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Abstract

All of our current knowledge of African trypanosome metabolism is based on results from

trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however

treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma bru-

cei rhodesiense from the blood and cerebrospinal fluid of human patients with those of try-

panosomes from culture and rodents. The data were aligned and analysed using new user-

friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of try-

panosomes from human blood and cerebrospinal fluid did not predict major metabolic differ-

ences that might affect drug susceptibility. Usefully, there were relatively few differences

between the transcriptomes of trypanosomes from patients and those of similar trypano-

somes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown

in in vitro culture closely resembled those of the human parasites, but some differences

were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein

kinases and RNA-binding proteins were under-represented relative to mRNA that had not

been poly(A) selected; further investigation revealed that the selection tends to result in loss

of longer mRNAs.

Author summary

African trypanosomes cause sleeping sickness in humans and various diseases of domestic

and wild animals. Until now, all of our current knowledge of African trypanosome metab-

olism is based on results from trypanosomes grown in in vitro culture or in rodents.

Drugs against sleeping sickness must however treat trypanosomes in humans. We here
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examine the way in which genes are expressed in human sleeping sickness trypanosomes

from the blood and cerebrospinal fluid of human patients, and compare our results with

those from trypanosomes growing in culture and rodents. Gene expression profiles of try-

panosomes from human blood and cerebrospinal fluid were quite similar and there was

no evidence for differences that might affect drug susceptibility. The RNAs in laboratory-

adapted parasites grown in in vitro culture also quite closely resembled those in parasites

from humans. The results showed that technical differences in the way RNA is made can

have strong effects on measured gene expression profiles.

Introduction

Trypanosoma brucei subspecies and related parasites infect humans, cattle, camels, and horses,

causing substantial economic losses throughout the tropics [1, 2]. Human sleeping sickness in

East Africa is caused by Trypanosoma brucei rhodesiense, a zoonotic parasite which differs from

Trypanosoma brucei brucei (which is found in cattle) only by the acquisition of a single gene

enabling survival in human serum [3]. Trypanosoma brucei gambiense causes a more chronic

human disease in West Africa. After an initial phase in which the parasites are restricted to the

blood and tissue fluids, T. gambiense and T. rhodesiense penetrate the central nervous system

(CNS). T. rhodesiense disease is usually fatal, whereas some T. gambiense-infected people are

asymptomatic [4]. The organisms completely evade adaptive humoral immunity because they

show antigenic variation, repeatedly changing their surface coat of variant surface glycoprotein

(VSG). As a consequence, disease control has to rely on chemotherapy of detected cases, com-

bined with insecticides and traps to control the tsetse fly vector. There are, however, very few

drugs available to treat African trypanosomiasis, they are all unacceptably toxic, and resistance

is arising [5]. Moreover, within the CNS, trypanosomes are sensitive only to drugs that cross the

blood-brain barrier, limiting therapeutic options for the late stage of the disease.

All of our knowledge of the biochemistry and molecular biology of T. brucei depends on

laboratory models, and this includes the early phases of drug development. Targeted

approaches rely on biochemical knowledge gained from culture alone for target selection; in

the phenotypic approach, compounds are initially screened using cultured trypanosomes.

Promising leads are then tested in rodent models. Within rodents, as in other mammals, T.

brucei spread throughout the blood and tissue fluids and invade the brain. Most trypanosomes

within the rat brain parenchyma appear degraded, although cells of normal appearance are

seen in the pia mater and cerebrospinal fluid (CSF) [6]. Many trypanosomes are also found in

the adipose tissue of mice; in this case, transcriptome analysis suggested metabolic differences

from blood trypanosomes [7]. It is therefore possible that differences between trypanosomes at

different sites could contribute to treatment failure.

In natural T. brucei infections, the trypanosomes are pleomorphic. Proliferating forms have

long slender morphology, and obtain ATP through glycolysis. The parasites produce a soluble

signal known as "Stumpy Inducing Factor" (SIF), whose identity is still unknown [8, 9]. At

high density, when the SIF concentration reaches a critical threshold, the trypanosomes arrest

in G1, and acquire a more stumpy shape [10–12]. Stumpy forms have increased expression of

some mitochondrial proteins; markers that are absent (or much less expressed) in bloodstream

forms include ESAG9 [13], PAD1 [14] and the protein phosphatase PIP39 [15]. The higher

expression of mitochondrial protein mRNAs means that stumpy forms are pre-adapted to dif-

ferentiate into the procyclic form which multiplies in the tsetse midgut, since procyclic forms

rely on mitochondrial energy metabolism. Procyclic forms lack VSG, instead having a surface
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coat of procyclin proteins containing Glu-Pro (EP) or Gly-Pro-Glu-Glu-Thr (GPEET) repeats.

Relative to long slender forms, stumpy forms have slightly increased procyclin mRNA expres-

sion [16, 17], although the protein is not made.

The density at which long slender trypanosomes cease to proliferate, and become stumpy,

differs according to the environment [8]. In rodents, maximal densities of fully pleomorphic

parasites are 1–5 x 108/ml [16–18] for the initial parasitaemia, with differentiation initiating

above 5 x 107/ml. In contrast, differentiation-competent trypanosomes in liquid culture arrest

at 1–2 x 106/ml [8]). In experimentally infected cattle [19] orMastomys natalensis rats (but not

Swiss mice) [18], parasitaemias are lower during chronic infection than in the initial wave.

Humans who present for sleeping sickness diagnosis, have usually been infected for some

time, and rarely show T. rhodesiense parasitaemias above 106/ml, although a parasitaemia of

108/ml was recently recorded in a Polish tourist [20]. The reasons for the low densities during

chronic infection are unknown. The infection may be suppressed via innate immunity and

inflammatory responses; there may be metabolic constraints; or SIF may accumulate more

readily. In cattle, the infectivity of the parasites for tsetse seems to be relatively unaffected by

the parasitaemia level [19]. Perhaps SIF levels in cattle are high despite low parasitaemias, or

the trypanosomes are more receptive to it than in the initial wave; or alternatively there may be

tissues in which parasite densities are substantially higher than in the blood.

After multiple passages in rodents or culture, African trypanosomes lose the ability to make

stumpy forms, becoming monomorphic. It is these forms that are used for most biochemical

and molecular biology experiments.

In the work described in this paper, we set out to characterize T. rhodesiense in human

patients. We asked two questions:

a) Do trypanosomes in the CSF differ from those in the blood?

b) Do trypanosomes in humans differ from trypanosomes in culture or in rodent blood?

