transcripts have lower abundance than the control
samples (as seen by the higher peak on the negative side
of the SLR bin). This distribution pattern remains
through the 24-h time point, suggesting that some
genes may maintain differential expression even be-
yond the scope of our time course. This pattern across
the time course implies an ethylene response whereby a
small number of genes respond rapidly, many others
respond more slowly, and most of those genes are re-
pressed rather than induced.

Genes with Related Functions Cluster into Groups with
Similar Ethylene Responses

We might expect that transcripts with common reg-
ulatory controls and/or downstream functions might
show similar patterns of abundance change. To identify
these patterns, the 449 DE genes were clustered using
the consensus clustering option in the SC2ATmd pro-
gram (which can be downloaded from https://github.
com/AmyOlex/SC2Atmd; Olex and Fetrow, 2011) and
an empirically derived threshold for transcripts with
common behavior 83% of the time. This threshold was

empirically determined to maximize the information
that could be obtained from the resulting clusters:
higher thresholds resulted in many singletons and
small clusters that were not useful for statistical anal-
yses, whereas lower thresholds gave a few large clus-
ters that did not adequately represent the diversity of
temporal patterns. The 83% threshold grouped the
transcripts into 24 clusters, with 49 single transcripts
(singletons) remaining with unique temporal expres-
sion patterns that were dissimilar to transcripts in these
clusters (Fig. 2). The patterns of the three replicates for
each transcript also can be examined, as shown for four
clusters in Supplemental Figure S2. Within a given
cluster, the behavior of the transcripts is relatively
consistent, although there is slight variation from the
shared pattern between replicates and transcripts. Av-
eraging the SLR values of every transcript in a cluster at
each time point gives a representative profile of that
cluster (Fig. 2A). These clusters are ordered by direction
of change, rate of change, and magnitude of change.
This view shows that there are more clusters that are
down-regulated than up-regulated, consistent with the
overall SLR profile in Figure 1. The kinetics of these
clusters is highly varied, with rapid or more slowly
executed responses and with response durations that
are transient or sustained. For example, cluster 5 shows
early and transient changes, while cluster 1 shows late
and sustained change. Clusters 1 and 7 are particularly
interesting, as they show increased and decreased
transcripts, respectively, that change with the kinetics
that parallel the kinetics of ACC-induced root hair
initiation.

We also represented the clusters as networks to pro-
vide additional insight into the similarity of responses
within each cluster. In the network diagram, transcripts
are shown as nodes and a connecting edge represents
two transcripts that are clustered together in 83% or
more of the clustering iterations. The length of the edges
in these networks is based on the number of node con-
nections, where many connections result in shorter
edges (as determined by Cytoscape’s layout algorithm),
but does not indicate physical protein interactions or any
other molecular interaction. The networks at 0.5, 2, 8,
and 24 h are shown in Figure 2B, with the complete time
course shown in Supplemental Figure S3. The layout of

Table I. Some clusters are significantly enriched in gene annotations, suggesting that genes with related processes respond similarly to ACC, with
clusters in order of response rate

Cluster Gene Count Cluster Regulation Overrepresented Cluster Annotations Transcript Changes with SLR $ 0.05

4 30 Up Ethylene/hormone response, two-component signal transduction 30 min to 24 h
5 28 Complex Oxidoreductase activity 30 min to 24 h
7 21 Down None 1 to 24 h
10 15 Down None 2 to 4 h
1 111 Up None 4 to 24 h
2 48 Down Transferase activity 4 to 24 h
6 22 Down Metal/ion binding 4 to 24 h
8 18 Down None 8 to 24 h
9 18 Down Cell wall biogenesis, biosynthesis, and organization 12 to 24 h
3 40 Down Oxidoreductase activity 24 h
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nodes in a cluster is determined by the degree (the
number of attached vertices) of each node, so groups of
transcripts that frequently cluster with one another will
form tight subclusters. For example, cluster 6 has two
groups of highly connected transcripts that form tight
subclusters, while several other transcripts clustered
with fewer additional transcripts at the 83% threshold.
In contrast, cluster 7 is tightly connected, with every
transcript connected to most other transcripts, suggest-
ing a high degree of similarity between the SLR patterns
of these transcripts. To understand the functional sig-
nificance of these genes with coordinated expression
patterns, we asked whether these clusters also contained
conserved biological functions.

To determine if genes that cluster together may be
functionally related, a Gene Ontology (GO) enrichment
analysis was performed. This analysis determinedwhich,
if any,GOannotations appear in a clustermore often than
would be expected by chance. Significantly enriched
(P, 0.05) annotations were found in most of the 10 larg-
est clusters (Table I). Some annotations were expected,
such as ethylene response and two-component signal
transduction (cluster 4). Others, such as the annotations
for cell wall processes in cluster 9, which are reduced in
abundance at late time points, suggest a mechanism that
may modulate root growth and development.

Differentially Expressed Genes Are Predominantly
Unchanged across the Control Time Course

There are two possible scenarios whereby ACC re-
duced transcript abundance, resulting in negative SLR
values. Either the abundance of transcripts in the trea-
ted samples decreases while the control values are held
constant, or the transcripts in the treated samples are
constant and the controls increase over time. The
question of which of these is happening is an important
one, because they represent different biological re-
sponses. In the first scenario, ethylene regulation de-
creases transcript levels from a steady state; in the
second, ethylene regulation prevents a preprogrammed
increase in transcript levels.

To resolve these two possibilities, we ran a separate
filtering analysis on both the control samples alone and
the ACC-treated samples alone. For each set of samples,
a new SLR was calculated, this time using the 0-h time
point as the control value, which we call the control-
only SLRs and the ACC-only SLRs. We then ran the
same filters used in the DE analysis to determine if
transcripts exhibited significant changes in abundance
relative to time zero. The results of these analyses for a
subset of genes in several of the original clusters de-
scribed above can be seen in Supplemental Figure S4,
where the SLR ratios calculated with time-matched
controls are compared with SLR calculated for the
ACC-treated or control samples normalized to the time
zero samples. What is immediately apparent is that, in
control samples, the abundance of these transcripts re-
mains essentially unchanged across the time course of

these experiments while changing substantially in
ACC-treated samples. Indeed, for most transcripts, the
ACC-only SLR profile parallels the original DE SLR
profile very closely. The results of the filtering steps
indicate that most transcripts passed all filters in the
ACC-treated samples, with only four failing the SLR
filter and five failing the consistency filters, as noted in
Supplemental File S2. Many of the control samples
failed the SLR filter, consistent with limited change in
these samples. This suggests that, for most of these
transcripts, ACC treatment results in a change from a
baseline expression level, with transcripts at relatively
constant levels in untreated time-matched controls.
This pattern holds when examining the entire data set
of 449 DE genes; the results of this analysis for the
449 transcripts in our filtered data set are summarized
in Supplemental File S2.

Present-Absent Analysis Identified Additional Genes
of Interest

Transcripts that accumulate at low levels may not be
detected over the chip background and, therefore, will
have a detection P value that does not pass the
Affymetrix-defined present threshold. Any gene with
at least one absent measurement was filtered out by the
DE analysis criteria, and a fold change was not calcu-
lated because it is inappropriate to calculate an SLR
when a transcript abundance has a zero value (which is
any value not above the Affymetrix-defined back-
ground) in either the control or treatment. However,
transcripts that accumulate at background levels in ei-
ther the control or ACC treatment conditions could still
be of interest. To identify these transcripts, a present-
absent (PA) analysis was performed using a previously
outlined strategy (Lewis et al., 2013). Samples where a
transcript did not pass the detection P value threshold
were defined as absent and those that passed were
defined as present. For this analysis, we make the as-
sumption that, if a gene changes from present in the
control to absent in the treatment or vise versa, then
the experimental treatment has modified the abun-
dance of transcripts for this gene in a meaningful way.
Thus, we can search for consistent patterns of present-
absent or absent-present in the control-ACC com-
parisons at each time point to identify genes that are
consistently modified by these criteria. An additional
375 genes were identified and clustered in a similar
manner to the 449 DE genes. These transcript identities
and transcript abundance are found in Supplemental
File S3, and heat maps of two clusters are shown in
Figure 3. Some clusters show apparent up-regulation
by ACC (absent-present pattern), including cluster 3 at
the 12-h time point and cluster 2 across the 8- to 24-h
time points, while others show apparent down-
regulation by ACC (present-absent pattern), such as
clusters 4 and 5 (Fig. 3; Supplemental Fig. S5). We say
apparent because there is no way to know precisely if
the gene is up- or down-regulated, since half the data
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are missing; however, if a gene has a signal strong
enough to be detected on the control chip, and then the
same gene is listed as absent on the experimental chip,
we assume that the transcript abundance was reduced
to below background levels in response to ethylene.
Like the DE clusters, PA gene clusters were analyzed

for GO enrichment. Cluster 5 has a present-absent
pattern (or down-regulation) and is enriched in cell
wall-related annotations, similar to the DE cluster 9.
Other annotations found in various clusters (1, 2, 4,
and 6) include oxidation/reduction, cytochrome P450,
hormone signaling, and heat response, respectively
(Table II). Interestingly, three of the six clusters were
found to have significant (P, 0.05) enrichment in genes
encoding transcription factor and/or transcriptional
regulatory proteins. As transcription factors that had
altered expression levels would, in turn, affect the levels
of downstream transcripts, transcription factors pro-
vide a possible mechanism for long-term develop-
mental effects of elevated ethylene.

