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Summary

In the era of precision medicine, drugs are increasingly developed to target subgroups of patients
with certain biomarkers. In large all-comer trials using a biomarker stratified design (BSD), the
cost of treating and following patients for clinical outcomes may be prohibitive. With a fixed
number of randomized patients, the efficiency of testing certain treatments parameters, including
the treatment effect among biomarker positive patients and the interaction between treatment and
biomarker, can be improved by increasing the proportion of biomarker positives on study,
especially when the prevalence rate of biomarker positives is low in the underlying patient
population. When the cost of assessing the true biomarker is prohibitive, one can further improve
the study efficiency by oversampling biomarker positives with a cheaper auxiliary variable or a
surrogate biomarker that correlates with the true biomarker. To improve efficiency and reduce cost,
we can adopt an enrichment strategy for both scenarios by concentrating on testing and treating
patient subgroups that contain more information about specific treatment parameters of primary
interest to the investigators. In the first scenario, an enriched biomarker stratified design (EBSD)
enriches the cohort of randomized patients by directly oversampling the relevant patients with the
true biomarker, while in the second scenario, an auxiliary-variable-enriched biomarker stratified
design (AEBSD) enriches the randomized cohort based on an inexpensive auxiliary variable,
thereby avoiding testing the true biomarker on all screened patients and reducing treatment waiting
time. For both designs, we discuss how to choose the optimal enrichment proportion when testing
a single hypothesis or two hypotheses simultaneously. At a requisite power, we compare the two
new designs with the BSD design in term of the number of randomized patients and the cost of
trial under scenarios mimicking real biomarker stratified trials. The new designs are illustrated
with hypothetical examples for designing biomarker-driven cancer trials.
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1. Introduction

There is a large literature on study designs integrated with treatment-selection biomarkers.
See Mandrekar and Sargent (2009), Freidlin et al. (2010) and Tajik et al. (2013) for recent
reviews. Biomarker stratified clinical trials have been frequently used to evaluate the effect
and safety of an experimental therapy relative to a control therapy as well as to evaluate the
utility of using the biomarker in directing treatments. A trial with a biomarker stratified
design (BSD) randomizes all patients to one of the treatment therapies with biomarker as a
stratification factor. Such an all-comer trial allows hypothesis testing on treatment
parameters related to treatment effects among biomarker positive patients, biomarker
negative patients and the overall populations as well as the value of utilizing biomarker to
direct treatments. A BSD trial is especially useful when the biomarker of interest has weak
or moderate credentials in directing treatments based on pre-existing data (Korn and
Freidlin, 2016).

In this paper, we investigate two improved designs based on biomarker stratified clinical
trials. The standard BSD design is an all-comer design, in which all eligible patients are
enrolled, tested for biomarker, and then randomized. The proportion of patients with given
biomarker values is not optimized for efficiency in testing specific treatment parameters.
Also, the number of enrolled patients in such trial is often limited by the prohibitive cost
associated with treating patients and following them for clinical outcomes. For example,
when the prevalence rate of biomarker positives is low, say less than 20%, with a given trial
size, the efficiency for testing the treatment effect among biomarker positives and the
interaction between treatment and biomarker can be very low, while the contribution of a
relatively large number of biomarker negatives to the power of testing the two treatment
parameters is small. In one of the improved designs, referred to as the enriched biomarker
stratified design (EBSD), we increase (enrich) the relative proportion of biomarker positives
among the randomized patients from 20% to 50% or higher by keeping all biomarker
positives and retaining only a proportion of biomarker negatives. With the same number of
randomized patients, the EBSD design is able to include more patients with more
information on the relevant treatment parameters than the BSD design. In another situation
where the cost associated with testing the true biomarker is high and there exists some
inexpensive auxiliary variables that is positively correlated to the true biomarker, we can
utilize the same enrichment strategy to enrich the randomized patients with more
information about specific treatment parameters by oversampling based on the auxiliary
biomarker. This improved design is referred to as an auxiliary-variable-enriched biomarker
stratified design (AEBSD). Unlike the EBSD design, AEBSD avoids testing the true maker
status for all screened patients and can be a useful design when testing for the true
biomarker is expensive or time-consuming and there exists a cheaper auxiliary variable or
surrogate biomarker that correlates with the true biomarker and thus achieves greater cost-
efficiency.

