
On Enrichment Strategies for Biomarker Stratified Clinical Trials

Xiaofei Wang1, Jingzhu Zhou1, Ting Wang2, and Stephen L George1

1Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, U.S.A

2Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North 
Carolina, U.S.A

Summary

In the era of precision medicine, drugs are increasingly developed to target subgroups of patients 

with certain biomarkers. In large all-comer trials using a biomarker stratified design (BSD), the 

cost of treating and following patients for clinical outcomes may be prohibitive. With a fixed 

number of randomized patients, the efficiency of testing certain treatments parameters, including 

the treatment effect among biomarker positive patients and the interaction between treatment and 

biomarker, can be improved by increasing the proportion of biomarker positives on study, 

especially when the prevalence rate of biomarker positives is low in the underlying patient 

population. When the cost of assessing the true biomarker is prohibitive, one can further improve 

the study efficiency by oversampling biomarker positives with a cheaper auxiliary variable or a 

surrogate biomarker that correlates with the true biomarker. To improve efficiency and reduce cost, 

we can adopt an enrichment strategy for both scenarios by concentrating on testing and treating 

patient subgroups that contain more information about specific treatment parameters of primary 

interest to the investigators. In the first scenario, an enriched biomarker stratified design (EBSD) 

enriches the cohort of randomized patients by directly oversampling the relevant patients with the 

true biomarker, while in the second scenario, an auxiliary-variable-enriched biomarker stratified 

design (AEBSD) enriches the randomized cohort based on an inexpensive auxiliary variable, 

thereby avoiding testing the true biomarker on all screened patients and reducing treatment waiting 

time. For both designs, we discuss how to choose the optimal enrichment proportion when testing 

a single hypothesis or two hypotheses simultaneously. At a requisite power, we compare the two 

new designs with the BSD design in term of the number of randomized patients and the cost of 

trial under scenarios mimicking real biomarker stratified trials. The new designs are illustrated 

with hypothetical examples for designing biomarker-driven cancer trials.
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1. Introduction

There is a large literature on study designs integrated with treatment-selection biomarkers. 

See Mandrekar and Sargent (2009), Freidlin et al. (2010) and Tajik et al. (2013) for recent 

reviews. Biomarker stratified clinical trials have been frequently used to evaluate the effect 

and safety of an experimental therapy relative to a control therapy as well as to evaluate the 

utility of using the biomarker in directing treatments. A trial with a biomarker stratified 

design (BSD) randomizes all patients to one of the treatment therapies with biomarker as a 

stratification factor. Such an all-comer trial allows hypothesis testing on treatment 

parameters related to treatment effects among biomarker positive patients, biomarker 

negative patients and the overall populations as well as the value of utilizing biomarker to 

direct treatments. A BSD trial is especially useful when the biomarker of interest has weak 

or moderate credentials in directing treatments based on pre-existing data (Korn and 

Freidlin, 2016).

In this paper, we investigate two improved designs based on biomarker stratified clinical 

trials. The standard BSD design is an all-comer design, in which all eligible patients are 

enrolled, tested for biomarker, and then randomized. The proportion of patients with given 

biomarker values is not optimized for efficiency in testing specific treatment parameters. 

Also, the number of enrolled patients in such trial is often limited by the prohibitive cost 

associated with treating patients and following them for clinical outcomes. For example, 

when the prevalence rate of biomarker positives is low, say less than 20%, with a given trial 

size, the efficiency for testing the treatment effect among biomarker positives and the 

interaction between treatment and biomarker can be very low, while the contribution of a 

relatively large number of biomarker negatives to the power of testing the two treatment 

parameters is small. In one of the improved designs, referred to as the enriched biomarker 

stratified design (EBSD), we increase (enrich) the relative proportion of biomarker positives 

among the randomized patients from 20% to 50% or higher by keeping all biomarker 

positives and retaining only a proportion of biomarker negatives. With the same number of 

randomized patients, the EBSD design is able to include more patients with more 

information on the relevant treatment parameters than the BSD design. In another situation 

where the cost associated with testing the true biomarker is high and there exists some 

inexpensive auxiliary variables that is positively correlated to the true biomarker, we can 

utilize the same enrichment strategy to enrich the randomized patients with more 

information about specific treatment parameters by oversampling based on the auxiliary 

biomarker. This improved design is referred to as an auxiliary-variable-enriched biomarker 

stratified design (AEBSD). Unlike the EBSD design, AEBSD avoids testing the true maker 

status for all screened patients and can be a useful design when testing for the true 

biomarker is expensive or time-consuming and there exists a cheaper auxiliary variable or 

surrogate biomarker that correlates with the true biomarker and thus achieves greater cost-

efficiency.