Cell- and Tissue Type-Specific Expression Patterns of DE
Transcripts Identify Groups of Transcripts with Unique
Localization Patterns

This transcriptomic data set reveals transcript abun-
dance changes in response to elevated ethylene with high
temporal resolution but contains transcripts isolated from
a number of tissue and cell types. The presence of high-
spatial-resolution genome-wide transcript abundance
maps for roots (Brady et al., 2007) allowed the

identification of groups of transcripts from our DE
data set to be examined for cell type (Supplemental
Fig. S6) and tissue type (Supplemental Fig. S7) expres-
sion patterns. We overlaid this pattern on a color-coded
network of our top 10 clusters. The similarity in pattern
of related cell types (lateral roots and pericycle cells
fromwhich lateral roots emerge) or the clusters of genes
linked to the elongation zone compared with the mat-
uration zone suggest groups of ACC-regulated tran-
scripts with coordinated spatial expression patterns. In
a limited number of cases, we see that these transcripts
come from common ACC time-course clusters, such as
a group of genes with a high level of expression in the
developing and maturing xylem that is enriched in
genes from DE clusters 3 and 9 (Supplemental Fig. S6).

Time-Independent Analysis of Function Reveals Pathways
Enriched in ACC-Responsive Transcripts

The above functional analyses of ACC-responsive
genes rely on the similarity of their kinetic responses.
However, it also may be possible that genes within a
given pathway or functional group may respond at dif-
ferent points in the time course. In order to discover
functionally related genes in a time-independent manner,
the microarray data were collapsed across the time
course. For each transcript, the largest magnitude average
SLR at any time point was identified, yielding the most
extreme change for any given gene. All transcripts were
visualized usingMapMan (Thimm et al., 2004) to identify
relative enrichment of pathways and processes. Both the
MapMan analysis and the functional annotation analysis
described above revealed groups of transcripts with an-
notations linking them to ethylene responses or signaling
pathways (Fig. 4; Table I). The metabolism overview
(Supplemental Fig. S8) revealed an enrichment of genes
involved in cell wall processes. This is consistent with the
results of the GO analysis described earlier. It also
revealed a number of transcripts annotated as controlling
secondary metabolism linked to the glucosinolate, terpe-
noid, phenylpropanoid, and anthocyanin pathways that
had altered abundance in response to ACC treatment.

Some ACC-Responsive Transcripts Also Respond to
Treatment with IAA

Ethylene and auxin control many of the same plant
processes, sometimes synergistically, sometimes antago-
nistically (Muday et al., 2012). In roots, for example,
ethylene and auxin both inhibit primary root elongation
(Swarup et al., 2002) and stimulate root hair growth (Pitts
et al., 1998), but ethylene inhibits while auxin stimulates
lateral root development (Ivanchenko et al., 2008; Negi
et al., 2010; Lewis et al., 2011a). Given these relationships,
we were interested in the shared and divergent tran-
scriptional responses to both ethylene and auxin in roots.

In a previously published study, our laboratory used
the same experimental and statistical methods described
here to examine the kinetics of the transcriptional

Figure 3. PA analysis reveals additional genes with consistent, time-
dependent changes in transcript abundance. Heat maps represent
patterns of transcript abundance for two representative PA clusters.
Columns represent three replicates for each time point; each row is an
individual transcript. The white-red color scale represents the normal-
ized signal intensity, and gray designates absent values that did not pass
the Affymetrix detection cutoff.

Plant Physiol. Vol. 176, 2018 2101

Ethylene Transcript and Receptor Networks

http://www.plantphysiol.org/cgi/content/full/pp.17.00907/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00907/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00907/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00907/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00907/DC1


responses of Arabidopsis roots to IAA, the most prev-
alent auxin. We identified 1,246 transcripts that were
DE in response to IAA and identified 498 transcripts via
a PA analysis.

To identify transcripts whose abundance changed in
response to both ACC and IAA, we compared the lists
of DE and PA transcripts from both ACC and IAA ex-
periments, yielding 139 transcripts in common for the
DE data sets, and 124 transcripts were found in both PA
data sets. No transcripts from oneDE list were found on
the opposite PA list. We clustered the 139 DE overlap
transcripts using the same methods as for the ACC DE
449 transcripts. The majority of these transcripts
responded in the same direction and with comparable
magnitudes in both treatments (Fig. 4B). A minority
responded in opposing ways to the two treatments:
nine (6.5%) showed increased abundance in response to
ACC but decreased abundance in response to IAA, and
14 (10.1%) showed the opposite response.

We clustered the 139 DE overlap transcripts using
the methods described previously and visualized
these clusters in network diagrams. Figure 4C clearly
shows two large clusters with transcripts that move in
the same direction in both treatments (cluster 1 with
decreasing abundance and cluster 2 with increasing
abundance) and several smaller clusters where tran-
scripts changed in opposite directions between the two
treatments. These transcripts may be of particular in-
terest in relation to lateral root development, which is
oppositely regulated by ethylene and auxin. This subset
of oppositely regulated transcripts was too small for
GO analysis; however, we did observe that the DE
overlap as a whole was highly enriched in cell wall-
related genes. The patterns in the PA overlap are not
as distinct, but it appears that, for many of the tran-
scripts, their response to IAAwas less different from the
controls than their response to ACC. That is, where
transcripts were present in the control, they tended to
be absent in ACC and present in IAA, and vice versa.

To better understand the interplay between ethylene
and auxin transcriptional changes, we also performed a
comparison of the 449 DE transcripts with a previous
transcriptome study of ethylene and auxin treatment in
roots of dark-grown seedlings at a single time point of
treatment (Stepanova et al., 2007). Those authors ex-
amined transcriptional changes in response to ethylene
or auxin treatment in the wild type and in mutants with

altered responses to these hormones (ein2-5 and aux1-7).
Their analysis found 511 transcripts regulated by
ethylene, 899 regulated by IAA, and 191 regulated
by both hormones. Our data set of 449 included
80 transcripts that they found to be ethylene regu-
lated, with 24 of these also auxin regulated, so 7% of
their ethylene-regulated transcripts were in our data
set and 26% of the transcripts from our set were in
their data set. This comparison suggests that there are
large differences in transcripts regulated by auxin
and ethylene in dark-grown roots compared to roots
of light-grown seedlings, consistent with insufficient
comparisons between ethylene responses as a func-
tion of light conditions.

Comparison with Ethylene-Responsive Transcripts from
Dark-Grown Seedlings

Wewere interested in further comparison of our data
set with other ethylene response transcriptomics, to
examine the effect of light on ethylene transcriptional
response. In a previously published study, Chang et al.
(2013) examined transcriptional responses to ethylene
over a time course using RNA sequencing (RNA-seq).
Their experimental methods differed from ours in that
they used ethylene gas and whole, dark-grown seed-
lings. They also focused on transcripts for genes that
were bound by EIN3 in a separate chromatin immu-
noprecipitation sequencing (ChIP-seq) experiment.
They separated transcripts into two primary groups:
EIN3-R transcripts, which are bound by EIN3 and re-
spond to ethylene treatment, and EIN3-NR transcripts,
which are bound by EIN3 but do not respond to eth-
ylene treatment. They also had a third group, EIN3-ND
transcripts, which are bound by EIN3 but were not
detected in the RNA-seq experiment.

We compared our DE and PA transcripts with these
three lists of genes and identified some overlap. Out of
375 EIN3-R transcripts, 37 also were found in our DE
list (8.2% of DE transcripts and 5.5% of EIN3-R tran-
scripts) and 12 were found in our PA list (3.1% of PA
transcripts and 3.2% of EIN3-R transcripts); out of
886 EIN3-NR transcripts, 32 also were found in our DE
list (7.1% of DE transcripts and 3.6% of EIN3-NR tran-
scripts) and 16 were found in our PA list (4.2% of PA
transcripts and 1.8% of EIN3-NR transcripts). No DE

Table II. GO analysis results for absent-present (AP) clusters

Cluster

Gene

Count Cluster Patterns Overrepresented Cluster Annotations

1 126 Various, including AP at 8 or 24 h Iron/oxygen/ion binding
2 73 AP at 4 to 24 h Signal transduction, immune response, transcriptional regulation/transcription

factors
3 65 AP at 8 to 24 h (most strongly at 12 h) Photosynthetic machinery
4 47 PA at 1 to 24 h Membrane
5 46 Various PA Membrane
6 18 AP at 2 to 24 h None
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transcripts and four PA transcripts were found in the
EIN3-ND list. A full list of all transcripts in these
overlapping and not overlapping sets is available in
Supplemental File S4.
Transcripts that were found in both the EIN3-R list

and our DE list appear to have similar patterns of a-
bundance change, suggesting that they are regulated in
roots as in other tissues (Fig. 5A). We consider this
group of genes to be tissue- and condition-independent
ethylene transcriptional targets. Of transcripts from the
EIN3-R list that were not DE in our data set (Fig. 5B), a
subset appears to have similar patterns of increasing
abundance in our microarray but were filtered out
during our DE analysis due to a magnitude change
below our threshold. However, the majority of tran-
scripts did not have the same level of response in our
microarray as in the Chang et al. (2013) set, suggesting
that these may be genes that are regulated in other tis-
sues but not in roots.