Both EBSD and AEBSD designs use an enrichment strategy - oversampling patients who
contain more information about specific treatment parameters and undersampling those who
do not - to improve the study efficiency of biomarker stratified trials. Like the biomarker
stratified design, these improved designs permit inference on the biomarker negative
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population, overall population and the interaction effect between treatment and biomarker.
But unlike the biomarker stratified design, the enrichment designs usually use a smaller
sample of biomarker negative patients, resulting in a more cost-efficient design. In this
paper, we will study how to determine the optimal enrichment proportions for both new
designs to maximize the testing efficiency for specific treatment parameters. We will
compare the relative efficiency of the two designs over BSD in term of the number of
randomized patients and the cost of the trial conduct. Yang et al. (2015) investigated a
variant of an enriched biomarker design and demonstrated that this design can improve
testing efficiency in treatment effect among biomarker positives with continuous outcome.
Both EBSD and AEBSD represent new enrichment sampling strategies to improve trial
efficiency and they should be distinguished from the commonly used term “enrichment
design” for a targeted design or biomarker positive only design (e.g. Simon and Maitournam
(2004)).

The rest of the paper is organized as follows. Section 2 introduces the background of a
biomarker stratified design (BSD). In Section 3, we describe the enriched biomarker
stratified design (EBSD) and discuss how to design a EBSD trial at the optimal enrichment
proportion for testing specific treatment parameters. In Section 4, we describe the auxiliary-
variable-enriched biomarker stratified design (AEBSD) and explain how to obtain the
optimal probabilities for selecting patients based on auxiliary biomarkers. In Section 5, we
compare the two enrichment designs with BSD in several settings mimicking real biomarker
stratified trials. In Section 6, we illustrate EBSD with a hypothetical Herceptin trial in breast
cancer and AEBSD with a EGFR-inhibitor trial in lung cancer. In Section 7, we conclude the
paper with several remarks.

2. Biomarker Stratified Design (BSD)

2.1 Notation

A biomarker stratified design (BSD) is a commonly used all-comer design for evaluating
treatment effects in various biomarker subgroups and the predictive value of the biomarker
for optimal treatments. As illustrated in Figure 1a, in a BSD design all screened patients will
be randomized to one of two treatments (Experimental £or Control C) with biomarker as a
stratification factor. Denote x7 the selection probability for the biomarker positives and «g
the biomarker negatives. In a BSD design, both x; and g are equal to one so that the
expected proportion of biomarker positives in the randomized cohort is equal to 7, the
prevalence rate of biomarker positives in the underlying patient population.

and Assumptions

For illustrative purpose, we focus on a biomarker stratified trial in which the effect of an
experimental therapy £ over a control therapy Con a binary outcome, such as tumor
response (yes vs. no), on patients with positive biomarker and negative biomarker. Let M=
{+, =} or M= {1,0} denote the biomarker status with AM+) = rand AM-)=1- m. Let D
={E,C} or D= {1,0} denote the treatment to which a patient is assigned by random
allocation and Y'represent the response outcome (Y= 1 for response; Y= 0 for no
response). Denote the response rates for patients with D= {£,C} and M= {1,0} as g =
AY=1UD=1, M=1), ngg=RY=1D=1, M=0), ncr = AY=1D=0, M=1)and 5
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= AY=1|D=0, M=0). Several treatment effects can be defined based on the data arising
from a BSD design. In this paper, we focus on the response rate, although other related
measures, such as log odds, could also be used.

. Treatment effect in A+ patients: By = ng — na
. Treatment effect in A~ patients: By = g — nco
. Overall treatment effect: B= B + (1 — ) By, which is average treatment effect

weighted by the prevalence of biomarker positivity in the population.

. Interaction between treatment and biomarker: 6= B, — By = (nz — n¢c1) — (n=
= 7cn)
. Clinical benefit between biomarker-guided approach and a standard biomarker-

unguided approach:

0,=response rate in biomarket—guided patients—response rate in biomarket—unguided patients

:[7”7}31 +(177T)77C0]7[77”7E1 +7(1*7T)77E0+(1*A/)7ﬂ701+(1*7)(1*F)ncu]
=1 —v)7B1 — (1 — m) By

where y is the proportion of patients treated by the experimental therapy £in the
biomarker-unguided approach. 8, is a measure of treatment benefit difference of
two strategies: a biomarker-guided strategy in which optimal treatment is
determined by biomarker and a biomarker-unguided strategy where treatment is
assigned to a proportion y of patients without considering biomarker status.
Notice that 8, can be directly estimated from biomarker-strategy trials (e.g.
Sargent et al. (2005)). When y =0 we have 6 = B;, commonly used as a
global measure for biomarker performance in treatment selection (Brinkley et al.,
2010; Janes et al., 2011, 2014).