Both EBSD and AEBSD designs use an enrichment strategy - oversampling patients who 

contain more information about specific treatment parameters and undersampling those who 

do not - to improve the study efficiency of biomarker stratified trials. Like the biomarker 

stratified design, these improved designs permit inference on the biomarker negative 
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population, overall population and the interaction effect between treatment and biomarker. 

But unlike the biomarker stratified design, the enrichment designs usually use a smaller 

sample of biomarker negative patients, resulting in a more cost-efficient design. In this 

paper, we will study how to determine the optimal enrichment proportions for both new 

designs to maximize the testing efficiency for specific treatment parameters. We will 

compare the relative efficiency of the two designs over BSD in term of the number of 

randomized patients and the cost of the trial conduct. Yang et al. (2015) investigated a 

variant of an enriched biomarker design and demonstrated that this design can improve 

testing efficiency in treatment effect among biomarker positives with continuous outcome. 

Both EBSD and AEBSD represent new enrichment sampling strategies to improve trial 

efficiency and they should be distinguished from the commonly used term “enrichment 

design” for a targeted design or biomarker positive only design (e.g. Simon and Maitournam 

(2004)).

The rest of the paper is organized as follows. Section 2 introduces the background of a 

biomarker stratified design (BSD). In Section 3, we describe the enriched biomarker 

stratified design (EBSD) and discuss how to design a EBSD trial at the optimal enrichment 

proportion for testing specific treatment parameters. In Section 4, we describe the auxiliary-

variable-enriched biomarker stratified design (AEBSD) and explain how to obtain the 

optimal probabilities for selecting patients based on auxiliary biomarkers. In Section 5, we 

compare the two enrichment designs with BSD in several settings mimicking real biomarker 

stratified trials. In Section 6, we illustrate EBSD with a hypothetical Herceptin trial in breast 

cancer and AEBSD with a EGFR-inhibitor trial in lung cancer. In Section 7, we conclude the 

paper with several remarks.

2. Biomarker Stratified Design (BSD)

A biomarker stratified design (BSD) is a commonly used all-comer design for evaluating 

treatment effects in various biomarker subgroups and the predictive value of the biomarker 

for optimal treatments. As illustrated in Figure 1a, in a BSD design all screened patients will 

be randomized to one of two treatments (Experimental E or Control C) with biomarker as a 

stratification factor. Denote κ1 the selection probability for the biomarker positives and κ0 

the biomarker negatives. In a BSD design, both κ1 and κ0 are equal to one so that the 

expected proportion of biomarker positives in the randomized cohort is equal to π, the 

prevalence rate of biomarker positives in the underlying patient population.

2.1 Notation and Assumptions

For illustrative purpose, we focus on a biomarker stratified trial in which the effect of an 

experimental therapy E over a control therapy C on a binary outcome, such as tumor 

response (yes vs. no), on patients with positive biomarker and negative biomarker. Let M = 

{+, −} or M = {1,0} denote the biomarker status with P(M+) = π and P(M−) = 1 − π. Let D 
= {E,C} or D = {1,0} denote the treatment to which a patient is assigned by random 

allocation and Y represent the response outcome (Y = 1 for response; Y = 0 for no 

response). Denote the response rates for patients with D = {E,C} and M = {1,0} as ηE1 = 

P(Y = 1|D = 1, M = 1), ηE0 = P(Y = 1|D = 1, M = 0), ηC1 = P(Y = 1|D = 0, M = 1) and ηC0 
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= P(Y = 1|D = 0, M = 0). Several treatment effects can be defined based on the data arising 

from a BSD design. In this paper, we focus on the response rate, although other related 

measures, such as log odds, could also be used.

• Treatment effect in M+ patients: B1 = ηE1 − ηC1

• Treatment effect in M− patients: B0 = ηE0 − ηC0

• Overall treatment effect: B = πB1 + (1 − π)B0, which is average treatment effect 

weighted by the prevalence of biomarker positivity in the population.