Surprisingly, nearly as many transcripts were found in
the EIN3-NR list (which are defined byChang et al. [2013]
as not regulated by ethylene due to a fold change of less
than 1.5) and genes that we identify as DE (with a fold
change of 1.4; Supplemental Fig. S9) as in the EIN3-R and
DE overlap. We hypothesize that many of the EIN3-NR
transcripts were not DE because of the diversity of tissues
or etiolated growth. In contrast, these transcripts had
more substantial changes in our root-specific study. It is
also possible that many of our transcripts were not in this
data set because they were not regulated by EIN3.

To further explore whether the limited overlap was
due to differences in tissue used (whole seedlings ver-
sus roots), transcriptome profiling approach (RNA-seq
versus microarray), or could be accounted for by the
different methods of filtering, we performed our own
filtering methods on the Chang et al. (2013) data using
the reads per kilobase per million (RPKM) data the
authors provided. Due to differences in the type of data,

Figure 4. Ethylene regulates many hormone synthesis, signaling, and response genes. A, Image generated using the Regulation
Overview in the MapMan Application Software. Squares under a given hormone represent genes/transcripts annotated to that
hormone’s synthesis, signaling, or response. The color scale designates the greatest absolute SLR across the time course for each
transcript. IAA, Indole-3-acetic acid; ABA, abscisic acid; BA, brassinosteroid; SA, salicylic acid; GA, gibberellic acid. B, The
139 ACC and IAA DE overlap transcripts, with average SLR across the time course shown for both hormone treatments.
C, Network map showing clusters of 139 ACC and IAA DE overlap transcripts.
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a few adjustments were made to the filtering steps. In
lieu of the detection P value cutoff, we required that a
gene have an RPKM $ 1 in every sample. There were
not time-matched controls, so we calculated the SLR for
every time point using time zero as the control. Other-
wise, all filtering was performed identically. From this,
we identified 971 transcripts that met our criteria for DE
(Supplemental File S5). Of those 971, only 71 over-
lapped with our ACC DE transcripts (Supplemental
Fig. S10). Of transcripts that were Chang et al. (2013) DE
but not ACC DE, some were not detected in the
microarray because there was no probe for them pre-
sent, some appeared to have a less distinct or consistent
response in the ACC data set, but many have no ob-
servable response in the ACC data set, suggesting that
these responses occur only in shoot tissues. A similar
pattern holds in reverse for transcripts that were ACC
DE but not Chang et al. (2013) DE. We looked at the
71 common transcripts identified in both data sets with
our filtering methods. This method found some of the
same transcripts as the Chang et al. (2013) filters, with
16 EIN3-R targets and four EIN3-NR transcripts, re-
spectively. The limited overlap between these two sets
of transcripts demonstrates the differences between our

respective analyses. However, the 16 transcripts that
were found to be ethylene regulated in our data set and
by Chang et al. (2013) in both their original analysis
and via our DE pipeline may be of particular interest
as gold standard EIN3-dependent, ethylene-responsive
transcripts. The proteins these transcripts encode in-
clude the ethylene receptors ERS1 and ERS2 and other
members of the ethylene signaling pathway, CTR1 and
RTE1, as well as two transcription factors.

Another important finding of these comparisons is
that most of our DE transcripts (84.6%) and most of our
PA transcripts (91.2%) do not show up in either the
original EIN3-R or EIN3-NR lists (Fig. 5C), meaning
that they were not detected by the EIN3 ChIP-seq ex-
periment. This suggests that these transcripts may not
be direct targets of EIN3 but may be targets of other
EIL-family transcription factors, downstream targets of
EIN3/EIL regulation, or regulated by a different set of
transcription factors than those detected in dark-grown
seedlings. As EIN3 mediates direct, primary responses
to ethylene, we expect some of the more slowly regu-
lated transcripts in our DE data set to be regulated by
transcription factors that are downstream of EIN3. To
ask if EIN3 is enriched in specific clusters, especially the

Figure 5. Most ACCDE and PA transcripts are not EIN3 targets. The EIN3-R label represents transcripts that were found to be EIN3
targets and ethylene regulated by Chang et al. (2013) in dark-grown whole seedlings. A, Transcripts that were identified as DE or
PA in our data set and as EIN3-R by Chang et al. (2013) B, Transcripts that were found to be EIN3-R, but not DE or PA, in our data
set. C, Transcripts that were found to be DE or PA in our data set but not EIN3-R in the Chang et al. (2013) data set.
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rapidly induced clusters, we looked for EIN3-binding
sites in our 10 largest DE clusters.

EIN3 Is Not Responsible for All Transcriptional or
Developmental Responses to ACC in Roots

To identify EIN3 targets in the DE 449 transcripts, we
used a publicly available data set from O’Malley et al.
(2016). They identified transcription factor targets
through DAP-seq, a technique similar to ChIP-seq,
which uses affinity-tagged transcription factors to pull
down their associated DNA, rather than transcription
factor antibodies. Out of 1,118 genes identified as EIN3
targets by this method, 57 were DE in our data set. This
represents a statistically significant (P , 1024) enrich-
ment of EIN3 targets in our data set (7% ofDE transcripts
versus 4% of the genome), which is logical given EIN3’s
role in ethylene signaling. We asked whether these
transcripts from genes bound by EIN3 and At2g20110, a
transcription factor of unknown function, were equally
distributed within the DE clusters. The binding sites for
At2g20110 were not enriched in any clusters. In contrast,
for EIN3, several clusters had no EIN3 targets or had a
percentage of EIN3 targets not statistically higher than
the genome (Fig. 6, A and B). Only two clusters, 1 and 4,
were identified as significantly enriched in EIN3 targets.
Both of these clusters are early up, meaning that they
have transcripts that increase in abundance at early time
points. These clusters also contain several ethylene sig-
naling genes that are targeted by EIN3, including ERS1
and ERS2, ETR2, and EBF2. This suggests that EIN3
primarily plays a role in regulating early transcripts,
such as those in clusters 1 and 4, whose transcript a-
bundance reached an SLR . 0.5 at 4 h and 30 min, re-
spectively, and that other transcription factors are
responsible for later transcriptional changes.
We asked whether EIN3’s role in early transcriptional

changes was responsible for the phenotype seen in ACC-
treated roots. The root developmental phenotype was ex-
amined in ein3 and eil1 single and double mutants. These
single mutants retained some ethylene sensitivity, as evi-
dencedbydecreased lateral root numbers andprimary root
length after ACC treatment (Fig. 6, C, D, and G). In com-
parison, the ein3 eil1 double mutant had few root hairs and
a nonsignificant ACC response (Fig. 6, E–G). These re-
sponses differ from those of the ein2mutant, which shows
no significant changes in root length, lateral root number,
and root hair formation (see Figs. 9 and 10 below). These
results differ from the total loss of long-term ethylene re-
sponses in dark-grown ein3 eil1 seedlings (Alonso et al.,
2003; Binder et al., 2004a) and suggest that other tran-
scriptionalmachinery is needed to explain the residual root
elongation and lateral root responses in this doublemutant.

ERFs Bind to Regulatory Regions of Genes in Some, But
Not All, Clusters

ERFs are transcription factors that are downstream
of EIN3/EIL1 and are important for ethylene transcriptional

responses (Licausi et al., 2013). We performed a DAP-seq
enrichment analysis for the 14 ERFs for which DAP-seq
data were available (Fig. 7). Like EIN3, most of these
ERFs showed enrichment of targets in cluster 4 and, to a
lesser extent, in cluster 1. Clusters 2, 5, 7, and 9 also
show ERF enrichment to varying degrees. Some clus-
ters showed no significant enrichment, and for some
ERFs and clusters, there was an underrepresentation of
ERF targets compared with the genome background.
This is most striking in cluster 6. Like EIN3, this suggest
that these known ERFs control a subset of the ACC
transcriptional responses.

Ethylene Receptors Show Distinct Transcript
Response Kinetics

We also used a directed approach to follow the levels
of transcripts of genes known to be ethylene regulated
or that function in ethylene signaling or synthesis (Chen
et al., 2007; Konishi and Yanagisawa, 2008). We queried
the unfiltered data set of transcripts normalized to time-
matched controls to examine the behavior of transcripts
encoding ethylene synthesis and early ethylene signal-
ing proteins, and the SLR of these genes and how they
fared in our filtering analysis are indicated in Figure 8A.
Ethylene synthesis genes, ACO1 and ACO2, were DE,
while ACO4/EFE had an SLR . 0.5 but failed the
Pearson’s correlation coefficient (PCC) filter for con-
sistency between replicates. Several ACC synthase
genes had apparent changes (SLR . 0.5 or , 20.5) but
failed at various filtering steps due to inconsistent
changes or low abundance at single time points.