Let n7denote the total number of randomized patients in a BSD trial. Let ng, ne1, Ny Neo
denote the sample sizes in the D= {E,C} and M= {1,0} groups, respectively. Let 7y,
me1,Mgy, Moy denote the number of responding patients in the corresponding patient
groups. The unbiased estimators for these parameters and the corresponding variance
estimators can be written as:

’ B = ﬁﬂ_ﬁClAand Var(B1)=,, (1 = )3, ) /gy +i ey (1= 1) /My, Where 7z =
me/ng and ney = mei/ne are the estimates for the response rates for groups
El and C1, respectively.

By = nm—neo and @(BO):ﬁEO (1- ﬁEo)/nEO R/ (1- ﬁco)/ncov where g

= Mgyl Ny and ﬁa) = Meol ey are the estimates for the response rates for groups
Eg and Gy, respectively.

. B=nB; + (1 - n)Byand

var(B)=n’var (i), )+ var (i, )+(1 — m)*Var(i,, ) +(1 - m)*var(i,,)
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6= By - By and var(§)=var (B, )+var(Bo)
. 6,=(1- y)nBy - 11 - n)Byand
var(0,)="(1 — 7)*var(B1)+~*(1 — 7)*var(Bo).

For Band é}, we have assumed that 7z is known. If zz is unknown it can be estimated by m/n
where 1 is the total number of biomarker positives in the randomized cohort. In this case,
the variance expressions are more complicated.

2.2 Hypothesis testing on treatment parameters

A typical BSD ftrial is designed to test one or more hypotheses involving the aforementioned
treatment parameters and the results of these tests reveal different aspects of the effect of the
experimental therapy over the control therapy conditional or unconditional on biomarker
status. Several common scenarios are listed in Table 1. The primary task designing a BSD
trial is to ensure that the design is adequately powered for testing the chosen hypothesis. Let
£=(By, By, B, &, 6,)and £ = (By, By, B, 6, 6,). Each element of £ s a linear combination
of (ne1, N1, e, Neo), Which follows a multivariate normal distribution by the central limit
theorem. As a result, each element of fhas an asymptotic normal distribution by Slutsky’s
Z,L-:ﬂ&/(o, 1)

theorem. That is, when nis large, var(€;) for /=1, ---, 5. Standard normal
distribution results can be used to derive the coverage probability for the 95% confidence
interval and calculate the power for testing each treatment parameter. As an illustration, a
proof that Bhas an asymptotic normal distribution is given in the supplementary materials.

3. Enriched Biomarker Stratified Designs (EBSD)

Figure 1b shows a diagram for the EBSD design, in which biomarker positive patients will
be selected into the cohort of randomized patients with probability x; and the biomarker
negative patients will be selected into the randomized cohort with probability xp, and only
those patients in the randomized cohort will be treated and followed up. In this paper, our
discussion is focused on equal allocation of patients to the two treatment arms. The proposed
approach can be easily extended to unequal allocation between treatment arms. Indeed, the
allocation ratio between treatment arms can be another design parameter subject to
optimization for the power of testing specific hypotheses. For all scenarios of hypothesis
testing listed in Table 1, we will search for the optimal enrichment proportion 7, > 0. The

KT
expected proportion of positives in the trial is —Ii17f+l€o(1 — ) If we set the above = . then

ko=Hr1 % Any pair (xg, x1) satisfying the above will work. Thus, there is no
unique solution pair (xp, «1) for any given > 0. However, we want to minimize the
number of patients omitted from the study (i.e., maximize the number selected for
randomization among screened patients), so we choose kg and xj to be as large as possible.
This additional consideration yields the following unique values for xg and «:

&0:&1:1 if Te=T
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/(1 —m) .
=t k=1, if 7>
Ko 71'6/(1—71'8)’%1 1L e >T

/(1 —m .
H0217K1:H7 1f7T€<7T

Thus, for any given r,, including the optimal 7°P*, the values of xg and «q are uniquely
determined as above.