• Interaction between treatment and biomarker: δ = B1 − B0 = (ηE1 − ηC1) − (ηE0 

− ηC0)

• Clinical benefit between biomarker-guided approach and a standard biomarker-

unguided approach:

where γ is the proportion of patients treated by the experimental therapy E in the 

biomarker-unguided approach. θγ is a measure of treatment benefit difference of 

two strategies: a biomarker-guided strategy in which optimal treatment is 

determined by biomarker and a biomarker-unguided strategy where treatment is 

assigned to a proportion γ of patients without considering biomarker status. 

Notice that θγ can be directly estimated from biomarker-strategy trials (e.g. 

Sargent et al. (2005)). When γ = 0 we have θ0 = πB1, commonly used as a 

global measure for biomarker performance in treatment selection (Brinkley et al., 

2010; Janes et al., 2011, 2014).

Let n denote the total number of randomized patients in a BSD trial. Let nE1, nC1, nE0, nC0 

denote the sample sizes in the D = {E,C} and M = {1,0} groups, respectively. Let mE1, 

mC1,mE0, mC0 denote the number of responding patients in the corresponding patient 

groups. The unbiased estimators for these parameters and the corresponding variance 

estimators can be written as:

• B̂
1 = η̂

E1−η̂
C1 and , where ηÊ1 = 

mE1/nE1 and η̂
C1 = mC1/nC1 are the estimates for the response rates for groups 

E1 and C1, respectively.

• B0̂ = η̂
E0−η̂

C0 and , where η̂
E0 

= mE0/nE0 and η̂
C0 = mC0/nC0 are the estimates for the response rates for groups 

E0 and C0, respectively.

• B̂ = πB̂
1 + (1 − π)B0̂ and
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• δ̂ = B̂
1 − B̂

0 and 

• θ̂γ = (1 − γ)πB̂
1 − γ(1 − π)B̂

0 and 

.

For B̂ and θ̂γ we have assumed that π is known. If π is unknown it can be estimated by n1/n 
where n1 is the total number of biomarker positives in the randomized cohort. In this case, 

the variance expressions are more complicated.

2.2 Hypothesis testing on treatment parameters

A typical BSD trial is designed to test one or more hypotheses involving the aforementioned 

treatment parameters and the results of these tests reveal different aspects of the effect of the 

experimental therapy over the control therapy conditional or unconditional on biomarker 

status. Several common scenarios are listed in Table 1. The primary task designing a BSD 

trial is to ensure that the design is adequately powered for testing the chosen hypothesis. Let 

ξ = (B1, B0, B, δ, θγ) and ξ̂ = (B̂
1, B̂

0, B̂, δ̂, θ̂γ). Each element of ξ̂ is a linear combination 

of (η̂E1, η̂C1, η̂E0, η̂
C0), which follows a multivariate normal distribution by the central limit 

theorem. As a result, each element of ξ̂ has an asymptotic normal distribution by Slutsky’s 

theorem. That is, when n is large,  for i = 1, ⋯, 5. Standard normal 

distribution results can be used to derive the coverage probability for the 95% confidence 

interval and calculate the power for testing each treatment parameter. As an illustration, a 

proof that B̂ has an asymptotic normal distribution is given in the supplementary materials.

3. Enriched Biomarker Stratified Designs (EBSD)

Figure 1b shows a diagram for the EBSD design, in which biomarker positive patients will 

be selected into the cohort of randomized patients with probability κ1 and the biomarker 

negative patients will be selected into the randomized cohort with probability κ0, and only 

those patients in the randomized cohort will be treated and followed up. In this paper, our 

discussion is focused on equal allocation of patients to the two treatment arms. The proposed 

approach can be easily extended to unequal allocation between treatment arms. Indeed, the 

allocation ratio between treatment arms can be another design parameter subject to 

optimization for the power of testing specific hypotheses. For all scenarios of hypothesis 

testing listed in Table 1, we will search for the optimal enrichment proportion πe > 0. The 

expected proportion of positives in the trial is . If we set the above = πe then 

. Any pair (κ0, κ1) satisfying the above will work. Thus, there is no 

unique solution pair (κ0, κ1) for any given πe > 0. However, we want to minimize the 

number of patients omitted from the study (i.e., maximize the number selected for 

randomization among screened patients), so we choose κ0 and κ1 to be as large as possible. 

This additional consideration yields the following unique values for κ0 and κ1:
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Thus, for any given πe, including the optimal , the values of κ0 and κ1 are uniquely 

determined as above.

3.1 Test on B

The variance for the estimate of the overall treatment effect B̂ = πB̂
1 + (1 − π)B̂

0 can be 

written as

(1)

For an EBSD trial with n randomized patients, the optimal enrichment proportion  for 

biomarker positive patients can be obtained by minimizing . It is straightforward to 

show the optimal enrichment proportion for biomarker positives

(2)

where

(3)

Note that  approaches π when ϕ approaches 1.