The ethylene receptor isoforms have both redundant
and nonredundant functions (Shakeel et al., 2013).
Therefore, we were curious to know whether the ap-
plication of ACC differentially affected the time course
of receptor transcript accumulation in roots of light-grown
plants. The levels of transcripts encoding the five ethylene
receptors are plotted as a function of time after ACC
treatment in Figure 8B. All five receptor transcripts are
expressed in roots, with detection above the Affymetrix P
value thresholds. ETR2, ERS1, and ERS2 transcripts, en-
coding three of the receptors, were differentially expressed,
with ETR2 having the most profound change in abun-
dance, while ETR1 and EIN4 both failed at the SLR cutoff
(Fig. 8, A and B), consistent with prior reports in different
tissues (Hua et al., 1998). The accumulation of ETR2 tran-
script is faster than has been observed previously for
whole, dark-grown Arabidopsis seedlings (Binder et al.,
2004b). These results indicate that the different receptor
isoforms may have differing roles in the control of root
growth and development. In support of this possibility,we
examined the distribution of these receptor isoforms across
the range of root tissue types using a previously published
data set (Brady et al., 2007; Fig. 8C). The absolute levels of
transcripts encoding ERS1 and ETR1 receptors are higher
across these tissues but with variation between cell types
evident, suggesting that these receptors may function to
control distinct aspects of root development.
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Figure 6. EIN3 is not responsible for all transcriptional or developmental responses to ACC. A and B, Enrichment of transcription factor
target genes (O’Malley et al., 2016), with the bars representing fold change of the genome background in the top 10ACCDE clusters. A,
Relative abundance of binding sites of a transcription factor forwhich no significant enrichmentwas found. B, The relative abundance of
EIN3 binding sites is enhanced in specific clusters, with asterisks indicating significant enrichments at P, 0.05 using a binomial test. C,
The number of lateral roots was quantified in the presence and absence of ACC in Col-0, ein3, eil1, and the ein3 eil1 doublemutant. D,
Primary root elongation was measured in the presence and absence of ACC in Col-0, ein3-1, eil1-1, and the ein3-1 ein1-1 double
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ETR1 Controls ACC-Modulated ETR2
Transcript Abundance

To examine the roles of ethylene receptors in controlling
the expression of other ethylene receptors, we performed
quantitative real-time (qRT)-PCR on wild-type and re-
ceptor mutant roots after treatment on control or ACC
medium (Fig. 8D). The effect of ACC treatment on ETR2
transcript abundance was examined in Columbia-0 (Col-
0), etr1-3 (a gain-of-function mutant), and etr1-7 (a loss-of-
function mutant). A two-way ANOVA found significant
differences between control and ACC treatment. The sig-
nificance of specific comparisons was assessed using a
Tukey’s posthoc test. In Col-0, ETR2 transcript abundance
showed a 4-fold increase after ACC treatment, consistent
with the microarray results. In the etr1-3 gain-of-function
mutant, the ETR2 transcripts are not significantly different
fromCol-0 and do not changewith ACC treatment. In the
etr1-7 mutant, which is a loss-of-function mutant, ETR2
transcript abundance is elevated in control relative to Col-
0 to levels not significantly different from ACC-treated
Col-0 or etr1-7. These opposite responses in etr1-3 and
etr1-7 are consistent with the absent and constitutive sig-
naling in these two mutant alleles, respectively. These re-
sults suggest a pathway where ETR1 is responsible for
ethylene-mediated increases in ETR2 transcripts. The
role of ETR1 in controlling the synthesis ofERS1 andERS2
transcripts also was examined in the etr1-3 mutant. No
significant change in either transcript was detected in the
presence or absence of ACC (Supplemental Fig. S11).

Specific Ethylene Receptors Modulate Lateral Root
Initiation, Primary Root Elongation, and Root Hair
Initiation and Elongation

The strategy of using ethylene receptor nulls to
identify the receptors that function in distinct tissue or
developmental processes has been productive, but it
has not been used to examine root development
(Shakeel et al., 2013; Gallie, 2015). To define the ethyl-
ene receptor isoforms that control root growth and
development, we examined lateral root development,
primary root elongation, and the initiation and elon-
gation of root hairs in plants with gain-of-function and
loss-of-function receptor mutations in the absence and
presence of ACC. The number of lateral roots formed
5 d after treatment is shown in Figure 9. A two-way
ANOVA found significant differences between con-
trol and ACC treatment. The dominant negative re-
ceptor mutant, etr1-3, as well as the ethylene-insensitive
mutant, ein2-5, have increased lateral root numbers as
compared with the wild type, with statistical signifi-
cance examined with a Tukey’s post hoc test
(Supplemental Table S2), which is consistent with pre-
vious reports (Ivanchenko et al., 2008; Negi et al., 2008;
Muday et al., 2012). Lateral root formation is reduced
;2-fold by ACC treatment in regions of roots formed
after transfer to ACC in Col-0. In etr1-3 and ein2-5
mutants, the magnitude of the effect of ACC is reduced
substantially, with only a 6% change.

We also examined lateral root development in re-
ceptor null or loss-of-functionmutants (Fig. 9). The etr1-
6 and etr1-7 null mutants formed statistically signifi-
cantly fewer numbers of lateral roots relative to Col-0,
forming only 15% and 19% of the number of lateral
roots as Col-0, respectively. Both loss-of-function mu-
tants had similar numbers of lateral roots in the pres-
ence and absence of ACC treatment, consistent with
constitutive ethylene signaling due to loss of receptor
function. This is in contrast with the phenotypes of the
etr2-3, ein4-4, ers1-3, ers2-3, and etr2-3 ein4-4 mutants,
which showed reduced lateral root abundance after
ACC treatment. The ers1-3 and ers2-3 receptor null
mutants in theWassilewskija (Ws) background showed
subtle differences in lateral root number relative to Ws
in both the presence and absence of ACC.

We also used plants with mutations in multiple re-
ceptors and a complemented line to assess the role of
these receptors. The etr1-6 etr2-3 mutant was not sig-
nificantly different from etr1-6 in the absence or pres-
ence of ACC, while the slight difference between etr1-6
and etr1-6 ein4-4 was significantly different in the ab-
sence, but not in the presence, of ACC. The etr1-6 etr2-3
ein4-4 triple mutant exhibited a significant reduction in

Figure 7. Binding sites for ERFs are enriched in a subset of clusters.
Enrichment of ERF target genes (O’Malley et al., 2016) in the top 10ACC
DE clusters reported relative to the whole genome. Significant differ-
ences were determined using a binomial test, with asterisks indicating
P , 0.05 (*) and P , 0.01 (**).

Figure 6. (Continued.)
mutant. E and F, The number and length of root hairs in the presence and absence of ACC in Col-0, ein3-1, eil1-1, and the ein3-1 ein1-1
double mutant. aSignificant difference between control versus ACC treatment within genotypes; bsignificant difference between the
indicated genotype and Col-0 with the same treatments, at P, 0.05. G, Representative whole-root and root hair images of Col-0, ein3,
eil1, and ein3 eil1. Magenta lines represent the length of the primary root at the time of transfer to control or ACC treatment plates.
Bars = 2 mm in whole-root images and 0.5 mm in root hair images.
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lateral root number relative to Col-0 in the control
condition, with no change in number with ACC treat-
ment. When etr1-6 etr2-3 ein4-4 was complemented
with ETR1, there was a significant increase in lateral
roots over the triple mutant, although the comple-
mentation was not complete, as the levels were still
significantly different from those of Col-0. These data
indicate that ETR1 has the major role, with a minor role
for EIN4, in mediating lateral root formation upon
treatment with ACC in Col-0, similar to the major role
that ETR1 has in mediating ethylene-stimulated hypo-
cotyl nutations (Binder et al., 2006) and the inhibition of
ethylene responses by silver (McDaniel and Binder,
2012).

To determine the inhibitory effects of ACC on pri-
mary root elongation in the ethylene receptor mutants,
we measured the length of the primary root before and
after 5 d of 1 mM ACC treatment (Fig. 9). A two-way
ANOVA found significant differences between control
and ACC treatments (Supplemental Table S3). We ob-
served greater root elongation in etr1-3 and ein2-5 than
in Col-0 under control growth conditions or ACC
treatment, which is consistent with previously pub-
lished reports (Ivanchenko et al., 2008; Negi et al., 2008;
Péret et al., 2009; Muday et al., 2012). Although un-
treated etr1-6 and etr1-7 had reduced root elongation to
66% and 47% of the primary root length of Col-0, re-
spectively, root elongation was still sensitive to ACC,