3.1 Teston B
The variance for the estimate of the overall treatment effect B= B, + a- n)éo can be
written as
Var(B):W'Q 'Qnm (1 — 77E1)+ﬂ_2 277(71 (1 — 77(71)+(1 - 7()2 277/@0 (1 — 77E0) +(1 . 71_)2 27700 (1 — 7700)
nme e n(1 — 7.) n(1 —7e)
()

For an EBSD trial with 7randomized patients, the optimal enrichment proportion 7°r* for

biomarker positive patients can be obtained by minimizing (fa\r([?). It is straightforward to
show the optimal enrichment proportion for biomarker positives

ﬂ_opt: 1
RS )
where

(;S:nEO(l — nEo)+7]co(1 — nco)
Ny (1= 1) +n0, (1 = 16,) 3)

Note that 7P approaches = when ¢ approaches 1.

3.2 Teston &

For an EBSD trial with 77randomized patients, the optimal enrichment proportion 7°P* for
biomarker positive patients in testing & can be obtained by finding the minimizer for val(é‘)
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277E1(1 77}15‘1)_'_27](71 (1 77]01)_*_277150(1 77}E‘0) 277(70<1 77](70)

var(9)= T, N, n(1 — me) n(1 —me) 4)

The optimal enrichment proportion in this case is given by

opt __ 1

€ 1+Vo (5)

where ¢ is defined in (3). Note that 7°P* approaches 0.5 when ¢ approaches 1.

3.3 Teston 6,
When testing 8, = (1 - ) By - /(1 - ) By with an EBSD design with 0 < <1, one can
minimize

A 217727r2 272177r2
Var(e’y):%'(nm(lfnm )+7701(177701 ))+ﬁ

(6)

It is straightforward to obtain the solution

1

qoPt—___

€ 1-7
HESRVE ()

where ¢ is defined in (3). Note that when = 0 we have 6, = zB; and 7°P*=1 and when y =
1 we have 6 = —(1 - m) By and 7Pt =.

3.4 Testing two hypotheses

Without loss of generality, we will use an a splitting approach in the discussion of
simultaneously testing two hypotheses. Other testing procedures for control of the overall
type | error involving multiple hypotheses can be adopted (e.g. (Matsui et al., 2014)) but
these will not be discussed in this paper. When testing two hypotheses, as in cases 12, 13,
14, 15 in Table 1, we can find the optimal enrichment proportion z, by minimizing the
maximum of the required sample sizes for the first hypothesis and the second hypothesis at
given type | errors (ay, ap) and type Il errors (B, o). For example, for testing B; and 6, the
sample size (., Hyz) for the first hypothesis is given as

J Biopharm Stat. Author manuscript; available in PMC 2018 July 01.
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n(me;Hy ):—(Za1/2+z»‘31)2
e B%/Var*(ﬁl) (8)

For the second hypothesis, the sample size (., H, ) is

n(me;Hoy ) =—————
(mei Haa) 52 fvar*(8)  (9)

where va/*(B]) = nva/(B]) and vaﬁ(é) = nva(@. The optimal 7z, i.e. 7S, such that 77, =
max(m(re Hig), Mg Hoz)) is minimized can be obtained straightforwardly by numerical
method.

4. Auxiliary-variable-enriched Biomarker Stratified Design (AEBSD)

The cost of the assessment of the true status of a biomarker M for all patients is often
prohibitive. However, suppose that we have an auxiliary variable or a biomarker based on
another assay Mthat is predictive of A7and can be easily and cheaply assessed. One can
enrich the study with true biomarker positive patients by selecting patients to be randomized
based on the values of M. Only the patients selected for randomization will have their true
biomarkers A/ measured. Let z and 7z denote the prevalence rates of patients with positive
true biomarker (M= 1) and positive auxiliary biomarker (M7= 1) respectively in the
population. The positive predictive value PPV/is the probability that a patient with positive
auxiliary biomarker (M= 1) also has a positive true biomarker (M= 1). That is, PPV = P{M
=1|M=1). Let x1 € [0, 1] and 1?0 € [0, 1] represent the probability of patients with positive
and negative auxiliary variable M being selected into the randomized cohort, respectively.

_ TR1
The enrichment proportion for an auxiliary positive patient is Wezm. The
probability of a randomized patient with a positive true biomarker can be written as

7. =PPV7# + (ﬂ) (1 —7,)
1 -7 (10)

For statistical testing and inference concerning Bor 6, we need a consistent estimate for =
when s is unknown. We may estimate rz by noting = ey xy T + 1 x9(1 — 1), where 11 =
AM=1M=1, R=1)and g = AM=1M=0, R=1) and R=1 indicates that the patient
is selected into the randomized cohort.