3.2 Test on δ

For an EBSD trial with n randomized patients, the optimal enrichment proportion  for 

biomarker positive patients in testing δ can be obtained by finding the minimizer for var(δ̂)
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(4)

The optimal enrichment proportion in this case is given by

(5)

where ϕ is defined in (3). Note that  approaches 0.5 when ϕ approaches 1.

3.3 Test on θγ

When testing θγ = (1 − γ)πB1 − γ(1 − π)B0 with an EBSD design with 0 ≤ γ ≤ 1, one can 

minimize

(6)

It is straightforward to obtain the solution

(7)

where ϕ is defined in (3). Note that when γ = 0 we have θ0 = πB1 and  and when γ = 

1 we have θ1 = −(1 − π)B0 and .

3.4 Testing two hypotheses

Without loss of generality, we will use an α splitting approach in the discussion of 

simultaneously testing two hypotheses. Other testing procedures for control of the overall 

type I error involving multiple hypotheses can be adopted (e.g. (Matsui et al., 2014)) but 

these will not be discussed in this paper. When testing two hypotheses, as in cases 12, 13, 

14, 15 in Table 1, we can find the optimal enrichment proportion πe by minimizing the 

maximum of the required sample sizes for the first hypothesis and the second hypothesis at 

given type I errors (α1, α2) and type II errors (β1, β2). For example, for testing B1 and δ, the 

sample size n(πe; H1a) for the first hypothesis is given as
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(8)

For the second hypothesis, the sample size n(πe; H2a) is

(9)

where var*(B̂
1) = nvar(B̂

1) and var*(δ̂) = nvar(δ̂). The optimal πe, i.e. , such that nmax = 

max(n(πe; H1a), n(πe; H2a)) is minimized can be obtained straightforwardly by numerical 

method.

4. Auxiliary-variable-enriched Biomarker Stratified Design (AEBSD)

The cost of the assessment of the true status of a biomarker M for all patients is often 

prohibitive. However, suppose that we have an auxiliary variable or a biomarker based on 

another assay M̃ that is predictive of M and can be easily and cheaply assessed. One can 

enrich the study with true biomarker positive patients by selecting patients to be randomized 

based on the values of M̃. Only the patients selected for randomization will have their true 

biomarkers M measured. Let π and π̃ denote the prevalence rates of patients with positive 

true biomarker (M = 1) and positive auxiliary biomarker (M̃ = 1) respectively in the 

population. The positive predictive value PPV is the probability that a patient with positive 

auxiliary biomarker (M̃ = 1) also has a positive true biomarker (M = 1). That is, PPV = Pr(M 
= 1|M̃ = 1). Let κ̂1 ∈ [0, 1] and κ̂0 ∈ [0, 1] represent the probability of patients with positive 

and negative auxiliary variable M̃ being selected into the randomized cohort, respectively. 

The enrichment proportion for an auxiliary positive patient is . The 

probability of a randomized patient with a positive true biomarker can be written as

(10)

For statistical testing and inference concerning B or θγ we need a consistent estimate for π 
when π is unknown. We may estimate π by noting π = e11κ̃1π̃ + e01κ̃0(1 − π̃), where e11 = 

P(M = 1|M̃ = 1, R = 1) and e01 = P(M = 1|M̃ = 0, R = 1) and R = 1 indicates that the patient 

is selected into the randomized cohort.

4.1 Testing one hypothesis

In designing an AEBSD trial, our goal is to find the optimal π̃
e that minimizes the number 

of randomized patients for testing a specific hypothesis (or hypotheses) as in Table 1. Here 

we illustrate the idea for testing H0 : δ = 0 against Ha : δ = δ*, where δ is the interaction 
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between treatment and biomarker. To minimize the number of randomize patients we 

minimize var(δ̂), which is

(11)

where the denominator of each term is the expected number of patients in subgroups defined 

by D and M. Thus, for given n, π, π̃, PPV, ηE1, ηC1, ηE0, ηC0, we can find the optimal π̃
e in 

[0, 1] that minimizes var(δ̂). The result is given by

(12)

where  is the local optimal solution whose global optimal solution is the same as 

 in Section 3.2 but adjusted according to π and PPV. When 

. Otherwise  or PPV, 

whichever is closer to .