Figure 8. Ethylene controlsmany ethylene synthesis, signaling, and response genes, including expression of the ethylene receptor
ETR2 in an ETR1-dependentmanner. A, For each ethylene-related transcript queried from our data set, the results represent the DE
cluster where it is found or where it failed in the filtering process. SLRs represent averages of three biological replicates. Red,
white, and blue designate positive, zero-value, and negative SLRs, respectively (see color scale). B, The SLR patterns for five
ethylene receptor transcripts showdifferent kinetic responses to ACC treatment. SLRs are reported as averageswith SE as a function
of time after ACC treatment from the microarray data set. C, The cell type-specific expression pattern of each of the receptors
illustrated with relative levels of transcripts using a percentage scale for the normalized signal values from Brady et al. (2007). D,
Transcript abundance in receptor mutants as determined by qRT-PCR. Nine-day-old seedlings were transferred to agar medium
with and without ACC at 1 mM for 24 h before RNA extraction and quantification by qRT-PCR. Averages of three biological
replicates are reported. The significance of ACC treatment within a genotype and between Col-0 and the indicated genotypeswas
assessed by ANOVA and Tukey’s posthoc test, and significant differences are indicated. aSignificant difference between treat-
ments, at P , 0.0003; bsignificant difference between genotypes within treatments, at P , 0.003.
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showing significant reduction upon ACC treatment
relative to the untreated roots in both mutant geno-
types, consistent with prior studies on roots of dark-
grown seedlings (Hua and Meyerowitz, 1998; Cancel
and Larsen, 2002). Mutants in other receptors had pri-
mary root lengths that were not significantly different
from Col-0. The etr1-6 etr2-3 and etr1-6 ein4-4 double
mutants show shorter primary roots than etr1-6 in the
absence or presence of ACC, and the magnitude of re-
sponse to ACC was reduced. The triple mutant has the
shortest primary root, which was reduced compared
with all the other genotypes and showed no effect of
ACC treatment; however, the ETR1 complemented line
is longer than the triple mutant and has a similar
magnitude response to ACC as Col-0. Together, these
data demonstrate a major role of ETR1 in modulating
primary root elongation via ACC and suggest minor
roles of ETR2 and EIN4 in this process.
Ethylene treatment also increases the number and

length of root hairs (Tanimoto et al., 1995; Rahman
et al., 2002), which are single-cell projections of the
epidermis that increase the surface area of the root and
aid in water and nutrient uptake (Cutter, 1978). We
treated 4-d-old seedlings with 1 mM ACC for 24 h and
quantified the number and length of root hairs (Fig. 10).
A two-wayANOVA found significant differences in the
number and length of root hairs between control and
ACC treatments (Supplemental Tables S4 and S5). We
observed a greater than 5-fold increase in the number
and length of root hairs in Col-0 after ACC treatment

(Fig. 10). Both ein2-5 and etr1-3 formed fewer, shorter
root hairs in the presence of ACC than Col-0, and we
observed no increase in the number or average length of
root hairs in response to ACC in ein2-5, although etr1-3
showed a 2-fold increase in the number of root hairs
after ACC treatment and these root hairs were shorter
than those in Col-0. It has been observed that etr1-3 is
not entirely ethylene insensitive with regard to the
growth inhibition response in roots (Hall et al., 1999),
and it appears that this incomplete insensitivity applies
to root hair initiation as well. Interestingly, etr1-6 and
etr1-7 have different responses to ACC treatment. In
etr1-6, there is a higher induction of both root hair
number and length by ACC, as compared with Col-0,
while etr1-7 has a higher than wild-type number of root
hairs under control conditions, with a smaller, addi-
tional induction by ACC than Col-0. This is consistent
with descriptions of these two mutants, where etr1-7
generally has a more striking phenotype (Wilson et al.,
2014b). The locations of the mutations are likely re-
sponsible for the different phenotypes of etr1-6 and etr1-
7. The mutation occurs earlier in etr1-7, resulting in a
shorter amino acid sequence in the translated protein
compared with etr1-6 (Hua and Meyerowitz, 1998).
This difference is important, as the N-terminal domain
of ETR1 is known to have signaling properties through
interactions with RTE1 (Gamble et al., 2002; Qu and
Schaller, 2004; Xie et al., 2006; Qiu et al., 2012). Root hair
numbers in etr2-3 in the presence of ACC are slightly
and significantly greater than in Col-0, whereas ein4-4

Figure 9. ACC inhibits lateral root
initiation and primary root elonga-
tion through different ethylene re-
ceptors. Five-day-old seedlings were
transferred to medium containing
1 mM ACC, and the lateral root
number and primary root length
were quantified after another 5 d.
Averages and SE of 30 seedlings are
reported. The significance of ACC
treatment within a genotype and
between Col-0 and the indicated
genotypes was assessed by ANOVA
and Tukey’s posthoc test. aSignificant
difference between control and
treatment with ACC within a geno-
type, at P , 0.05; bsignificant differ-
ence between parental lines and
mutant genotypes.
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has ;6-fold more and ;2-fold longer root hairs under
control conditions, with significant differences from
Col-0 detected in the absence and presence of ACC
treatment. The etr1-6 etr2-3 ein4-4 triple mutant has the
greatest number and length of root hairs under control
conditions, with numbers greater than the single and
double combinations of these mutations. When this line
is transformed with ETR1, the number and length of
lateral roots are decreased relative to the triple mutant,
with a greater than 20-fold difference, but remain sta-
tistically different from Col-0. The magnitude of the
responses suggests that ETR1 and EIN4 both play a role
in modulating root hair initiation and elongation in
response to ACC in Arabidopsis roots.

DISCUSSION

Examining transcriptional responses at a single time
point during development or in response to enhanced
hormone signaling limits our view of the progression
of events. The challenge of large transcriptomic data
sets is moving beyond long lists of genes to identify
patterns and relationships that predict networks of
genes that function together. Cascades of precisely
ordered and sequentially activated transcription fac-
tors are the basis of many complex developmental
processes (Davidson, 2010; Kurotaki et al., 2013). In
recent years, transcriptomic data sets measured over
a time course have provided substantial additional
insight into understanding the gene regulatory net-
works that control development (Jaeger et al., 2012;
Nagano et al., 2012). These data sets allow the obser-
vation of sequential series of transcriptional events
that can be analyzedwith sophisticated computational
approaches to provide new insight into the networks
of coordinated transcript changes. These approaches
have uncovered the elaborately branched networks of
regulons induced by a stimulus and coordinated by
individual transcription factors (Yosef and Regev,
2011; Jaeger et al., 2012). We completed a time-course
microarray of roots treated to elevate levels of the
gaseous plant hormone ethylene that spanned the
time window of ethylene-dependent changes in root
growth and development, which revealed transcrip-
tional regulators and signaling proteins not linked
previously to ethylene signaling as well as conserved
transcriptional responses that span tissue type and
developmental context.

We identified changes in transcript abundance upon
treatment of roots with ACC, an ethylene precursor,
across eight time points that spanned 24 h. We quanti-
fied the induction of root hair formation across this same
time course, demonstrating that the earliest transcript
abundance changes precede this developmental re-
sponse while the later time points are coincident with
the enhanced formation and elongation of root hairs.
The ability ofACC to inhibit elongation andblock lateral
root progression across this time course was demon-
strated previously (Lewis et al., 2013). The root

developmental changes in response to ACC treatment
are the result of elevated ethylene (rather than direct
effects of ACC), as the developmental responses are all
blocked in the ethylene signaling mutants etr1-3 and
ein2-5 (Figs. 9 and 10; Negi et al., 2008). Therefore, we
can directly overlay root developmental changes on this
root-specific ACC time course to look for temporal
linkage between transcriptional and developmental re-
sponses.

The changes in transcript abundance across this data
set were filtered in two independent ways (Lewis et al.,
2013). The first approach applied a rigorous filtering to
identify a DE data set. The 449 transcripts in this data
set were above the Affymetrix detection threshold at
every time point, were induced or repressed by more
than 1.4-fold (SLR . 0.5), and had consistent patterns
and magnitude of change in abundance in all three
replicates, as judged by Pearson correlation and Eu-
clidean distance (ED). For each gene, the SLR of tran-
script abundance in these data sets was clustered using
k-means into 24 clusters with an empirically derived
83% consistency (Fig. 2). The distinct kinetics and
magnitude of responses are best visualized by heat
maps of whole clusters (Fig. 2A) or individual genes
within select clusters (Supplemental Fig. S2). The con-
sistency of behavior of transcript abundance changes
within these clusters is evident in the cluster maps, in
which the relative abundance of each transcript in each
cluster is shown separately at each time point (Fig. 2B;
Supplemental Fig. S3). A line connecting two nodes
indicates that they met the 83% threshold; transcripts
that are tightly connected in this way typically show a
higher degree of correlation than those that are more
spread out. For example, in cluster 7, all transcripts are
highly correlated, while in cluster 3, one group of
transcripts are tightly correlated while half the cluster
shows less similarity. The clustering was initially per-
formed with a range of consistency requirements, and
when higher similarity of response for all transcripts
was required, it resulted in clusters that looked like
cluster 7, but there were many more singletons. A pri-
mary goal of clustering is to look for groups of genes
with conserved function, and we chose to focus our
analysis on clusters with slightly more variation in re-
sponse (requiring 83% consistency) but of larger size to
find statistically conserved functional annotations, as
identified in Table I. We also can find clusters of tran-
scripts that tightly overlay on the root hair kinetics in
Figure 1, with transcripts increasing and decreasing in
DE clusters 4 and 7, respectively, preceding root hair
stimulation and with transcripts increasing and de-
creasing in clusters 1 and 6, respectively, at times co-
inciding with root hair developmental changes. These
two groups of clusters may identify transcripts that
drive development and execute the developmental
changes, respectively.

We used a second filtering approach to identify some
transcripts excluded by the DE filtering but that had
robust responses to ACC treatment. A challenge with
our initial filtering is that we eliminated transcripts that
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Figure 10. ETR1 and EIN4 both function in ACC-induced root hair initiation and elongation. ACC induces root hair formation and
elongation through specific ethylene receptors. Four-day-old seedlings were treated with 1 mM ACC for 24 h. The number of root
hairs is shown on the left and the length of root hairs shown on the right, with representative images for each genotype and
treatment. Averages and SE are reported for 12 to 18 seedlings. aSignificant difference between control and treatment with ACC
within a genotype, at P , 0.05; bsignificant difference between parental lines and mutant genotypes.
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were not different from the background at any time
points according to the Affymetrix detection P values,
which eliminated transcripts that were not expressed in
control but were induced by ACC treatment or whose
abundance decreased to below background levels after
treatment. This second filtering identified transcripts
that were present (above background) at some time
points while being absent (below background) at other
time points, which generated a data set that we call PA.
We could not calculate SLR for this data set, since it is
mathematically inappropriate to use these zero values
in fold change calculations, so we report the data di-
rectly for control and treatment samples. The PA data
set also was filtered and clustered, heat maps were
reported (Fig. 3; Supplemental Fig. S5), and functional
annotations were obtained. The PA and DE data sets
show similar patterns of transcript changes and have
some overlapping functions, such as clusters with in-
creased transcript abundance annotated with ethylene
signaling or with decreased abundance annotated with
cell wall function.