4.1 Testing one hypothesis

In designing an AEBSD trial, our goal is to find the optimal 7z, that minimizes the number
of randomized patients for testing a specific hypothesis (or hypotheses) as in Table 1. Here
we illustrate the idea for testing Hp : 6 =0 against H,: 6= &%, where §is the interaction
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between treatment and biomarker. To minimize the number of randomize patients we
minimize var(6), which is

2n,, (1 —71E1)+27701(1 —nm)+277E0(1 —nm)ﬂ%o(l —Ngp)

var(g): o py n(1 —m) n(1 —7e) (11)

where the denominator of each term is the expected number of patients in subgroups defined
by Dand M. Thus, for given n, 7, 7z, PPV, g1, et e, Neo, We can find the optimal 7z, in
[0, 1] that minimizes var(8). The result is given by

(1 — #t)mlocalopt _ 71 #PPV
PPV — = (12)

~opt__
e =

where rlocalopt js the local optimal solution whose global optimal solution is the same as
7oP in Section 3.2 but adjusted according to 7z and PPV. When
7% € [min (7, PPV), max(w, PPV)], wleocalopt:wgpf’. Otherwise Wéocal‘)pt:ﬂ' or PPV,

whichever is closer to 7°P".

4.2 Testing two hypotheses

When testing two hypotheses is of interest, as the cases 12, 13, 14, 15 in Table 1, we can
find the optimal 7z, by minimizing the maximum of the required sample sizes for the first
hypothesis and the second hypothesis at given a1, B1, as, B. For example, for case 13, the

~  (Zayjet28)”
sample size (g Hyp) for the first hypothesis is given as K - B%/var*(B’l) where
Z4y and Zzg, is the standard normal distribution percentile for a;/2 and A;. For the second

(We;Hla)

. A Vi
hypothesis, the sample size Mz, Hog)is "7 20/~ 52/Var*(3) where Z,,2 and Zg, is

the standard normal distribution percentile for a,/2 and . The goal is to find the optimal
1o SUch that 7ax = Max(/M g Hiz), Mg Hy)) is minimized. The local optimal localopt

can be determined by 7z, PPV, 7P, the global optimal solution in Section 4.1 and the
solution for (1 Hyg) = M(1ts; Hyy). Details are given in supplementary materials. The

i = in thi - i ing local
optimal z, in this case, 79, can also be calculated by equation (12) using 7°¢°P",

5. Numerical Studies

5.1 EBSD design
In this numerical study, we assume that the prevalence of biomarker positive patients in the
population is 0.2 and that selected patients will be randomized with equal allocation to
treatment D = {1,0}. For the sake of illustration, we assume the response of each patient
follows a logistic regression model logit( Y= 1|D, M) = by+by D+b, M+ b3 TM. \We consider
two types of interaction between treatment and biomarker, quantitative and qualitative
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(Polley et al., 2013). In the case of quantitative interaction between treatment and biomarker,
we set &y =-0.5, b = 0.4, &, =-0.8, b3 = 0.6, as seen in Figure 2a, and the logistic model
yields the response rates 0.43, 0.21,0.48 and 0.38 for patient groups in £1, C1, £0 and C0,
respectively. Figure 3 describes the relationship between statistical power for testing specific
treatment parameters B, By, By, §and 6, and the enrichment proportion 7z, at the given
number of randomized patients /7= 200, 300, 500, 1000. These plots demonstrate that the
optimal enrichment proportion s, varies by the specific testing parameter and r, reaches the
highest power for By at 1, By at 0, Bat 0.19, §at 0.48 and 6, at 0.68. Note that the BSD
design corresponds to 7z, = 0.2 in these plots, demonstrating the EBSD design can achieve

significant efficiency gain for a given sample size at optimal enrichment proportion 7oP*.

As seen in Figure 2b, for the case of qualitative interaction between treatment and
biomarker, we set & = -0.5, b = -0.8, & =-0.1, b3 = 1.5, which yields the response rates
0.21,0.10, 0.12 and 0.11 for patient groups £1, C1, £0 and (0, respectively. Figure 4
describes the relationship between the power for the specific treatment parameters B, By, B,
& and &, and the enrichment proportion 7 at the number of randomized patients /7= 200,
300, 500, 1000. Again, these plots show that the optimal enrichment proportion r, varies by
the specific testing parameter and rz, reaches the highest power for By at 1, By at 0, Bat
0.21, sat0.52 and &) at 0.71.