To answer these questions, one should ideally compare the proteomes of different parasites

growing in different environments. Messenger RNA levels do not predict protein levels reli-

ably, because trypanosomes have strong regulation of translation [21–23], and protein degra-

dation rates are presumably also important. However, due to the very limited amount of

material available, and the small numbers of parasites in comparison with host cells, proteome

characterization of trypanosomes from patients is not feasible. We therefore instead analyzed

transcriptomes. The results suggest that cultured trypanosomes are in most respects a satisfac-

tory model for parasites in humans. The gene expression profiles also indicated that parasites

in human CSF are, if anything, growing more actively than those in human blood.

Results and discussion

Sleeping sickness transcriptome collection

Samples of blood and CSF were obtained from patients presenting for diagnosis at the clinic in

Lwala hospital, Kaberamaido district, which is located in the T. b. rhodesiense focus of North

Eastern Uganda. We tested a variety of methods for RNA preparation using mixtures of try-

panosomes with blood from the Heidelberg University blood bank. All gave acceptable yields

of intact RNA, with the best results being obtained by suspension of buffy coat trypanosomes

in denaturing solutions such as Trizol. In contrast, use of such methods with field blood sam-

ples resulted in exceptionally low yields of RNA (a few nanograms), and the preparations were

much too degraded to allow RNASeq library preparation. This was true even if the purified

RNA was initially resuspended in a solution containing RNase inhibitors.
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We succeeded in obtaining sufficient RNA for sequencing from blood only when the sam-

ples were placed directly into PAXgene tubes [24]. For CSF, some RNAs were purified using

Trizol and some using the PAXgene tubes. Samples from blood with the highest trypanosome

densities, and from CSF with highest ratios of trypanosomes to leukocytes, were chosen for

RNA preparation. For CSF, human rRNA was depleted; for the blood mRNA samples, both

rRNA and haemoglobin mRNA were depleted. Subsequently cDNA libraries were prepared

and sequenced. To simplify the alignment and counting, an easy-to use pipeline was created;

this can be downloaded from [25]. Within this pipeline, the sequences were first trimmed to

exclude the 60 most abundant sequences; these include not only the adapters, but also the

most over-represented rRNAs. Removal of these over-represented sequences greatly simplified

and sped up the subsequent alignment. After alignment and read counting, libraries from sam-

ples giving adequate numbers of trypanosome reads were re-sequenced to increase the read

depth. All of the resulting datasets are available at Array Express.

For CSF, parasitaemias varied from 4–66 x 104/ml, and between 1% and 10% of reads were

trypanosome-specific. These numbers roughly correlated with the ratio of trypanosomes to

white blood cells, and suggested that a CSF white blood cell contained about 10 times more

mRNA than the trypanosomes (Table 1 and S1 Table, sheet 1). PAXgene sampling lyses the

parasites. This meant that all blood parasitaemias had to be estimated using the diagnostic thin

films, using rat samples for calibration. Bloodstream parasitaemias were 100–1000 times

higher than those in CSF, and the percentage of reads aligning to the T. brucei TREU927

genome varied between 6% and 77% (Table 1 and S1 Table, sheet 1), but these reads included

a substantial (and variable) proportion that corresponded to rRNA. For comparison, when

poly(A)+ RNA from Leishmania brazilienesis mouse skin lesions was sequenced, about 1% of

the reads mapped to the Leishmania genome [26]. In this paper, we discuss the trypanosome

transcriptomes. Results for the human mRNAs will be analysed separately.

Trypanosomes from infected rats

To enable direct comparison of the human results with an experimental sample obtained

using exactly the same methods, we infected 8 immunocompetent rats with two T. rhodesiense
isolates that we had obtained 1–2 years earlier from patients attending the same clinic as the

current ones [17]. These trypanosomes had undergone 2 mouse passages prior to infection;

Table 1. Human samples. Samples labelled "HC" were from CSF, and those labelled "HB" were from blood. WBC = white blood cells, Tryp = trypanosome, and numbers

are cells/ml x 10–4. na = not available. For blood, counts were estimated from stained thin smears. More details are in S1 Table.

No. WBC /ml (x10-4) Tryp /ml (x10-4) RNA (μg) Reads (x10-7) Tryp reads (x10-6) % reads tryp Tryps/ WBC

HC50 12 4 0.4 19.94 8.46 4% 0.35

HC57 38 13 0.2 18.12 11.74 6% 0.33

HC58 84 66 0.2 24.37 28.53 12% 0.78

HC60 120 8 0.7 3.29 0.43 1% 0.07

HC69 na 4 0.1 3.64 0.31 1% na

HC71 na 50 0.5 18.51 20.35 11% na

HB69 na 327 7.6 3.64 0.06 0.2% na

HB72 na 1600 8 15.30 0.67 0.4% na

HB74 na 1300 8.6 12.30 94.71 77% na

HB73 na 4500 8.1 10.29 19.12 19% na

HB71 na 5100 8 14.21 8.56 6% na

HB80 na 2100 2.6 7.65 25.56 33% na

HB81 na 1100 3.0 8.95 32.90 36% na

https://doi.org/10.1371/journal.pntd.0006280.t001

Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006280 February 23, 2018 4 / 25

https://doi.org/10.1371/journal.pntd.0006280.t001
https://doi.org/10.1371/journal.pntd.0006280


their genomes are similar to each other [17]. Transcriptomes from single rats had been

obtained from these lines previously (RBC1 and RBC4 in S1 Table), but those parasites were

morphologically uncharacterized and parasitaemias were unknown [17]. This time, blood for

RNA preparation was taken at parasitaemias ranging from 5 x 107–2 x108 (Fig 1A and S1

Table sheet 1; samples "RBD"). RNA was prepared from all samples and treated exactly as for

human blood. Sufficient reads for analysis were obtained from six samples.

After infection of immunocompetent mice with EATRO1125 cells, PAD1mRNA became

detectable when parasitaemias attained about 2 x 108/ml, and stumpy forms were present when

this density had persisted for 3 days [27]. To see whether the newly-isolated trypanosomes

behaved similarly in rats, thin blood films from four rats were stained for PAD1 and for DNA,

and the distance between the nucleus and kinetoplast was measured. We did not detect any

stumpy forms: the cells were longer than stumpy forms and no PAD1 was detected (Fig 1B). We

also searched three of the relevant raw sequence files for short sequences specific to PAD1 [27],

but could not find any matches. This suggests that in trypanosomes from this region, the PAD
gene family has diverged too far to allow PAD1 identification from sequence alone. Unexpectedly,

there was no correlation between cell density and parasite length (Fig 1B). In the immunocompe-

tent rats the immune response was presumably contributing to parasitaemia control.

Sample RBD3, which had the shortest parasites among the three tested samples, had rela-

tively high levels of PAD gene family mRNA (S1 Table sheet 2), although we were unable to

detect PAD1 protein or PAD1-specific sequence. This sample unfortunately yielded too few

trypanosome-derived reads for statistically valid transcriptome analysis. The low read count

was presumably partly caused by the low parasitaemia, but since it is known that stumpy

forms have low mRNA content [28], this might also have contributed.

