Table 3.
Disease/Condition | Tissue | NAD+ concentration (% of normal) | Ref |
---|---|---|---|
Aging | Muscle | ~30–35% (22 mo), ~40–45% (30 mo), | (Gomes et al., 2013) |
~60–65% (32 mo) | (Camacho-Pereira et al., 2016) | ||
~80–85% (25–31 mo) | (Yoshino et al., 2011) | ||
~65–70% (24 mo) | (Frederick et al., 2016) | ||
~50% (24 mo) | (Mouchiroud et al., 2013) | ||
Liver | ~85–90% (25–31 mo) | (Yoshino et al., 2011) | |
~85–90% (12 mo), ~75–80% (20 mo), ~70–75% (<45 vs. >60 humans) | (Zhou et al., 2016) | ||
unchanged (12 mo), ~40–50% (24 mo) | (Braidy et al., 2011) | ||
55–60% (32 mo) | (Camacho-Pereira et al., 2016) | ||
~60% (24 mo) | (Mouchiroud et al., 2013) | ||
Adipose | 55–60% (32 mo) | (Camacho-Pereira et al., 2016) | |
70–75% (25–31 mo) | (Yoshino et al., 2011) | ||
Brain | 63–66% (12 mo), ~90% (at age 70 vs. 20 based on regression) | (Stein and Imai, 2014; Zhu et al., 2015) | |
Pancreas | ~80–85% | (Yoshino et al., 2011) | |
Spleen | 35–40% (32 mo) | (Camacho-Pereira et al., 2016) | |
Heart | unchanged (12 mo), ~30–40% (24 mo) | (Braidy et al., 2011) | |
Kidney | unchanged (12 mo), ~15–20% (24 mo) | (Braidy et al., 2011) | |
Lung | unchanged (12 mo), ~20–25% (24 mo) | (Braidy et al., 2011) | |
CSF | ~91% (<45 vs. >=45 humans) | (Guest et al., 2014) | |
Obesity | Liver | ~50–60% | (Wang et al., 2017) |
unchanged | (Escande et al., 2010) | ||
~30–35% | (Gariani et al., 2016) | ||
~80–85%, | (Trammell et al., 2016b) | ||
~50–55% | (Yoshino et al., 2011) | ||
Adipose | ~15–20% | (Yoshino et al., 2011) | |
Muscle | unchanged | (Yoshino et al., 2011) | |
~80–85% | (Frederick et al., 2015) | ||
mdx (Duchenne muscular dystrophy model) | Muscle | ~70–75% | (Chalkiadaki et al., 2014) |
~45–50% | (Ryu et al., 2016) | ||
hURI overexpression (Oncogenic transgene that leads to spontaneous hepatocellular carcinoma) | Liver | ~25% | (Tummala et al., 2014) |
Noise injury | Cochlea | ~40–50% | (Brown et al., 2014) |
Liver regeneration | Liver | ~60–70% | (Mukherjee et al., 2017) |
Atm mutant mice (Ataxia telangiectasia model) | Cerebellum | ~40% | (Fang et al., 2016) |
Values are estimated from graphs when not stated in the cited reference. In most cases, a decrease in NAD+ cannot be distinguished from a shift in the NAD+/NADH ratio, and in at least some cases, the effect of a redox shift appears to be important (e.g., in the age-related changes reported by Braidy et al. (Braidy et al., 2011) and in the NAD+ decline in human brain (Zhu et al., 2015).