To further verify the performance of the proposed treatment parameter estimators and their
variance estimators under EBSD, simulation was conducted based on 1000 simulations. At a

given sample size /7= 500, Table 2 lists the estimates for B, By, By, &, 8, for EBSD at 72"
and BSD. Other quantities, including the standard errors based on the proposed variance
estimators (std.p), the simulated standard error (std.¢€), and the 95%CI coverage probability
based on the estimated standard error (coverage), are also provided. It can be seen that the
proposed estimators yield consistent estimates with negligible bias and variance estimators
yield standard errors close to the simulated one and a satisfying 95% nominal coverage

probability. It can also be seen that the EBSD design at 7°P* yields much smaller standard
error than the BSD design, indicating the EBSD design is significantly more efficient that
the BSD, except for testing the overall treatment effect B, where BSD at == 0.2 is very

close to its optimal 72*=0.19 for the quantitative interaction and 0.21 for the qualitative
interaction and understandably the BSD at the setting yields similar performance as the
EBSD.

Table 3 summarizes the results of designing a EBSD trial to test two treatment parameters
simultaneously at given powers, 90% for H; and 80% for H,. The results for EBSD are

obtained at 7°P* with the method described in Section 3.4. The coverage probability for all
treatment effect estimates achieves their corresponding nominal levels; for B, the coverage
probability is close to 99% and for the second treatment effect estimate the coverage
probability is close to 96%. It can be seen that the EBSD needs significantly less randomized
patients to achieve requisite powers for testing two hypotheses than BSD in all combinations
of hypothesis testing. Also, the efficiency gain for testing two hypotheses is generally larger
than that of testing a single hypothesis.
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5.2 AEBSD design

In this numerical study, we investigate the relationship of patient ratio and cost ratio with
PPV for testing the interaction & under AEBSD. Quantitative and qualitative interactions are
both investigated. For a quantitative interaction, nz = 0.43, nco = 0.21, ngm = 0.48 and 7y
= 0.38. For a qualitative interaction, g = 0.53, o = 0.35, g =0.21 and 7 = 0.38. We
assume a = 0.05, 8= 0.1 in the calculation. The unit cost is 500 for biomarker assay and the
average unit cost is 10, 000 for treating and following each patient. Figure 5 shows
decreasing trends for both patient ratio and cost ratio with an increasing PPV for both
quantitative and qualitative interactions. Table 4 gives further details on the screening ratio
NnSratio for AEBSD over BSD. Similar results are obtained for testing two treatment
parameters simultaneously. Details can be found in the supplementary materials.

6. Case Studies
6.1 Herceptin trial with EBSD

The breast cancer chemotherapy Herceptin is a well-known success story of personalized
medicine. Human epidermal growth factor receptor-2 protein (HER?2) is over-expressed in
approximately 20% of breast cancer patients (Korkaya and Wicha, 2013). Herceptin, a target
agent on HERZ2, was shown to be effective in patients with HER2+ metastatic breast cancer
(Baselga, 2001; Joensuu et al., 2006). Retrospective studies also suggested that HER2-
patients could also benefit from Herceptin (Paik et al., 2008). For illustration, we assume
that the overall response rate (ORR), a binary endpoint based on the percentage of patients
whose cancer shrinks or disappears after treatment, is to be used in designing a first-line
metastatic breast cancer therapy for Herceptin plus chemotherapy £ versus chemotherapy C.
We assume that these response rates for groups £1 and Cl are ng = 45% and 7¢p = 29%
respectively in HER2+ patients and that the response rates for groups £0 and €O is 45% and
40%, respectively. Our goal is to illustrate how to design a EBSD trial at the optimal
enrichment proportion o, when the investigators are primarily interested in testing a single
hypothesis involving a single treatment parameter from (By, By, B, 6, 8,) with y=0.2. The

optimal enrichment proportion 7°P* is obtained by the method described in Section 3 to
achieve the maximum efficiency for the specific test for given 7. The top panel of Table 5
shows the required number of randomized patients for EBSD and BSD at two-sided a =
0.05 and B=0.1. The ratio of randomized patents 77, and the cost ratio ¢y, for EBSD
versus BSD are also provided, where the unit cost for ascertaining true biomarker is 300 and
the unit cost for treating and following patient is averaged 10, 000 for one year (Schmidt,
2011). In this case, the cost of screening and IHC testing for HER?2 is significantly lower
than the cost of treatment and patient follow-up.