Trypanosomes from other sources

In addition to the samples described above, we incorporated three previously published data-

sets for blood trypanosomes from rats infected with either culture-adapted or fresh T. rhode-
siense, and several datasets from mouse blood. Three of the mouse transcriptomes were new

Fig 1. Rat infections. A. Parasitaemias of infected rats. B. Morphological analysis: distance between the kinetoplast

and the nucleus. Between 24 and 59 parasites were counted on thin blood films stained for DNA; results for 8

PAD1-positive EATRO 1125 stumpy forms (ST, made in stationary phase cultures) were included for comparison and

as a positive control for PAD1 staining. Parasite outlines were detected by a combination of tubulin staining, PAD1

background, and differential interference microscopy.

https://doi.org/10.1371/journal.pntd.0006280.g001
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data for well-characterised long slender trypanosomes of a pleomorphic strain (samples

"MBA"). Data for mouse adipose tissue (Mad) were also included. Finally, a variety of pub-

lished results from cultured parasites (Cult) were included; these were almost uniformly from

cells at low enough densities to be in log phase. Details of all datasets studied are in Table 2

and further information is in S1 Table, sheet 2. Raw sequence data that had been obtained

from other labs were re-analysed using our own pipeline in order to ensure that parameters

for alignment and read counting were identical.

Most of the transcriptomes had been prepared using mRNA that had been purified either

by poly(A) selection (giving "poly(A)+" RNA), or by depletion of rRNA (giving "ribo-minus"

RNA). Both selections involve hybridization to oligonucleotides coupled to magnetic beads.

For poly(A) selection the RNA is bound to oligo d(T) in high salt, washed with lower salt

buffer, then eluted with water. For rRNA depletion, a set of oligonucleotides complementary

to rRNA is used, with moderate salt conditions; the RNA is allowed to bind, then the superna-

tant is taken for further analysis.

Applications for data analysis

To align the transcriptomes, we wrote various user-friendly scripts. First, there is a python

script that aligns the reads while allowing for the peculiar nature of kinetoplastid genomes

[25]. Since mRNA annotation is incomplete and many mRNAs have numerous different pro-

cessing sites, the script counts only the reads that align to open reading frames. Trypanosome

genomes have many repeated genes, so to account for this, the application is set to allow each

read to align up to 20 times. In the subsequent analysis, over-counting of the repeated genes is

Table 2. Compared datasets. Laboratories are: 1: Mulindwa, Makerere University; 2: Clayton, ZMBH; 3: Figueiredo, University of Lisbon; 4: Matthews, Edinburgh Uni-

versity. Details of individual samples are in S1 Table.

CODE Lab Strain type source Cell density purification reference

CultA 2 Tb Lister 427 monomorphic culture 1–1.5 x 106 Ribo-minus eukaryote kit

(Invitrogen)

[40]

CultB 2 Tb Lister 427 monomorphic culture 1 x 106 poly(A)+ [40]

CultC 2 Tb Lister 427 monomorphic, 5 min sinefungin culture, 5 min

Sinefungin

1–1.5 x 106 Ribo-minus eukaryote kit

(Invitrogen)

[35]

CultD 2 Tb Lister 427 monomorphic culture 1–2 x 106 ribo- & poly(A)+ [32]

CultE 2 Tb Lister 427 monomorphic culture 1–1.5 x 106 poly(A)+ [60]

CultF 2 Tb Lister 427 monomorphic culture 1–1.5 x 106 Ribo-minus eukaryote kit

(Invitrogen)

[61]

CultG 2 Tb EATRO

1125

lab-adapted pleomorphic culture 7 x 105 poly(A)+ [62]

RBA 1 Tbr729 culture-adapted Rat buffy coat 2–5 x 108 poly(A)+ [63]

RBB 1 Tbr729 culture-adapted Rat buffy coat DEAE 2–5 x 108 poly(A)+ [63]

RBC 1 4 new Tbr 2 mouse passages Rat buffy coat 2–5 x 108 poly(A)+ [17]

RBD

1–4

1 Tbr patient 24 2 mouse passages Rat blood 0.3–1 x 108 Ribo-globin-clear This

paper

RBD

5–8

1 Tbr patient 42 2 mouse passages Rat blood 0.5–5 x 108 Ribo-globin-clear This

paper

MBA 4 Tb EATRO

1125

Long slender, lab-adapted

pleomorphic

Mouse blood DEAE 2–7 x 107 poly(A)+ This

paper

MBB 3 Tb EATRO

1125

lab-adapted pleomorphic Mouse blood DEAE 4–17 x 107 ribo- & poly(A)+ [7]

MAd 3 Tb EATRO

1125

lab-adapted pleomorphic Mouse adipose tissue 104−105 ribo- & poly(A)+ [7]

https://doi.org/10.1371/journal.pntd.0006280.t002
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avoided by considering only a set of "unique" open reading frames in which only one represen-

tative of each sequence was present. (This list is adapted from [29]). As a consequence, the

RNA abundances for each gene, as estimated by reads per million reads (RPM), if normalized

to open reading frame length, should approximate to the level of mRNA.

To analyse the data statistically we used another custom application, DEseqU1, which runs

in RStudio and uses DEseq2 [30] for significance estimation. The application yields principal

component analysis, which shows which transcriptomes are closely related. In addition, it

allows analysis according to gene functions and cell cycle regulation [31]. We assigned gene

functions using a combination of the annotations in TritrypDB, and manual annotations

based on publications; all are listed in S1 Table, sheet 3. Both the unique gene list and the

assigned gene functions can be changed by editing the relevant text files.

Finally, heat maps were generated using another RStudio script, ClusterViewer.rmd. This is

included as S1 app. The included folder enables readers to examine the data in this paper for

themselves, either by looking at all genes, or by examining specific functional categories. Clus-

terViewer can be adapted easily for other datasets by changing the input file and a few lines of

the script, as described in the instructions.

The unique gene list does not include variant surface glycoproteins (VSGs). To find VSGs

expressed in human patients, we took the two largest datasets and assembled all mRNAs as

contigs. Next, we searched for the 13nt sequence that is shared by the 3’-untranslated regions.

The pipeline used to do this is at https://github.com/klprint/IdentifyVSGs and the assembled

VSGs are in the supplement.

Preliminary comparisons: mRNA selection and strain

All read counts are presented in S1 Table, sheet 3. Normalized values (reads per million reads)

are in S1 Table, sheet 4. Only datasets with at least 3x105 reads aligning to the unique gene set

were analysed (S1 Table, sheet 1); this resulted in exclusion of two samples for each set of field

isolates.

The principal component analysis in Fig 2 shows how the different transcriptomes are related.