4.2 Testing two hypotheses

When testing two hypotheses is of interest, as the cases 12, 13, 14, 15 in Table 1, we can 

find the optimal π̃
e by minimizing the maximum of the required sample sizes for the first 

hypothesis and the second hypothesis at given α1, β1, α2, β2. For example, for case 13, the 

sample size n(π̃e; H1a) for the first hypothesis is given as  where 

zα1 and zβ1 is the standard normal distribution percentile for α1/2 and β1. For the second 

hypothesis, the sample size n(π̃
e; H2a) is  where zα2/2 and zβ2 is 

the standard normal distribution percentile for α2/2 and β2. The goal is to find the optimal 

π̃e such that nmax = max(n(πẽ; H1a), n(π̃
e; H2a)) is minimized. The local optimal 

can be determined by π, PPV, , the global optimal solution in Section 4.1 and the 

solution for n(π̃
e; H1a) = n(π̃

e; H2a). Details are given in supplementary materials. The 

optimal π̃
e in this case, , can also be calculated by equation (12) using .

5. Numerical Studies

5.1 EBSD design

In this numerical study, we assume that the prevalence of biomarker positive patients in the 

population is 0.2 and that selected patients will be randomized with equal allocation to 

treatment D = {1,0}. For the sake of illustration, we assume the response of each patient 

follows a logistic regression model logit(Y = 1|D, M) = b0+b1D+b2M+b3TM. We consider 

two types of interaction between treatment and biomarker, quantitative and qualitative 
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(Polley et al., 2013). In the case of quantitative interaction between treatment and biomarker, 

we set b0 = −0.5, b1 = 0.4, b2 = −0.8, b3 = 0.6, as seen in Figure 2a, and the logistic model 

yields the response rates 0.43, 0.21,0.48 and 0.38 for patient groups in E1, C1, E0 and C0, 

respectively. Figure 3 describes the relationship between statistical power for testing specific 

treatment parameters B, B1, B0, δ and θγ and the enrichment proportion πe at the given 

number of randomized patients n = 200, 300, 500, 1000. These plots demonstrate that the 

optimal enrichment proportion πe varies by the specific testing parameter and πe reaches the 

highest power for B1 at 1, B0 at 0, B at 0.19, δ at 0.48 and θγ at 0.68. Note that the BSD 

design corresponds to πe = 0.2 in these plots, demonstrating the EBSD design can achieve 

significant efficiency gain for a given sample size at optimal enrichment proportion .

As seen in Figure 2b, for the case of qualitative interaction between treatment and 

biomarker, we set b0 = −0.5, b1 = −0.8, b2 = −0.1, b3 = 1.5, which yields the response rates 

0.21,0.10, 0.12 and 0.11 for patient groups E1, C1, E0 and C0, respectively. Figure 4 

describes the relationship between the power for the specific treatment parameters B, B1, B0, 

δ and θγ and the enrichment proportion πe at the number of randomized patients n = 200, 

300, 500, 1000. Again, these plots show that the optimal enrichment proportion πe varies by 

the specific testing parameter and πe reaches the highest power for B1 at 1, B0 at 0, B at 

0.21, δ at 0.52 and θγ at 0.71.

To further verify the performance of the proposed treatment parameter estimators and their 

variance estimators under EBSD, simulation was conducted based on 1000 simulations. At a 

given sample size n = 500, Table 2 lists the estimates for B, B1, B0, δ, θγ for EBSD at 

and BSD. Other quantities, including the standard errors based on the proposed variance 

estimators (std.p), the simulated standard error (std.e), and the 95%CI coverage probability 

based on the estimated standard error (coverage), are also provided. It can be seen that the 

proposed estimators yield consistent estimates with negligible bias and variance estimators 

yield standard errors close to the simulated one and a satisfying 95% nominal coverage 

probability. It can also be seen that the EBSD design at  yields much smaller standard 

error than the BSD design, indicating the EBSD design is significantly more efficient that 

the BSD, except for testing the overall treatment effect B, where BSD at π = 0.2 is very 

close to its optimal  for the quantitative interaction and 0.21 for the qualitative 

interaction and understandably the BSD at the setting yields similar performance as the 

EBSD.