Table 5 also illustrates the case of designing an EBSD trial when testing two hypotheses. We
consider the first hypothesis of interest to be the test on treatment effect among HER2+
patients By, which is often the primary goal in a biomarker-driven clinical trial. The second
hypothesis will be chosen from (B, B, &, 8,), testing the treatment effect in biomarker
negatives, the treatment effect in the overall population, the interaction between treatment
and biomarker, and the clinical benefit of selecting treatment by biomarker. The response
rates for the four groups of patients defined by treatment and biomarker are the same for the
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case of single hypothesis testing. To control the overall type error at the level of two-sided
0.05, we split the a between the first hypothesis and the second hypothesis. The number of
randomized patients for testing each hypothesis for given a; = 0.01, 8, = 0.10, ap = 0.04
and B, = 0.2 are calculated, and the maximum of the two sample sizes is chosen as the size

of the trial. The optimal enrichment proportion 7°P* for the EBSD design is obtained by
numerical methods to achieve the smallest of the maximum number of randomized patients
required by testing both hypotheses with respective power greater than 1 — g1 and 1 - 5, for
the two hypotheses. In the bottom panel of Table 5, the ratio of randomized patents of the
two designs 71,4, and the ratio of cost ¢, are listed. Popsyindicates the probability of
success when testing two hypotheses for EBSD. In designing trials with two primary
hypotheses, one can obtain the probability of success, i.e. the probability of rejecting either
null hypothesis under the alterative (Matsui et al., 2014). The probability of success is

By
Zy=——
calculated using the joint distribution of two testing statistics \/var(B;) and
5

\/var(4)-

Zy=

6.2 EGFR-inhibitor trial using AEBSD

In this case study, we consider designing a hypothetical AEBSD trial for comparing the 5-
month progression-free-survival (5SmPFS) rate of gefitinib (£) versus carboplatin and
paclitaxel (C) in patients with non-small-cell lung cancer (NSCLC). The example is
hypothetical, but the 5SmPFS for each patient group is based on the results of an actual
clinical trial (IPASS) (Mok et al., 2009). The mutation of epidermal growth factor receptor
(EGFR) is thought predictive of the effect of gefitinib in treating non-small cell lung cancer.
The prevalence of EGFR mutations in approximately 50% in Asia, significantly higher than
the 10% prevalence in North America (Shi et al., 2015; Kerr, 2013). As a result of the high
prevalence rate of EGFR mutants, IPASS was successfully conducted in Asia and found that
gefitinib significantly extended PFS among patients with EGFR mutations, but resulted in
significantly shorter PFS for patients with EGFR wild types (Mok et al., 2009; Maemondo et
al., 2010).

We consider a biomarker stratified trial to be conducted in North America with the goal of
testing two primary hypotheses: H;: the treatment effect among patients with EGFR
mutations By and AH: the interaction between treatment and EGFR mutation 6. We set two-
sided a1 = ap = 0.025 and 1 = 5> = 0.1. A BSD design with the objectives of testing B; and
&is very inefficient, as it would enroll, treat and follow a large number of patients who are
EGFR wild-types and therefore would entail a waste of limited resource. For an AEBSD
design, it is known that EGFR mutations are more commonly observed in patients with
adenocarcinomas and no prior history of smoking, as well as in females and those of Asian
descent (Kerr, 2013). A predictive score, the auxiliary variable in this case, can be built
using these easily and cheaply assessed prognostic factors. We have assumed the prevalence
rate of “high-score” patients is 15% and the true EGFR mutations is at least 60% among the
“high-score” patients.
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Mimicking the IPASS trial, we choose the median PFS for groups £1, C1, £0, C0 as 9.82,
4.71, 2.00 and 5.70 months, respectively, indicating a strong qualitative interaction between
treatment and biomarker. Under the exponential hazards, we assume the 5mPFS for these
groups are 0.65, 0.41,0.13 and 0.48, respectively. Under these design parameters, we find the
optimal selection probability x; = 1 for auxiliary positive patients and & = 0 for the
auxiliary negative patients. The number of randomized patients for the two designs are
naessp = 338 and ngsp = 2023 with 71,44, = 0.167, and the cost ratio ¢4, = 0.172. In the
calculation of the trial cost, we assume that the unit cost of testing EGFR mutation is 1,000,
the average treatment cost and the average follow-up cost are 7, 500 and 2, 500 for each
patient in the randomized cohort while the unit cost for determining the EGFR predictive
score is 50. These cost estimates are based on the literature reflecting the experience of the
United States (Horgan et al., 2011; Sauter and Butnor, 2016).