It covers 63% of the total variance, with 44% of the variation on the x-axis. Strikingly, mRNAs

prepared in similar ways mostly clustered together irrespective of source (Fig 2). The only excep-

tion was one poly(A)+ culture dataset (CultE), which was quite similar to the ribo-minus culture

transcriptomes; the reason for this is unknown and it will not be considered further.

Among the poly(A)+ mRNAs, transcriptomes from four rats infected with recent Ugandan

isolates [17] showed considerable variation; RBC1 and RBC2 were extremely similar to those

of from a culture-adapted Ugandan strain (RBA) and from long slender EATRO1125 strain

trypanosomes in mice (MBA), whereas two samples that had relatively high expression of

stumpy-form marker mRNAs (RBC3 and RBC4) [17] were somewhat apart from the main

cluster.

Transcriptomes that had been generated using RNA that was both poly(A) selected and

rRNA depleted clustered separately from the others. As reported previously, within this set

there were differences between cells from adipose tissue, blood and culture [7]. However, the

results from cultured cells [32] were surprisingly different from others despite similar growth

conditions (S1 Table Sheet 2). This discrepancy is presumably due to technical differences, so

these datasets were not included in subsequent comparisons.

Are longer mRNAs selectively lost during poly(A) selection?

Before comparing the human samples with the others, we looked at the effects of poly(A) selec-

tion in more detail (S1A Fig). We were surprised to see that, according to both cluster (Fig 3,
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S2 Table sheet 3) and enrichment analyses (S2 Table sheet 2), mRNAs encoding protein

kinases (Fig 3A) and RNA-binding proteins (Fig 3B) were selectively lost after poly(A) selec-

tion. Readers can analyse this themselves using the cluster viewer which is in the Supplement.

By Northern blotting, we confirmed this result for two RNA binding protein mRNAs, ZC3H32
and ZC3H8 (S2A Fig).

Loss of these particular functional sets might have been meaningful—perhaps they have

very short poly(A) tails. On the other hand, many of the most affected protein kinase and

RNA-binding protein mRNAs are rather long, either because of long open reading frames, or

long 3’-untranslated regions (3’-UTRs) (S3 Fig). We therefore wondered whether poly(A)

selection was resulting in the loss of long mRNAs. A comparison using all available datasets

(Fig 4A, S2 Table) confirmed this suspicion, with particularly strong effects above about 4kb

(212 on the graph). Oddly, when we divided the datasets according to how the parasites had

been grown, we found a clear length effect for RNA from cultured parasites (Fig 4B) but not

RNA from rat blood (S2B Fig). However the poly(A)+ rat blood samples were biologically

much more diverse and less well characterized than the cultures, so inter-sample variation

might conceal a length effect. We therefore decided to follow up the result for cultures.

There are two obvious technical reasons why long mRNAs might get lost during poly(A)

selection. One is degradation. Indeed, it has previously been demonstrated that poly(A) selec-

tion can result in preferential loss of sequence towards the mRNA 5’-end [33]. We counted

only reads from open reading frames, so any mRNAs that were broken in the 3’-UTR would

fail to be counted. Somewhat unexpectedly, there was no correlation between poly(A)+/ribo-

minus ratios and the annotated 3’-UTR length (S2C Fig). This conclusion must however be

regarded with caution because 3’-UTR lengths in the database are sometimes too short.

Further investigation suggested that it was indeed mRNA length that was important, rather

than the functional class of the encoded protein. For mRNAs encoding both cytoskeletal

Fig 2. Relationships between transcriptomes of T. brucei and T. rhodesiense from different growth environments. Principal component analysis is shown

for all analysed datasets. Samples are colour-coded according to origin, and individual samples are labelled on the plot. The dotted lines indicate three

different methods to enrich mRNA prior to sequencing. Details of the samples are in S1 Table, sheet 1 and in Tables 1 and 2.

https://doi.org/10.1371/journal.pntd.0006280.g002
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proteins and protein kinases, the correlation between abundance and length was greater for

the total mRNA length than it was for the open reading frame alone (Fig 4C; S2D–S2F Fig).

Moreover, scrutiny of published RNASeq read density maps (TritrypDB) for several of the out-

liers among protein kinase mRNAs suggested that the annotated 3’-UTR lengths were incor-

rect. Similar length-abundance correlations were seen for mRNAs encoding RNA-binding

proteins (Fig 4E), cell cycle proteins (S2G Fig) and translation factors (S2H Fig). There was

less correlation for transporters (S2I Fig) and none for the relatively short mRNAs encoding

ribosomal proteins (Fig 4C).

Reporter experiments confirm that the length of an mRNA can affect its

abundance after poly(A) selection

To investigate the effect of mRNA length directly, we experimentally changed the lengths of

two open reading frames (Tb927.4.1500 and Tb927.8.1050), by integration of a yellow fluores-

cent protein (YFP) open reading frame at various positions relative to the endogenous start

codon. This generated progressively shorter mRNAs (Fig 5A and 5B). The YFPmRNAs were

measured by Northern blotting (Fig 5C and 5E, and S4 Fig) and by reverse transcription fol-

lowed by real time PCR (qRT-PCR). The mRNA from the upstream puromycin resistance cas-

sette (PAC) (Fig 5A) was used as a loading control. For both genes, the mRNA sizes were as

expected (Fig 5C and 5E), but for Tb927.8.1050 there was also a shorter mRNA species (Fig

Fig 3. Some mRNAs encoding regulatory proteins are lost during poly(A) selection. The heat maps show relative expression (log2

values from DeSeq2) for mRNAs encoding protein kinases (A) and RNA binding proteins (B). Poly(A)+ samples are labelled in blue.

Detailed results for protein kinase cluster 4 and RNA-binding protein cluster 3 are in S2 Table, sheet 3.

https://doi.org/10.1371/journal.pntd.0006280.g003
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5F), which was roughly 20% of the total irrespective of length. Up to a length of 8 kb, results

from blots and qRT-PCR were comparable (Fig 5D and 5F). The only exception was for the

shortest mRNAs, which had a truncated GFPORF; for these, results from qPCR were

anomalous.

The abundance of total mRNA from the Tb927.4.1500 reporters decreased with increasing

length (Fig 5C and 5D). To find out whether this might be due to differing half-lives, we mea-

sured mRNA abundance by qRT-PCR 30min after inhibition of splicing and transcription.

Reassuringly, the half-life of the full-length fusion mRNA was similar to that of the unmodified

version. However, the half-life increased with progressive truncations (Fig 5B). Thus for the

Tb927.4.1500 locus, the increase in mRNA abundance with decreasing length can probably

largely be attributed to increased mRNA stability. In contrast, for Tb927.8.1050 no reproduc-

ible length effect was seen on abundance (Fig 5E and 5F) and this was also the case for prelimi-

nary half-life measurements. As in other organisms [34], codon optimality can affect

Fig 4. Poly(A) selection and rRNA depletion: effect of mRNA length. Different datasets were compared using DeSeq2 (S2

Table Sheet 1). The ratios of rRNA-depleted divided by poly(A)+ are shown on the y axis, and the mRNA length on the x-axis.