One surprising finding in these data is that ACC
treatment leads to more transcripts exhibiting reduced
abundance than increased abundance. This is evident
both in the histogram showing the number of tran-
scripts as a function of SLR at each time point (Fig. 1)
and in the DE and PA heat maps (Figs. 2 and 3;
Supplemental Fig. S5). The negative SLR values in the
DE data set could result from either decreased abun-
dance in the treatment or increased abundance of
transcripts in the untreated time-matched control data
set. We find that most transcripts are relatively constant
in the control data set, while the same transcripts de-
crease in abundance in response to ACC treatment
(Supplemental Fig. S4). This differs from prior ethylene
genome-wide data sets performed with dark-grown
seedlings (Chang et al., 2013) or dark-grown roots
(Stepanova et al., 2007), suggesting that ethylene may
control root development in light-grown plants through
very different machinery.

We also performed comparisons of this data set with
a time-course data set (Chang et al., 2013). In that data
set, transcripts whose abundance changed with ethyl-
ene treatment and that were regulated by the canonical
ethylene transcriptional regulator EIN3 (Chao et al.,
1997) were identified. We also performed a secondary
DE analysis using the filtering approaches applied to
our microarray data to examine the Chang et al. (2013)
RNA data set using their RPKM values. This analysis
identified 971 DE transcripts, which is approximately
40% of the total identified by the Chang et al. (2013)
filtering. We identified a small number of transcripts in
both lists that were also in our DE or PA data sets. There
were a large number of their EIN3-regulated transcripts
that showed no clear response in our data set (top half of
Fig. 5B), that hadmore limitedmagnitude change, or that
were inconsistent in pattern or magnitude change in our
data set (Fig. 5B, middle and bottom). Similarly, we
identified transcripts that changed robustly in our DE
and PA data sets but whose abundance changes were

weak or inconsistent in response to ethylene in their data
set. Yet, in both of these two data sets, transcript changes
span multiple time points, with sequential changes
clearly indicating robust responses. This comparison
leads us to conclude that there are very different sets of
transcripts that change in these two data sets, consistent
with the differences in growth conditions (light versus
dark), tissue type (roots versus whole seedlings), and
perhaps method for elevating ethylene (ethylene pre-
cursor versus ethylene gas). Developmental responses to
ACC are lost in the ethylene-insensitive etr1-3 dominant
negative and ein2-5 mutants (Figs. 9 and 10); therefore, it
seems unlikely that a difference between ACC and eth-
ylene treatment would explain most of these differences.
When we filtered the Chang et al. (2013) data set using
our statistical cutoffs, we again found limited overlap,
suggesting that the difference is primarily in experi-
mental methods (light versus dark grown and tissue
specificity). To resolve how much variation is accounted
for by tissue type, we comparedwith a second data set of
dark-grown roots (Stepanova et al., 2005), which also
yields limited overlap, consistent with light-dependent
developmental differences. Within these three data sets,
25 transcripts were found in their respective ethylene-
responsive groups, further supporting the idea of a
small subset of genes that are important for ethylene re-
sponse acrossmultiple tissues, environmental conditions,
and responses but with the majority of transcriptional
changes happening in a context-dependent manner.
Consistent with this conclusion, Figure 8A illustrates the
abundance change of a variety of ethylene signaling and
response transcripts in our data set, many of which are
conserved across these three data sets (Table I).

To further explore the role of the canonical ethylene
transcriptional machinery in this response, we asked
whether EIN3, a critical upstream transcriptional reg-
ulator (Chao et al., 1997), played central roles in these
root responses to ACC. We used a recently published
DAP-seq data set in which the targets of EIN3 and a
diversity of other transcription factors were identified
across the Arabidopsis genome (O’Malley et al., 2016).
We find that the EIN3 targets are found primarily in
two DE clusters (1 and 4) that both show transcript a-
bundance increases (Fig. 6). Rapidly induced cluster 4,
annotated as ethylene responsive, is strongly enriched
in EIN3-bound genes relative to the whole genome.
These data are consistent with the model in which EIN3
binds to these genes (which include seven predicted
transcription factors), which, in turn, control the tran-
scription of other genes, leading to a network that can
only be detected by high-resolution time-course tran-
scriptomics. A similar pattern was found for ERFs,
which also bind to targets in clusters 1 and 4 (Fig. 7).
Additional enrichment was found in clusters 2 and 7,
which contain seven and five ERF-binding sites, re-
spectively, and in clusters 5 and 9,which are enriched in
the binding of two ERFs. Together, these results reveal a
subset of the ACC response clusters that are regulated
by canonical ethylene transcriptional machinery, but a
number of these other clusters may contain previously
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uncharacterized light-grown, root-specific transcripts
whose regulation occurs via distinct mechanisms.
These data also suggest EIN3-independent path-

ways. We also tested the function of EIN3 in controlling
root response as well as the EIL1 transcription factor
using single and double mutants. In contrast to ein3 eil1
mutant seedlings grown in the dark, which show no
response to prolonged ethylene treatment (Alonso
et al., 2003), the ein3 eil1 double mutant shows inhibi-
tion of root growth and lateral root formation in re-
sponse to treatment with ACC. In contrast, increased
root hair initiation was not significant in the double
mutant. This is consistent with a previous study that
demonstrated a loss of the jasmonic acid induction of
root hairs in the double mutant (Zhu et al., 2011). Those
authors also showed no root hairs in the doublemutant,
but this may be explained by variations in growth
conditions, such as sucrose supplementation in media
and the age of seedlings. Together, these data indicate
that both EIN3-dependent and -independent signaling
controls specific aspects of root development.
Since the role of EIN3 is very different in roots as

opposed to other tissue types, we also examined the
regulation of and functional role of the five ethylene
receptors to explore whether they too have different
roles in roots of light-grown seedlings. Transcripts en-
coding the five ethylene receptors ETR1, ETR2, ERS1,
ERS2, and EIN4 have different responses to ACC, with
either no response or responses that differ in kinetics or
magnitude of response (Fig. 8, A and B). Consistent
with prior reports, ETR2, ERS1, and ERS2 are increased
by treatments that elevated ethylene (Hua et al., 1998),
but the more rapid and larger responses of ETR2 sug-
gested the testable hypothesis that it had the most
profound effect of ACC on root architecture. The
dominant negative (or gain-of-function) ETR1 mutant
(etr1-3) has been shown previously to be insensitive to
the effects of ethylene on root elongation, lateral root
development, and root hair initiation (Negi et al., 2008;
Lewis et al., 2011b). We used null mutants in each of the
five receptors and identified a strong role for ETR1 in
controlling the root responses to ACC, but more subtle
changes in development in null mutants in any of the
other receptors, as summarized in Supplemental Table
S6. We also examined multiple null mutants in two or
three receptor genes, finding smaller and redundant
roles for ETR2 and EIN4, especially in root hair for-
mation. We used a triple mutant with profound de-
velopmental responses to find that these phenotypes
are largely complemented with a genomic copy of
ETR1. This is consistent with previously published data
showing the importance of ETR1 in ethylene response
in roots (Negi et al., 2008; Lewis et al., 2011b). Addi-
tionally, we examined ETR2 expression in etr1 mutant
alleles and find that ETR2 levels are reduced in the gain-
of-function allele and are elevated in the absence of
ACC in the null allele, consistent with previous reports
that ethylene induction of ETR2 protein levels is lost in
etr1-1 (Chen et al., 2007). These results argue that the
constitutively expressed ETR1 receptor has a

predominant role in controlling root responses to eth-
ylene, similar to its major role in controlling nutations
and responses to silver ions (Shakeel et al., 2013).

To place this data set in the context of root develop-
ment,weperformed several other comparisons. First,we
asked whether the ACC-regulated transcripts had cell
type-specific expression patterns. We used previously
published data sets that identify cell type-specific tran-
scriptomes or transcriptomes that span the root tip de-
velopmental zone (Brady et al., 2007).We clustered these
by commondevelopmental response and askedwhether
any clusters were linked to specific cell or tissue ex-
pression patterns but did not find striking patterns,
suggesting that ethylene response transcripts span de-
velopmental regions. This is consistent with limited tis-
sue specificity due to the diffusion of the ethylene gas.