Table 3 summarizes the results of designing a EBSD trial to test two treatment parameters 

simultaneously at given powers, 90% for H1 and 80% for H2. The results for EBSD are 

obtained at  with the method described in Section 3.4. The coverage probability for all 

treatment effect estimates achieves their corresponding nominal levels; for B̂
1 the coverage 

probability is close to 99% and for the second treatment effect estimate the coverage 

probability is close to 96%. It can be seen that the EBSD needs significantly less randomized 

patients to achieve requisite powers for testing two hypotheses than BSD in all combinations 

of hypothesis testing. Also, the efficiency gain for testing two hypotheses is generally larger 

than that of testing a single hypothesis.
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5.2 AEBSD design

In this numerical study, we investigate the relationship of patient ratio and cost ratio with 

PPV for testing the interaction δ under AEBSD. Quantitative and qualitative interactions are 

both investigated. For a quantitative interaction, ηE1 = 0.43, ηC1 = 0.21, ηE0 = 0.48 and ηC0 

= 0.38. For a qualitative interaction, ηE1 = 0.53, ηC1 = 0.35, ηE0 = 0.21 and ηC0 = 0.38. We 

assume α = 0.05, β = 0.1 in the calculation. The unit cost is 500 for biomarker assay and the 

average unit cost is 10, 000 for treating and following each patient. Figure 5 shows 

decreasing trends for both patient ratio and cost ratio with an increasing PPV for both 

quantitative and qualitative interactions. Table 4 gives further details on the screening ratio 

nsratio for AEBSD over BSD. Similar results are obtained for testing two treatment 

parameters simultaneously. Details can be found in the supplementary materials.

6. Case Studies

6.1 Herceptin trial with EBSD

The breast cancer chemotherapy Herceptin is a well-known success story of personalized 

medicine. Human epidermal growth factor receptor-2 protein (HER2) is over-expressed in 

approximately 20% of breast cancer patients (Korkaya and Wicha, 2013). Herceptin, a target 

agent on HER2, was shown to be effective in patients with HER2+ metastatic breast cancer 

(Baselga, 2001; Joensuu et al., 2006). Retrospective studies also suggested that HER2− 

patients could also benefit from Herceptin (Paik et al., 2008). For illustration, we assume 

that the overall response rate (ORR), a binary endpoint based on the percentage of patients 

whose cancer shrinks or disappears after treatment, is to be used in designing a first-line 

metastatic breast cancer therapy for Herceptin plus chemotherapy E versus chemotherapy C. 

We assume that these response rates for groups E1 and C1 are ηE1 = 45% and ηC1 = 29% 

respectively in HER2+ patients and that the response rates for groups E0 and C0 is 45% and 

40%, respectively. Our goal is to illustrate how to design a EBSD trial at the optimal 

enrichment proportion πe when the investigators are primarily interested in testing a single 

hypothesis involving a single treatment parameter from (B1, B0, B, δ, θγ) with γ = 0.2. The 

optimal enrichment proportion  is obtained by the method described in Section 3 to 

achieve the maximum efficiency for the specific test for given n. The top panel of Table 5 

shows the required number of randomized patients for EBSD and BSD at two-sided α = 

0.05 and β = 0.1. The ratio of randomized patents nratio and the cost ratio cratio for EBSD 

versus BSD are also provided, where the unit cost for ascertaining true biomarker is 300 and 

the unit cost for treating and following patient is averaged 10, 000 for one year (Schmidt, 

2011). In this case, the cost of screening and IHC testing for HER2 is significantly lower 

than the cost of treatment and patient follow-up.

Table 5 also illustrates the case of designing an EBSD trial when testing two hypotheses. We 

consider the first hypothesis of interest to be the test on treatment effect among HER2+ 

patients B1, which is often the primary goal in a biomarker-driven clinical trial. The second 

hypothesis will be chosen from (B0, B, δ, θγ), testing the treatment effect in biomarker 

negatives, the treatment effect in the overall population, the interaction between treatment 

and biomarker, and the clinical benefit of selecting treatment by biomarker. The response 

rates for the four groups of patients defined by treatment and biomarker are the same for the 
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case of single hypothesis testing. To control the overall type error at the level of two-sided 

0.05, we split the α between the first hypothesis and the second hypothesis. The number of 

randomized patients for testing each hypothesis for given α1 = 0.01, β1 = 0.10, α2 = 0.04 

and β2 = 0.2 are calculated, and the maximum of the two sample sizes is chosen as the size 

of the trial. The optimal enrichment proportion  for the EBSD design is obtained by 

numerical methods to achieve the smallest of the maximum number of randomized patients 

required by testing both hypotheses with respective power greater than 1 − β1 and 1 − β2 for 

the two hypotheses. In the bottom panel of Table 5, the ratio of randomized patents of the 

two designs nratio and the ratio of cost cratio are listed. Pebsd indicates the probability of 

success when testing two hypotheses for EBSD. In designing trials with two primary 

hypotheses, one can obtain the probability of success, i.e. the probability of rejecting either 

null hypothesis under the alterative (Matsui et al., 2014). The probability of success is 

calculated using the joint distribution of two testing statistics  and 

.