Log-transformed values were used for the graphs and the regression analysis, but for clarity, the mRNA length axis has been

labelled with the non log-transformed values. A. Results for all pooled datasets. Differences in RNA abundance were classed as

significant if the adjusted p-value was less than 0.01, and the magnitude of the difference was at least 2-fold [64]. Correlation

coefficients were calculated by Microsoft Excel. B. Results for selected cultures (the ones with values for most full genes). C. As

(B), but with mRNAs encoding protein kinases in orange and mRNAs encoding ribosomal proteins in green. D. As (B), but

with mRNAs encoding RNA-binding proteins in pink.

https://doi.org/10.1371/journal.pntd.0006280.g004
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trypanosome mRNA half-lives (M. Carrington, Cambridge University, personal communica-

tion). This does not explain the difference between the two loci: for both, deletions of the open

reading frame by GFP integration resulted in progressive increases in codon optimality (Fig

5B). Perhaps there are differences in codon distribution: clusters of non-optimal codons might

have a bigger effect on translation than non-optimal codons that are spread uniformly

throughout the sequence, and the positions of non-optimal codons relative to the start codon

are known to be important [34].

Contrary to our previous conclusions from modeling [23, 35], results for these two genes

did not yield any evidence for an effect of mRNA length that was independent of the half-life.

More accurate half-life measurements would be needed to confirm this.

In the whole transcriptome analysis 60% of the mRNAs that were significantly depleted

after poly(A) selection were longer than 4kb. Indeed, for the YFP fusion mRNAs, poly(A)

selection caused loss of reporter mRNAs longer than 5 kb, and there was also some loss of the

4.5 kb Tb927.8.1050 locus mRNA (Fig 5D, 5F and 5G). We concluded that poly(A) selection

can cause loss of mRNAs longer than 4 kb, but also that losses are variable. Perhaps other

sequence characteristics also contribute to the mRNA yield.

Differences between blood and CSF trypanosomes

In subsequent comparisons, we considered only the datasets derived from rRNA-depleted

RNA. The principal component analysis for these samples (Fig 6A) suggested that from the

trypanosomes’ point of view, there are few differences between rat and human blood; the total

number of mRNAs with significantly different abundance, 125, was very low (S2 Table) and

probably not far from random variation. The CSF transcriptomes were separated from those

for blood, but it was notable that our only samples from the CSF and blood of a single patient

(C71 and B71) were relatively similar. Notably, the CSF parasite transcriptomes more closely

resembled those of log-phase cultured cells (Fig 6A) than did those of blood parasites. Differ-

ences between the various samples could be due to differences in available nutrients or

immune responses, but most obviously, from the presence of stumpy forms, since densities in

blood were much higher than in CSF.

Cluster analysis of the samples from humans and rats only (S5 Fig, S3 Table) distinguished

two groups. One group included the CSF samples and two human blood samples (HB71 and

HB73), and the other group included the remaining blood samples. The former group showed

higher expression of mRNAs encoding cytoskeletal proteins, several translation factors, tRNA

charging enzymes, RNA degradation pathway proteins, and some protein kinases (clusters 3

and 16, S3 Table). At the same time, it showed lower expression of mRNAs encoding numer-

ous mitochondrial proteins (clusters 12 and 18). Comparison of the human blood and CSF

parasite transcriptomes (S2 Table, sheet 1) revealed 320 mRNAs that were lower in blood, and

Fig 5. Reporter experiments: Effect of mRNA length on poly(A) selection and mRNA abundance. A. Cartoon of an intact Tb927.4.1500

locus (above) and a locus with integrated PAC-GFP (not to scale). B. Structures of GFP fusion mRNAs (to scale) with lengths. The codon

optimality scores are calculated using a formula provided by Prof. M. Carrington (Cambridge University, personal communication).

Approximate half-lives were estimated by real-time PCR of mRNA prepared 30 min after addition of Actinomycin D; each clone was

measured once. C. Sample Northern blot for Tb927.4.1500; other blots are in S4D Fig. Amounts of GFP signal or PCR product relative to the

result for the 1.3 kb mRNA. The boxes indicate the median value with 25th and 75th percentiles; whiskers extend to the most extreme data

point that is no more than 1.5 times the length of the box away from the box. Tiny circles are outliers. E. Sample Northern blot for

Tb927.8.1050; other blots are in S3F Fig. Amounts of GFP signal or PCR product relative to the result for the 2.7 kb mRNA. If less than 4

measurements were available, individual results are shown as coloured circles. G. Ratio of poly(A)+ to total mRNA. To make the values for

the two genes comparable, the abundances of the Tb927.4.1500 reporter mRNAs were calculated relative to the 2.2 kb mRNA. (This results

in exclusion of one dataset that lacks a value for that length.) The average relative mRNA abundance in poly(A)+ was divided by the relative

abundance in total RNA. Results using medians were similar. The exponential curve was calculated in Kaleidograph using the combined data

from both genes.

https://doi.org/10.1371/journal.pntd.0006280.g005
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Fig 6. Relationships between cell density and expression of chosen genes. A. Principal component analysis including

blood and CSF RNAs prepared using a common protocol, and for rRNA-depleted RNA from culture. B. The mRNAs that

were significantly different between human blood and CSF were categorised according to whether they show peak

expression in a particular cell cycle stage. RNAs that show no cell cycle regulation are not included. C. Expression of EIF4A

mRNA (RPM) relative to cell density (log scale). The key is on the blot and sample numbers are indicated. Note that the
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these were again significantly enriched in mRNAs encoding cytoskeletal proteins (S2 Table,

sheet 2). 830 mRNAs were higher in blood, with enrichment for mitochondrial electron trans-

port and amino acid transport (S2 Table, sheet 2). Cell-cycle-regulated genes that were over-

expressed in blood mainly show peak expression in G1, whereas many of those that were more

abundant in CSF peak in S-phase (Fig 6B) [36]. All of these results suggested that the CSF para-

site population included more actively multiplying parasites than the bloodstream populations.

Expression of mitochondrial proteins suggested that that the bloodstream populations

included some parasites that were beginning to differentiate to stumpy forms.

To examine the link between gene expression and cell density, we looked at a few examples.

Results for the translation initiation factor EIF4A, the stumpy-inducing phosphatase PIP39

and a cytochrome oxidase subunit (Fig 6C–6E), as well as various other regulated mRNAs (S5

Fig) revealed no simple relationship between expression and cell density. For the rat blood

samples, there was also no correlation with attaining the plateau of parasitaemia. This was con-

sistent with our previous morphological analysis of the rat samples (Fig 1B).