A second and more fruitful comparison was to look
for overlaps with a root-specific IAA response data set,
as the hormone IAA has different effects on root de-
velopment than ethylene. Although auxin and ethylene
both inhibit primary root elongation and stimulate root
hair proliferation, these two hormones have opposite
effects on lateral root initiation, with IAA stimulating
and ACC and ethylene inhibiting this process. When
we compare these two transcript abundance data sets,
which were performed at the same time and with the
same time-matched controls, we find 1,246 transcripts
that respond to IAA, 449 that respond to ACC, and
139 in common. The majority of these show similar
directional changes in response to both hormones
with consistent increases (top of Fig. 4B) or decreases
(bottom of Fig. 4B), while a small set shows opposite
responses, consistent with transcripts that might dif-
ferentially regulate lateral root inhibition. These dif-
ferences are best seen in the cluster network maps
shown in Figure 4C, which show opposite direction in
the same subset of clusters. The transcripts in this
overlap can be tested to ask about how they control root
developmental responses to these two hormones.

The patterns we have revealed by comparison of our
data set with other large-scale data sets, and by analysis
of clusters with similar transcriptional changes for com-
mon gene functions or transcriptional regulators, dem-
onstrate the effectiveness of a time-course approach to
transcriptomics. When making comparisons with other
data sets, it is especially important to have a high degree
of confidence that the changes observed are real; our
experimental design and filtering method mean that
transcripts identified as ACC responsive were replicated
across multiple time points and showed similar kinetics
in three experimental replicates. Additionally, many of
the transcripts we identified as ACC responsive in roots
would have appeared unresponsive and uninteresting if
we had chosen any single time point after treatment for
analysis. Together, these two advantages of time-course
transcriptomics helped us to identify responses to ethyl-
ene that were tissue and/or environment dependent
along with responses shared across contexts. By looking
for patterns in these transcript responses across time, we
also were able to correlate changes with development
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and gene function, suggesting potential mechanisms for
ethylene control of root development. Our comparison
with the IAA data set led to a further narrowing of genes
of interest specifically for ethylene and auxin cross talk in
roots. We also were able to ask questions about receptor
and transcription factor control of ethylene responses,
discovering EIN3-independent as well as -dependent
transcriptional changes in roots and specific roles for re-
ceptors in developmental changes. This data set provides
an example of how time-course approaches can be useful
within a hormone response and developmental context.

MATERIALS AND METHODS

Plant Growth and Arabidopsis Genotypes

Arabidopsis (Arabidopsis thaliana) Col-0 seeds were purchased from Lehle
Seeds. The etr1-6, etr1-7, etr2-3, ein4-4, and ers2-3 mutants were obtained from
Elliot Meyerowitz, and the ers1-3 mutant was obtained from Eric Schaller. All
have been described previously (Hua and Meyerowitz, 1998; Qu et al., 2007).
The etr1-6, etr1-7, etr2-3, and ein4-4 mutants are in the Col-0 background, and
the ers1-3 and ers2-3 mutants are in the Ws background. The ein3-1 and eil1-4
single and ein3-1 eil1-1 double mutants are in the Col-0 background and were
described previously (Binder et al., 2007). The combinatorial mutants and
transformants have been described previously (Hua and Meyerowitz, 1998;
Kim et al., 2011).

Plants were grown on 13 Murashige and Skoog medium (Caisson Labo-
ratories), pH 5.6, Murashige and Skoog vitamins, and 0.8% agar, buffered with
0.05%MES (Sigma), and supplementedwith 1% Suc. After stratification for 48 h
at 4°C, plants were grown under 100 mmolm22 s21 continuous cool-white light.
For phenotypic analyses, wild-type and mutant plants were grown on control
medium for 5 d and then transferred to control and 1 mM ACC-containing
media. Five days later, seedling images were captured with a scanner. Pri-
mary root growth was measured using Imaris 7.7.2 (Bitplane), and lateral root
number was quantified manually.

ACC Treatments and RNA Isolation

RNA was isolated from seedlings grown on a nylon filter (03-100/32; Sefar
Filtration) as described previously (Levesque et al., 2006). Plants were stratified
and germinated subsequently on a filter pressed tightly against control medium
with approximately 100 seedlings per plate. On day 5 after germination, the
nylon was transferred to growth medium with and without 1 mM ACC for the
given treatment time (0–24 h). After this time, roots were cut from seedlings and
flash frozen in liquid nitrogen.

Frozen samples were ground in liquid nitrogen, and RNA isolation was
performed according to the Qiagen plant RNeasy kit protocol, with the addition
of the Qiagen RNase-free DNase treatment (Qiagen). After RNA isolation,
samples were quantified by A260 using a Nanodrop spectrophotometer
(Nanodrop Technologies). RNA concentrations were standardized to 150 ng
mL21 6 10% by the addition of DEPC-treated 10 mM Tris-HCl, pH 8. Each
sample yielded approximately 4.5 mg of RNA.

Microarray Analyses

RNAsampleswere sent to theWake Forest UniversityComprehensiveCancer
CenterMicroarraySharedResourceCenterandwere repurifiedonQiagenRNeasy
columns. The samples were analyzed on the Agilent Bioanalyzer and Eppendorf
BioPhotometer for RNA integrity and concentration. Samples with RNA integrity
values greater than 8 were carried forward for cDNA synthesis, labeling, and
fragmentation. The samples were hybridized to the arrays and washed, and
Affymetrix AGCC software was used to process the chips and perform image
capturing. The resulting .CEL files were analyzed for quality assurance using
internalAffymetrixparametersandcustomsignaldistributionanalysesdeveloped
in house. These CEL files have been posted to the Gene Expression Omnibus and
can be found under accession number GSE84446.

Raw data were normalized by the microarray facility using systematic
variation normalization as described previously (Chou et al., 2005), and the log2

of the signal intensity was reported along with the detection P value calculated
by the Affymetrix software.

Transcript Filtering and DE Calculation

A four-step filtering pipeline (Supplemental Fig. S1), described previously
(Lewis et al., 2013), was used to process the normalized microarray data to
identify genes with significant and consistent DE over time. The first step, the
detection P value filter, identified transcripts that were reliably detected on the
chip over background within each replicate data set independently. A transcript
was retained if the detection P values were 0.06 or less (the Affymetrix recom-
mended cutoff) for all time points (Supplemental Fig. S1, step 1). This is outlined
at http://media.affymetrix.com/support/downloads/manuals/data_analysis_
fundamentals_manual.pdf (May 18, 2015). For each replicate data set, the relative
expression was reported as the SLR, which is equivalent to the log2 fold change.
The SLR was calculated as the time-matched log2 ratio of the signal intensity at
each ACC treatment time (for each replicate individually) relative to the average
intensity of the control replicates at each time point. As data were already log2
transformed, this ratio calculation was simply a subtraction of the control value
from the experimental value. Control replicateswere averaged for each timepoint
because control and experimental data sets were not paired; therefore, averaging
the control provided a consistent baseline for replicate comparisons. These control
values also were used for an IAA study that was performed simultaneously and
was published previously (Lewis et al., 2013). After SLR values were calculated,
the second step used them to identify transcripts that had a transcriptional re-
sponse toACCat somepoint during the time course (SLRfilter; Supplemental Fig.
S1, step 2). Any transcriptwith an SLR#20.5 or$ 0.5 (roughly a 1.4-fold change)
for at least one time point was retained. The overlap filter (Supplemental Fig. S1,
step 3) retained all transcripts that passed the detection P value and SLR filters
in all replicates. The final step was the consistency filter (Supplemental Fig. S1,
step 4), which identified transcripts that had consistent response to ACC over
time. This filter calculated Pearson’s correlation coefficient (PCC) and the
Euclidean distance (ED) for each transcript’s temporal profile to identify tran-
scripts with a consistent pattern (PCC score) and magnitude (ED score) of ex-
pression between all replicates over time (Olex et al., 2010). All pairwise
combinations of replicate temporal profiles were compared, resulting in three
PCC and three ED scores for each transcript. Only two of the three PCC and ED
scores were required to have PCC $ 0.7 and ED # 1.09. The PCC cutoff was
determined based on statistical reasoning, where any two data sets with a
correlation greater than 0.7 were considered as highly correlated. The ED cutoff
was chosen to be the median ED score over all three sets of scores for the entire
filtered data set. Transcripts meeting or exceeding all filtering criteria were
considered to be significantly and consistently expressed.

DE Calculation of Chang et al. (2013) Data

DEcalculationusing thedata reportedbyChanget al. (2013)wasperformedusing
calculated RPKM values provided by the authors. The calculation was performed as
closely as possible to themethods described above, with the following differences. In
place of the Affymetrix P value cutoff, transcripts were required to have an RPKM.
0 (i.e. to bedetected) for all replicates. Since therewas not a time-matched control data
set, all SLRs were calculated using the average time-zero RPKM.

Consensus Clustering

Prior to clustering, afigure ofmerit (FOM) analysiswasperformedon the set of
transcriptsmeeting the filtering criteria to identify the inherent number of clusters
present in each replicate data set. The FOM also determined which clustering
algorithm generated the most homogenous clusters with respect to the EDmetric
(k-means and hierarchical agglomerative clustering were compared; Yeung et al.,
2001; Olex et al., 2007; Lewis et al., 2013). The DE filtered set of transcripts was
clustered using the consensus clustering option provided by SC2ATmd (Olex and
Fetrow, 2011), which was updated to allow users to specify a custom consensus
threshold, where transcripts are included in a consensus cluster if they are
grouped together less than 100% of the time. The calculated consensus matrix
(Monti et al., 2003; Olex et al., 2010) is filtered based on the chosen threshold and
converted to an adjacency matrix, where all values passing the threshold are
changed to 1 and all other values are changed to 0. The adjacency matrix is then
searched using MATLAB’s graphconncomp function, which uses a depth first
search algorithm, to identify consensus clusters. Consensus clustering was run
using K-means and ED with 10 starting clusters (parameters determined by the
FOM analysis). A consensus threshold of 83%, where transcripts found in the
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same cluster 83% of the time would be included in the same consensus cluster,
was chosen, as it returned clusters with consistent expression kinetics as well as a
limited number of singletons compared with other thresholds (data not shown).
Ten clustering iterations were performed per replicate.