6.2 EGFR-inhibitor trial using AEBSD

In this case study, we consider designing a hypothetical AEBSD trial for comparing the 5-

month progression-free-survival (5mPFS) rate of gefitinib (E) versus carboplatin and 

paclitaxel (C) in patients with non-small-cell lung cancer (NSCLC). The example is 

hypothetical, but the 5mPFS for each patient group is based on the results of an actual 

clinical trial (IPASS) (Mok et al., 2009). The mutation of epidermal growth factor receptor 

(EGFR) is thought predictive of the effect of gefitinib in treating non-small cell lung cancer. 

The prevalence of EGFR mutations in approximately 50% in Asia, significantly higher than 

the 10% prevalence in North America (Shi et al., 2015; Kerr, 2013). As a result of the high 

prevalence rate of EGFR mutants, IPASS was successfully conducted in Asia and found that 

gefitinib significantly extended PFS among patients with EGFR mutations, but resulted in 

significantly shorter PFS for patients with EGFR wild types (Mok et al., 2009; Maemondo et 

al., 2010).

We consider a biomarker stratified trial to be conducted in North America with the goal of 

testing two primary hypotheses: H1: the treatment effect among patients with EGFR 

mutations B1 and H2: the interaction between treatment and EGFR mutation δ. We set two-

sided α1 = α2 = 0.025 and β1 = β2 = 0.1. A BSD design with the objectives of testing B1 and 

δ is very inefficient, as it would enroll, treat and follow a large number of patients who are 

EGFR wild-types and therefore would entail a waste of limited resource. For an AEBSD 

design, it is known that EGFR mutations are more commonly observed in patients with 

adenocarcinomas and no prior history of smoking, as well as in females and those of Asian 

descent (Kerr, 2013). A predictive score, the auxiliary variable in this case, can be built 

using these easily and cheaply assessed prognostic factors. We have assumed the prevalence 

rate of “high-score” patients is 15% and the true EGFR mutations is at least 60% among the 

“high-score” patients.
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Mimicking the IPASS trial, we choose the median PFS for groups E1, C1, E0, C0 as 9.82, 

4.71, 2.00 and 5.70 months, respectively, indicating a strong qualitative interaction between 

treatment and biomarker. Under the exponential hazards, we assume the 5mPFS for these 

groups are 0.65, 0.41,0.13 and 0.48, respectively. Under these design parameters, we find the 

optimal selection probability κ̃1 = 1 for auxiliary positive patients and κ̃0 = 0 for the 

auxiliary negative patients. The number of randomized patients for the two designs are 

nAEBSD = 338 and nBSD = 2023 with nratio = 0.167, and the cost ratio cratio = 0.172. In the 

calculation of the trial cost, we assume that the unit cost of testing EGFR mutation is 1,000, 

the average treatment cost and the average follow-up cost are 7, 500 and 2, 500 for each 

patient in the randomized cohort while the unit cost for determining the EGFR predictive 

score is 50. These cost estimates are based on the literature reflecting the experience of the 

United States (Horgan et al., 2011; Sauter and Butnor, 2016).

7. Discussion

In this paper, we propose two new enrichment designs for biomarker stratified clinical trials. 

The key idea of enrichment sampling is to oversample patients who contain more 

information about specific treatment parameters and undersample those who do not. We 

demonstrate that the new designs can significantly improve study efficiency in term of 

increased power and higher estimation precision with a fixed number of randomized patients 

and therefore reduce the cost of conducting trials. We give analytic solutions or numerical 

algorithms for finding the optimal probabilities for selecting patients with positive and 

negative biomarkers into the randomized cohort for the EBSD design and the optimal 

probabilities of selecting patients with positive and negative auxiliary biomarkers for the 

AEBSD design. We also demonstrate how to determine the sample size for EBSD and 

AEBSD designs when testing a single treatment parameter or two treatment parameters 

simultaneously. The numerical studies and the case studies demonstrate the superior 

performance of the new designs over the BSD.