Comparison between trypanosomes from culture and from humans

Finally, we looked at the differences between cultured and human parasites. We focus here

mainly on the CSF parasites: differences between culture and blood were more difficult to

interpret due to the likely presence of growth-arrested parasites in the bloodstream (see

above). The results suggested that there are indeed some differences which must be considered

when using cultured parasites as a model.

Genes that were more highly expressed in the human CSF samples included those encoding

four membrane proteins; but these were mainly from multi-gene families, which can vary

between strains. The products of CSF up-regulated mRNAs were also enriched for ribosomal

proteins (S2 Table sheet 2). More interestingly, the increased mRNAs encoded nine protein

kinases, and three potential cyclins, two of which (CYC10 and CYC11) were also increased in

human blood (S2 Table sheet 1). The mRNAs in rat blood and cultured trypanosomes were

previously compared in a ribosomal profiling study [22]. There was no significant correlation

between those results and ours. Nevertheless, in that study too, the blood parasites had higher

levels of mRNAs encoding CYC10 and CYC11, various protein kinases, protein phosphatases,

and RNA-binding proteins (S2 Fig Sheet 1).

Cultured trypanosomes had higher mRNA levels than CSF trypanosomes for mRNAs

encoding half of the Sm complex and some other splicing factors; various RNA-binding pro-

teins including ZFP2 and ZFP3; 26 cytoskeletal proteins; 51 mitochondrial proteins, 26 pro-

teins involved in vesicular transport, numerous translation initiation factors, and the whole of

the core proteasome. The differences for blood trypanosomes were to some extent similar, but

in this case the cultures also expressed more translation initiation factor mRNA. These results

might mean that the cultured cells are multiplying faster than the cells in the patients.

Since all of the ribo- culture datasets were from monomorphic trypanosomes, we also com-

pared poly(A)+ mRNAs from pleomorphic and monomorphic cultures. This revealed that cul-

tured pleomorphic EATRO1125 had lower expression of numerous RNA-binding proteins,

and some RNA decay and cytoskeletal proteins (S2 Table Sheet 1), than cultured monomor-

phic Lister 427. Cell cycle analysis (Fig 7A) suggests that this reflects more active division of

the Lister 427 cultures. Unsurprisingly, this indicates that pleomorphic cultured cells ought to

resemble parasites in patients more closely than monomorphic cells do.

densities for the human blood samples are approximate because they were estimated from stained thin films (see methods).

D. As (C), but showing PIP39mRNA. E. As (C), but showing COX IXmRNA. Additional results are in S6 Fig.

https://doi.org/10.1371/journal.pntd.0006280.g006
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Comparison between trypanosomes from culture and from humans: The

stress response and ZC3H11

The zinc finger protein ZC3H11 is a positive regulator of mRNAs encoding protein refolding

chaperone complexes [37], and is required for the survival of procyclic forms after heat shock.

Fig 7. Differences between trypanosomes from animals and culture. A. The mRNAs that were significantly different between EATRO1125 and

Lister 427 cultures (poly(A)+ datasets) were categorized according to whether they show peak expression in a particular cell cycle stage. RNAs that

show no cell cycle regulation are not included. B. Levels of ZC3H11mRNA in different types of trypanosome sample. C. Relationship between

ZC3H11 andHSP70mRNA amounts. D. Relationship between ZC3H11 and CYP40mRNA amounts. E. Pearson correlation coefficients for

published ZC3H11 targets [37].

https://doi.org/10.1371/journal.pntd.0006280.g007
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After a brief heat shock, ZC3H11mRNA is unaffected but its translation is strongly induced

[38]. Remarkably, in all of our new ribo-minus transcriptomes, ZC3H11was among the ten

most abundant mRNAs, being 4–6 times more abundant than in cultured trypanosomes. Com-

parison of all the datasets also revealed strain differences: ZC3H11mRNA levels were lower in

culture-adapted parasites than in the newly-isolated ones (Fig 7B). This is definitely a difference

in regulation: ZC3H11 is a single-copy gene in the new rat blood trypanosomes as well as in

Lister 427 [17]. All of the human patients from our study had fever so it may be that the ZC3H11
mRNA is stabilized by prolonged elevated temperatures. Paradoxically, though, many chaperone

mRNAs were significantly lower in the CSF parasites than in culture, and some known ZC3H11

target mRNAs [37] showed a weak inverse correlation with ZC3H11mRNA (Fig 7C–7E). Fur-

ther comparison revealed over 200 mRNAs with expression that was either negatively or posi-

tively correlated with ZC3H11 mRNA in both ribo-minus and poly(A)+ datasets (S2 Table Sheet

4). Products of negatively correlated mRNAs included cytoskeletal proteins, protein kinases and

phosphatases, while for positively correlated mRNAs there were some mitochondrial and ribo-

somal proteins. The meaning of these results is unclear, since the level of ZC3H11 protein does

not correlate with the mRNA [39]. Contrary to the results shown here, in the Jensen ribosome

foot-printing study, ZC3H11mRNA was lower in blood than in culture parasites—but the blood

parasites yielded 10 times more ribosome footprints [22]. ZC3H11 is also phosphorylated, which

might affect its activity [37, 39].

Conclusions

This is, to our knowledge, the first study that compares transcriptomes of parasites from sev-

eral different labs, with different strains, growth conditions, and RNA preparation methods.

We discovered that each of these affects the transcriptome.

It was already known that poly(A) selection and rRNA depletion affect RNA-Seq-derived

trypanosome transcriptomes [40], and such effects have been comprehensively demonstrated

for mRNAs for other species, including humans [41, 42]. From analysis of the data, combined

with reporter experiments, we concluded that technical factors, such as trapping of RNA in the

matrix, strongly contribute to depletion of long mRNAs. The reason that the differences are

concentrated within mRNAs encoding particular functional protein classes may be that these

classes have a disproportionate number of long mRNAs; in the case of both protein kinases

and RNA-binding proteins, this is because their 3’-UTRs are longer than average (S3 Fig).

mRNAs encoding ribosomal proteins are, in contrast, unusually short (S3 Fig). Since the 3’-

UTR annotations are not all correct, the extent to which other factors contribute is not certain.

Some mRNAs may not be retained on the oligo d(T) matrix because they have very short poly

(A) tails. Although poly(A) tails usually protect from degradation and promote translation,

well-expressed Opisthokont mRNAs tend to have short tails [43]. We compared mRNA half-

lives [35] and ribosome densities [22, 23], but for these characteristics we found no significant

difference between the trypanosome mRNAs that were enriched or depleted by poly(A)

selection.