PA Filtering and Clustering

PA filtering was performed as described previously (Klink et al., 2010)
with some alterations. A pattern of PA was assigned if all three control
replicates for a given time point had a detection P # 0.04 (Affymetrix
present call) and all ACC-treated replicates for the same time point had a
detection P $ 0.06 (Affymetrix absent call). Similarly, a pattern of absent-
present was assigned if the inverse filter was met (control P$ 0.06 and ACC
P # 0.04). Detection P values in the marginal range (0.06 . P . 0.04) were
not considered, as those genes would have been included in the initial fil-
tering analysis. A full list of genes passing the present-absent or the absent-
present filter for at least one time point was constructed and is reported in
Supplemental File S3.

The PA genes were clustered to identify groups with similar patterns over
time. For each timepoint andcondition (control orACC)of agivengene, all three
replicate signals were set to 21 if any one of the replicates was absent or
marginal. Otherwise, if all three replicates were present (i.e. had detection P #

0.04), then the signals were left intact for clustering. This modified data matrix
was imported into the tool SC2ATmd for FOManalysis. The standard clustering
tab in SC2ATmd (Olex and Fetrow, 2011) was then used to cluster these data
into six clusters using k-means and ED, as determined by the FOM analysis.

Annotation Analysis of Microarray Data

The identification of significantly overrepresented annotations in each DE
and PA cluster was performed using the analysis tool provided by AgriGO (Du
et al., 2010; Tian et al., 2017). The genes for each cluster were imported into
AgriGO’s Singular Enrichment Analysis tool using the Affymetrix probe
identification number with the Arabidopsis gene model (TAIR9) chosen as
background; all other options were left at their default setting. Annotation
groups with P # 0.05 were identified as significantly overrepresented.

Tissue and Cell Type Expression Patterns of the
449 DE Transcripts

Data were downloaded from http://www.plb.ucdavis.edu/labs/brady/
software/BradySpatiotemporalData and queried for the 449 DE transcripts.
The resulting data sets, both cell type and longitudinal slices, were analyzed
using R (R Development Core Team, 2014). Distance was calculated using
Pearson’s r2 (hyperSpec package; Beleites and Sergo, 2015), and transcriptswere
clustered using complete hierarchical clustering. Heat maps were generated
using the heatmap.2 function from the gplots package (Warnes et al., 2016).
Heat map colors correspond to the ventiles, or 20-quantiles, of the data.

Comparison of ACC-Regulated Transcripts with Other
Data Sets

For the Chang et al. (2013) comparison, we used the lists of genes
provided in their supplemental files and cross referenced these lists with
our DE and PA lists to generate lists of overlapping and not overlapping
genes. For each gene, we calculated SLRs for the Chang et al. (2013) data
set as the log2 of the RPKM for a given sample divided by the average
RPKM for time-zero samples using data shared by the Ecker laboratory.
Heat maps were generated using these SLRs along with those from our
data set, utilizing R (R Development Core Team, 2014) and the heatmap.2
function from the gplots package (Warnes et al. 2016). The order of the
genes in the heat maps is based on complete hierarchical clustering using
ED for our data set.

ACC and IAA Comparison

Wecross referenced the lists of IAADE andPA transcripts (Lewis et al., 2013)
with the lists of ACC DE and PA transcripts. No transcripts were found to
overlap across DE and PA data sets. This is likely because the same control
samples were used, and transcripts that were identified as present-absent or

absent-present tended to have more than one absent time point and, therefore,
would show up in the PA list and not the DE list.

Both heat maps were generated using R (R Development Core Team, 2014)
and the heatmap.2 function from the gplots package (Warnes et al.). The DE
heat mapwas orderedwith complete hierarchical clustering based on the ED on
the 2- and 4-h time points. The PA overlap heat maps were ordered using
complete hierarchical clustering based on the Canberra distance on the ACC
data set. These parameters were chosen to most clearly bring out the patterns in
each data set.

qRT-PCR

Samples containing 900 ng of RNAwere used for cDNA synthesis with a
1:1 mixture of oligo(dT) and random hexamer primers and SuperScript III
enzyme (Invitrogen). After digestion with RNase (Invitrogen), the A260 was
measured using a Nanodrop spectrophotometer (Thermo Scientific) to
ensure equal efficiency in the cDNA synthesis reactions between samples.
qRT-PCR analysis using this cDNA was performed on a Roche Light Cycler
480 using SYBR Green detection chemistry. Primers specific to ETR2, ERS1,
and ERS2 were used, and transcript abundance was quantified using a
distinct standard curve for each primer.

Quantification of Primary Root and Root Hair Elongation
and Lateral Root and Root Hair Initiation

For lateral root and primary root analysis, 5-d-old seedlingswere transferred
to control agar plates or agar plates containing 1 mM ACC for 5 d and imaged
using an Olympus SZ61 stereoscope equipped with a DP27 color camera, uti-
lizing cellSens software. Lateral root number was quantified manually, and
primary root length was quantified using ImageJ or Imaris 7.7.2 (Bitplane). For
root hair analysis, 4-d-old seedlings were transferred to control agar plates or
agar plates containing 1 mM ACC for 1 d. Seedlings were imaged using a Leica
MZ 16FA stereoscope with a Planapo 0.633 objective lens and an Infinity2-2C
camera. Root hair numbers were quantified using ImageJ by counting all root
hairs on one side of the root within a 1-mm length located 0.5 mm from the root
tip. Average root hair length was quantified by measuring six representative
root hairs per root.

Statistics

The number and length of root hairs, lateral root number, and primary length
phenotypic data and qRT-PCRdatawere analyzedby two-wayANOVA.Tukey’s
multiple comparison tests were then used to determine whether the differences
between treatments within genotypes and the differences between genotypes
within treatments were significant (GraphPad Prism 7).

For DAP-seq analyses, statistical significance was determined using a
binomial test where the ratio of transcription factor targets in the cluster was
compared with the ratio of transcription factor targets in the entire genome.

Accession Numbers

Arabidopsis Genome Initiative accession numbers for genes described in
this article are as follows: ETR1, At1g66340; ERS1, At2g40940; EIN4,
At3g04580; ETR2, At3g23150; ERS2, At1g04310; EIN2, At5g03280; EIN3,
At3g20770; and EIL1, At2g27050. For all transcripts in Supplemental Files S1
to S5, the locus identifiers are included in the spreadsheets. The microarray
data set has been deposited in the Gene Expression Omnibus under accession
number GSE84446.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Flow chart of the filtering process.

Supplemental Figure S2. Clusters contain transcripts with similar patterns
of abundance change.

Supplemental Figure S3. Cluster network maps for the whole time course
expanded from Figure 2.
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Supplemental Figure S4. Control-only and ACC-only analyses show that
the majority of transcript abundance changes occur due to ACC treat-
ment, while the control time course is relatively unchanged.

Supplemental Figure S5. PA analysis reveals additional genes with con-
sistent, time-dependent changes in transcript abundance.

Supplemental Figure S6. The spatial pattern of the DE transcripts across
root cell types reveals ACC-regulated genes with distinct accumulation
patterns.

Supplemental Figure S7. The spatial pattern of the DE transcripts through-
out root elongation and maturation reveals ACC-regulated genes with
distinct accumulation patterns.

Supplemental Figure S8.MapMan metabolism overview shows that many
genes related to cell wall processes and secondary metabolism respond
to ACC treatment.

Supplemental Figure S9. Overlap comparison with Chang et al. (2013),
expanded from Figure 5.

Supplemental Figure S10. DE analysis of Chang et al. (2013) data and
comparison.

Supplemental Figure S11. ETR1 is not required for ACC-induced ERS1 or
ERS2 transcript abundance.

Supplemental Table S1. P values from Student’s t tests comparing root
hair numbers in untreated and ACC-treated Col-0 within time points.

Supplemental Table S2. P values from two-way ANOVA comparing lat-
eral root numbers after 5 d of control or ACC treatment.

Supplemental Table S3. P values from two-way ANOVA comparing pri-
mary root length after 5 d of control or ACC treatment.

Supplemental Table S4. P values from two-way ANOVA comparing root
hair numbers after 24 h of control or ACC treatment.

Supplemental Table S5. P values from two-way ANOVA comparing root
hair lengths after 24 h of control or ACC treatment.

Supplemental Table S6. Table comparing root growth phenotypes among
ethylene signaling mutants in untreated and ACC-treated roots.

Supplemental File S1. Details of the 449 transcripts that were DE after
ACC treatment.

Supplemental File S2. Analysis of control and ACC-treated transcripts
normalized to time zero.

Supplemental File S3. Details of the 375 transcripts in the present-absent
data set.

Supplemental File S4. Detailed summary of transcripts identified by com-
parison with the Chang et al. data set using categories from Chang et al.

Supplemental File S5. Details on the transcripts identified by comparison
to the Chang et al. data set using our DE analysis.
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