Enrichment sampling strategies have been proposed and successfully used in observational 

studies to test association between disease and risk factors (Morara et al., 2007; Wang and 

Zhou, 2010; Strauss et al., 2010) and to estimate the accuracy of biomarkers in predicting 

disease condition (Wang et al., 2012, 2013). These papers demonstrate that biased sampling 

with enrichment of relevant patient subgroups, those that contain more information on 

estimands, leads to more efficient studies that requires significantly fewer patients and study 

cost. The enrichment strategies can be applied to other biomarker-driven clinical trial 

designs, such as the biomarker strategy design. See Freidlin et al. (2010) for a review. In a 

biomarker strategy design, patients are randomly assigned to a biomarker-guided arm that 

uses the biomarker to determine whether a patient receive the experimental therapy or the 

control therapy or to a biomarker-unguided arm that randomly assign the patients to the 

experimental therapy and control therapy regardless of biomarker status.

In this paper we consider a binary endpoint such as tumor response or survival rate at a 

landmark time. The extension of our discussion to an unequal randomization ratio is 

straightforward. Indeed, the allocation ratio between treatment arms can be optimized for 
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additional efficiency gains to test specific treatments parameters. An enrichment strategy is 

equally applicable to trials involving more than two treatments.

Compared to the BSD design, one limitation of the EBSD and AEBSD designs is that they 

may significantly prolong the time of trial completion, as the latter designs require longer 

time to accrue sufficient number of biomarker positive patients. In this paper, the cost 

introduced by prolonged trial completion time has not been considered. In practice, this 

issue can be addressed by verifying that the EBSD and AEBSD designs under the optimal 

selection on κ̃1 and κ̃0 will lead to an estimated time of trial completion that the 

investigators can accept. If not, the standard BSD design may be used.
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Figure 1. 
Diagram for (a) Biomarker stratified design (BSD), (b) Enriched biomarker stratified design 

(EBSD) and (c) Auxiliary-variable-enriched biomarker stratified design (AEBSD). For BSD 

and EBSD, π is the prevalence of biomarker positives in the population; κ1 and κ0 are the 

selection probability for biomarker positives and biomarker negatives into the randomized 

cohort, respectively. For AEBSD, π̃ is the prevalence of auxiliary positives in the 

population; κ̃1 and κ̃0 are the selection probability for auxiliary positives and auxiliary 

negatives into the randomized cohort, respectively.
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Figure 2. 
Illustration for (a) quantitative interaction with response rates ηE1 = 0.43, ηC1 = 0.21, ηE0 = 

0.48 and ηC0 = 0.38 and (b) qualitative interaction with response rates ηE1 = 0.21, ηC1 = 

0.10, ηE0 = 0.12 and ηC0 = 0.11
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Figure 3. 
The power for testing a specific treatment parameter at different enrichment proportions πe 

for EBSD for quantitative interaction
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Figure 4. 
The power for testing a specific treatment parameter at different enrichment proportions πe 

for EBSD for qualitative interaction
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Figure 5. 
Relationship of patient and cost ratio with PPV for testing the interaction between treatment 

and biomarker δ under AEBSD. (a) Patient ratio with quantitative interaction; (b) Cost ratio 

with quantitative interaction; (c) Patient ratio with qualitative interaction; (d) Cost ratio with 

qualitative interaction.
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Table 1

Tests on different treatment parameters and their combinations

Case Hypothesis Interpretation

1 H0: B1 = 0 vs. Ha: B1 ≠ 0 Test on B1

2 H0: B0 = 0 vs. Ha: B0 ≠ 0 Test on B0

3 H0: B = 0 vs. Ha: B ≠ 0 Test on B

4 H0: δ = 0 vs. Ha: δ ≠ 0 Test on δ

5 H0: θγ = 0 vs. Ha: θγ ≠ 0 Test on θγ

12 H10: B1 = 0 vs. H1a: B1 ≠ 0 Test on B1 and B0

H20: B0 = 0 vs. H2a: B0 ≠ 0

13 H10: B1 = 0 vs. H1a: B1 ≠ 0 Test on B1 and B

H20: B = 0 vs. H2a: B ≠ 0

14 H10: B1 = 0 vs. H1a: B1 ≠ 0 Test on B1 and δ

H20: δ = 0 vs. H2a: δ ≠ 0

15 H10: B1 = 0 vs. H1a: B1 ≠ 0 Test on B1 and θγ

H20: θγ = 0 vs. H2a: θγ ≠ 0
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