When we started this study, we expected that of the available laboratory models, trypano-

somes growing in rodent blood would have transcriptomes that most closely resembled those

of pleomorphic trypanosomes growing in humans. Our results confirmed this expectation, but

also revealed some intriguing differences between trypanosomes growing in different environ-

ments. Several hundred mRNAs were significantly different between cultured and human-

grown trypanosomes. The functions of the proteins encoded by those mRNAs suggested that

the cultured parasites might be multiplying faster than parasites in blood, and that the blood

parasites were affected by environmental stresses. Although some of the differences in gene
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expression might have been due to the growth environments, others can probably be attrib-

uted to culture adaptation of the parasites. All of the data from cultures were for Lister 427 par-

asites, which were probably originally isolated from a cow in Tanganyika (now Tanzania) (see

http://tryps.rockefeller.edu/DocumentsGlobal/lineage_Lister427.pdf). The cells have been seri-

ally passaged for many years, and in culture since about 1985. To understand the effects of cul-

ture adaptation it will be necessary to follow parasite genomes and transcriptomes during that

process.

There was no systematic correlation between human parasitaemias and expression of

mRNAs that are increased in stumpy forms. In rats, in the samples analysed, there was also no

correlation between parasitaemia and parasite morphology. Stumpy forms of T. gambiense
were originally reported in the descending phase of human parasitaemia [44]; perhaps some of

the patients were also in that phase. Moreover, some tissues may harbour higher trypanosome

densities than are present in the blood, and thus accumulate stumpy induction factor. The

resulting stumpy parasites might subsequently escape into the circulation. Previous rodent

studies did not support this idea [6, 7, 45, 46]. However, recent results do suggest that tissue

and blood parasitaemias may be different. T. b. gambiense were found in the skin of asymp-

tomatic humans lacking detectable blood parasitaemia [47], and relatively high proportions of

stumpy-form (PAD1-positive) T. brucei were detected in mouse skin and adipose tissues [47,

48].

An important motivation for our study was to find out whether CSF trypanosomes are sig-

nificantly less metabolically active than those in blood, and thus less susceptible to drug treat-

ment. Overall, if transcriptomes can be taken as a guide to enzyme expression, the results did

not provide evidence for systemic metabolic differences between blood and CSF trypano-

somes. If anything, the CSF parasites are likely to be more metabolically active than those in

the blood, and thus more susceptible to any drug that targets parasite metabolism or

multiplication.

Methods

Ethics statement

For the human studies, ethical approval of protocols was obtained from the Ministry of Health

and Uganda National Council of Science and Technology (Ethical approval No. HS 729),

Uganda, and the ethics committee of University of Heidelberg, Germany. All patients

recruited into this study received written and verbal information explaining the purpose of the

study and they gave informed consent. The ethical consent forms were written in English and

translated into the local languages. For the children and adolescent participants (below 18

years), parents or guardians gave informed consent on their behalf.

Animal experiments in this work were carried out in accordance with the local ethical

approval requirements of the University of Edinburgh and the UK Home Office Animal (Sci-

entific Procedures) Act (1986) under license number 60/4373, or in Makerere University with

approval of the College of Veterinary Medicine Animal Resources and Biosecurity research

and ethics committee, with approval number SBLS/REC/16/137b.

Human sample collection

Samples were collected as described previously [17] during routine sleeping sickness diagnosis

at Lwala hospital in the Kaberamaido district of North-Eastern Uganda. In order to confirm

that all the cases were T. b. rhodesiense infections, PCR was carried out on the SRA gene as

described in [49]. Up until sample 60, both blood and CSF samples were centrifuged to obtain

a cell pellet for CSF, and a buffy coat for the infected blood. These were either resuspended
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directly into Trizol, then frozen in liquid nitrogen, or the cells were stored in liquid nitrogen

for later RNA extraction. For samples 61 onwards, both CSF and blood were placed directly

into PAXgene tubes. For both PAXgene and Trizol, RNA was prepared according to the man-

ufacturer’s instructions.

CSF cell counts were made directly from undiluted samples. For blood, cell counts were

estimated at the clinic using thin smears stained with Giemsa. To convert these values to para-

sitaemias, we used blood from infected rats, counting parasites in diluted samples in a haemo-

cytometer, and counting parasites from the same samples on dried smears. The results for

human parasitaemias are therefore only approximations.

RNA sequencing for human blood and CNS samples, and rat blood samples

Human RNA samples were initially checked for their integrity on the Agilent Bioanalyzer

2100 (Agilent RNA Nano 6000 kit, 5067–1511). The human blood samples showed consider-

able degradation. All samples (blood and spinal fluid) were prepared for sequencing using the

Illumina TruSeq Total Stranded RNA preparation kit (Illumina, RS-122-2301). Between 75–

750 ng total RNA was used as input material. rRNA depletion was performed on the samples

dependent on their origin; those from blood were depleted with RiboGlobin (Illumina), those

from the spinal fluid with Ribo-Gold (H/M/R) (Illumina). Since these kits are optimised for

depletion of mammalian rRNA, most trypanosome rRNA remained in the sample. Due to the

degradation of the samples, the binding time for depletion was increased to 5 minutes, and the

subsequent fragmentation time was decreased from the normal 8 minutes to 3 minutes. PCR

cycles were decreased from the recommended 15 to 13 cycles for the human samples. All

human samples were processed with the same batches of Paxgene tubes and reagents for RNA

handling and library preparation. Different batches were used for the rat samples.

The finished libraries were equimolar pooled and sequenced with the Illumina NextSeq500

System, at the EMBL Genomics Core Facility, where 75 Single-end reads were generated (Illu-

mina, FC-404-2005). The raw data are available at Array express under accession numbers

E-MTAB-5293 and E-MTAB-5294 (human) and E-MTAB-6125 (rat). The rat samples were

sequenced 1–2 years after the human samples.

RNA sequencing for mouse long slender trypanosomes

Trypanosomes were purified on DEAE cellulose, then RNA was isolated using RNeasy column

purification (Qiagen) with on-column DNase treatment according the the manufacturer’s

instructions. Total RNA samples were subjected to oligo(dT)-selection and paired-end

sequencing at the Beijing Genomics Institute.

RNA-Seq read counting

RNAseq datasets were retrieved as FASTQ files. In case of paired-end data sets (MB_A, MB_B,

MAd), only one end per sample was analysed to ensure comparable results with single-end

data. All sets were processed as follows: First, the overall read quality was investigated using

FastQC [50]. Hereby, overrepresented sequences were identified, making up more than 0.1%

of all reads in a set. Since this overrepresentation is not expected in a standard RNAseq experi-

ment, and in our experience these sequences have often rRNA origin, they were removed

using Cutadapt [51]. The resulting cleaned reads were then aligned to the T. brucei TREU927

genome (release 9.0) using bowtie 2 [52] with a maximum mismatch count of one and each

read was allowed to align to the genome up to 20 times. This helps in making sure that each

read originating in a multi-gene family, aligns in each member, which is necessary for later

subsetting for a unique gene list [29]. The alignment was used for read counting, and utilizing
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a custom script which is based on Samtools [53] to count the number of aligned reads within

each annotated coding sequence. The whole process was automated using a python based

pipeline [25].