7. Discussion

In this paper, we propose two new enrichment designs for biomarker stratified clinical trials.
The key idea of enrichment sampling is to oversample patients who contain more
information about specific treatment parameters and undersample those who do not. We
demonstrate that the new designs can significantly improve study efficiency in term of
increased power and higher estimation precision with a fixed number of randomized patients
and therefore reduce the cost of conducting trials. We give analytic solutions or numerical
algorithms for finding the optimal probabilities for selecting patients with positive and
negative biomarkers into the randomized cohort for the EBSD design and the optimal
probabilities of selecting patients with positive and negative auxiliary biomarkers for the
AEBSD design. We also demonstrate how to determine the sample size for EBSD and
AEBSD designs when testing a single treatment parameter or two treatment parameters
simultaneously. The numerical studies and the case studies demonstrate the superior
performance of the new designs over the BSD.

Enrichment sampling strategies have been proposed and successfully used in observational
studies to test association between disease and risk factors (Morara et al., 2007; Wang and
Zhou, 2010; Strauss et al., 2010) and to estimate the accuracy of biomarkers in predicting
disease condition (Wang et al., 2012, 2013). These papers demonstrate that biased sampling
with enrichment of relevant patient subgroups, those that contain more information on
estimands, leads to more efficient studies that requires significantly fewer patients and study
cost. The enrichment strategies can be applied to other biomarker-driven clinical trial
designs, such as the biomarker strategy design. See Freidlin et al. (2010) for a review. In a
biomarker strategy design, patients are randomly assigned to a biomarker-guided arm that
uses the biomarker to determine whether a patient receive the experimental therapy or the
control therapy or to a biomarker-unguided arm that randomly assign the patients to the
experimental therapy and control therapy regardless of biomarker status.

In this paper we consider a binary endpoint such as tumor response or survival rate at a
landmark time. The extension of our discussion to an unequal randomization ratio is
straightforward. Indeed, the allocation ratio between treatment arms can be optimized for
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additional efficiency gains to test specific treatments parameters. An enrichment strategy is
equally applicable to trials involving more than two treatments.

Compared to the BSD design, one limitation of the EBSD and AEBSD designs is that they
may significantly prolong the time of trial completion, as the latter designs require longer
time to accrue sufficient number of biomarker positive patients. In this paper, the cost
introduced by prolonged trial completion time has not been considered. In practice, this
issue can be addressed by verifying that the EBSD and AEBSD designs under the optimal
selection on xy and xp will lead to an estimated time of trial completion that the
investigators can accept. If not, the standard BSD design may be used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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(a) Biomarker Stratified Design (BSD)
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Figure 1.
Diagram for (a) Biomarker stratified design (BSD), (b) Enriched biomarker stratified design

(EBSD) and (c) Auxiliary-variable-enriched biomarker stratified design (AEBSD). For BSD
and EBSD, r is the prevalence of biomarker positives in the population; x; and «g are the
selection probability for biomarker positives and biomarker negatives into the randomized
cohort, respectively. For AEBSD, 7 is the prevalence of auxiliary positives in the
population; x1 and xy are the selection probability for auxiliary positives and auxiliary
negatives into the randomized cohort, respectively.
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(b) qualitative interaction
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Illustration for (a) quantitative interaction with response rates ng = 0.43, ney =0.21, ngp =
0.48 and ¢ = 0.38 and (b) qualitative interaction with response rates 7z = 0.21, nc =

0.10, 7g = 0.12 and 5y = 0.11
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Table 1

Tests on different treatment parameters and their combinations

Case Hypothesis Interpretation
1 Ho: Bi=0vs. Hy: B #0 Teston By
2 Hy: By=0vs. Hy: By#0 Teston By
3 Hy: B=0vs. H: B0 Teston B
4 Hy: 6=0vVs. H; 6%0 Teston &
5 Ho: 6,=0vs. Hy 6,#0 Teston 6,
12 Hyo: By=0vs. Hyz B0 | Teston B, and B,
Hyy: By=0Vs. Hoz By#0
13 Hio: Bi=0Vs. Hyz: B #0 | Teston By and B
Hy: B=0vs. Hy; B0
14 Hyo: By=0vs. Hyz Bi#0 | Teston Byand
Hy: 6=0Vs. Hp;: 6%0
15 Hyo: By=0vs. Hiz Bi#0 | Teston By and 6,
Hoo: 6,=0Vs. Hoz 6,#20
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