Statistical analysis of RNA-Seq data

For statistical analysis we used a unique gene list which holds single representatives for each

multi-gene family, and unique genes (total about 7000 genes) [29]. All analysed data sets were

combined in one read count table. Genes for which no data could be retrieved in some samples

(NA-values), were removed, and the rest was analysed using the R package DESeq2 [31, 54,

55]. The DESeq2 experimental design included only the affiliation of each sample to the origi-

nal data set. The significance level alpha was set to 0.01. Heat maps for overall comparison and

co-regulation studies were generated using the rlog function of DESeq2. The rlog function

transformed the read counts and normalized the data to the sequencing depth and also shrank

the effect size of genes with low read counts to prevent overestimation. The rlog transformed

counts were then given to the pheatmap [56] package which was instructed to generate previ-

ously mentioned numbers of kmeans-clusters of all unique genes, to deduce the euclidean

hierarchical clustering of the kmeans-clusters and the samples and to plot the final heat map.

Each gene was annotated using a manually curated list (see Supplementary Tables). Class

enrichment within clusters was done using Fisher’s exact test. Occurrence of each gene class

within the studied cluster and within the unique gene list (all genes were removed which had

incomplete data in the read table) was identified and for each class a two dimensional contin-

gency table was generated. Fisher’s exact test p-value for overrepresentation was calculated

and corrected using the Benjamaini-Hochberg method for multiple testing [57].

Cloning, real-time PCR and Northern blotting

PAC-YFP cassettes were integrated into the genome after cloning of suitable fragments into

the plasmid p2675 [58] to direct homologous recombination [59]. All oligonucleotides used

are listed in S4 Table. Clones were checked by Northern blotting. Total RNA was made using

the RNAeasy Midi kit (Qiagen) or peqGold Trifast (Paqlab). Poly(A)+ RNA was selected using

the Qiagen Oligotex mRNA kit. After denaturing formaldehyde gel electrophoresis, the RNA

was subject to limited depurination (0.25M HCl, 15 min) to ensure efficient transfer of longer

mRNAs. Northern blots were hybridised with radioactive probes covering the whole YFP or

PAC ORFs.

For quantitative PCR (RT-qPCR) reverse transcription was done using random hexamer

primers, with Superscript IV at 50˚C, 15 minutes and the qPCR was done using LightCycler

480 SYBR Green I Master mix (Roche) or Luna Universal qPCR Master Mix (NEB) using

LightCycler 480 II, Roche. Melting curves were checked using 95˚C 10 s, 4.8˚C/s; 65˚C 1 min.,

2.5˚C/s; 95˚C 0.11˚C/s. For the qPCR slightly different procedures were used. The protocol for

LC480 master mix was; denaturation 95˚C 1min., 4.8˚C/s; 45 amplification cycles of 95˚C 20 s,

4.8˚C/s, hybridization 60˚C 20 s, 2.5˚C/s, elongation 72˚C 7 s, 4.8˚C/s, 45 cycle. For Luna-

Master Mix hybridization was for 30 s, and we used 40 cycles. Signals or measurements for

YFPwere normalized to those from PAC, to allow for differences in input RNA and for possi-

ble copy number variation. Then, one of the shortest mRNAs was used as a standard to calcu-

late relative mRNA amounts.

To estimate mRNA half-lives, we inhibited mRNA processing and transcription using sine-

fungin and Actinomycin D, and RNA was isolated 30 minutes later [40]. RNA from cells with

and without inhibition was quantified by RT-qPCR.
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Supporting information

S1 Table. All sample and sequence data. For legends see sheet 0.

(XLSX)

S2 Table. DESeq2 results. For legends see sheet 0.

(XLSX)

S3 Table. Cluster analyses for rat blood and human blood and CSF. For legends see sheet 0.

(XLSX)

S4 Table. Oligonucleotides and details of cloning.

(XLSX)

S1 Fig. Principal component analysis for poly(A)+ and ribo-minus samples.

(PDF)

S2 Fig. Poly(A) selection and mRNA length. All graphs (panels B—I) show the DeSeq ratios

for ribosomal-RNA-depleted RNA divided by poly(A)+ RNA.

A. The mRNAs encoding ZC3H32 (~10 kb), ZC3H8 (6.6 kb), and trypanothione synthetase

(3.4 kb) were detected on Northern blots of 8 independent RNA samples. (This was re-hybrid-

ization of two of the blots shown in S3 Fig). The ZC3H32 and ZC3H8 signals were then divided

by the trypanothione synthetase signal. The boxes indicate the median value with 25th and

75th percentiles; whiskers extend to the most extreme data point that is no more than 1.5

times the length of the box away from the box. Circles (not seen here) are outliers.

B. Rat blood samples

C. For cultures: relationship with 3’-UTR length

D. For cultures: relationship with coding region length, with results for cytoskeletal proteins

superimposed.

E. For cultures: relationship with mRNA length, with results for cytoskeletal proteins superim-

posed.

F. For cultures: relationship with coding region length, with results for protein kinases super-

imposed.

G. For cultures: relationship with mRNA length, with results for proteins involved in the cell

cycle superimposed.

H. For cultures: relationship with mRNA length, with results for translation factors superim-

posed.

I. For cultures: relationship with mRNA length, with results for transporters superimposed.

(PDF)

S3 Fig. Box plots showing characteristics of mRNAs encoding proteins of different func-

tional classes. The broken line indicates the median for all genes and the colours are the same

as in Fig 4 and S2 Fig. No class was statistically significant (<0.05) from the others by

ANOVA; even for ribosomal proteins, the adjusted p-value was 0.1.

(PDF)

S4 Fig. Reporter gene expression. GFPNorthern blots for Tb927.4.1500 (A) and

Tb927.8.1050 (B).

(TIF)

S5 Fig. Comparison of human and rat blood datasets for recently isolated T. rhodesiense.

A. Principal component analysis.

B. Clustering of genes according to differences in expression. The genes in each cluster are in
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S3 Table. See the trypclusterviewer (S1 Folder) for details.

(PDF)

S6 Fig. Relationship between density and gene expression. Extra panels like Fig 6, with dif-

ferent genes.

(PDF)

S1 Folder. Cluster analysis for all ribo-minus and poly(A)+ datasets.

(ZIP)

S1 Text. VSG contigs for HB80.

(FASTA)

S2 Text. VSG contigs for HB81.

(FASTA)

S1 app. This is a zipped folder containing the ClusterViewer script, which runs in R or

RStudio, with all poly(A)+ and ribo-minus expression values (from DESeq2) already

loaded. It enables readers to examine the data themselves. Instructions for how to change the

datasets and the comparisons are included.

(ZIP)
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