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Abstract Angiogenesis or neovascularization is a complex
multi-step physiological process that occurs throughout life
both in normal tissues and in disease. It is tightly regulated by
the balance between pro-angiogenic and anti-angiogenic fac-
tors. The angiogenic switch has been identified as the key step
during tumor progression in which the balance between pro-
angiogenic and anti-angiogenic factors leans toward pro-
angiogenic stimuli promoting the progression of tumors from
dormancy to dysplasia and ultimately malignancy. This event
can be described as either the outcome of a genetic event oc-
curring in cancer cells themselves, or the positive and negative
cross-talk between tumor-associated endothelial cells and other
cellular components of the tumor microenvironment. In recent
years, the mechanisms underlying the angiogenic switch have
been extensively investigated in particular to identify therapeu-
tic targets that can lead to development of effective therapies. In
this review, we will discuss the current findings on the regula-
tory pathways in endothelial cells that are involved in the an-
giogenic switch with an emphasis on the role of anti-angiogenic
protein, thrombospondin-1 (TSP-1) and pro-angiogenic factor,
vascular endothelial growth factor (VEGF).
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Introduction

Angiogenesis is the formation of new capillaries from existing
blood vessels. It is a key process in embryological develop-
ment and the remodeling of adult tissue during wound
healing, formation of the placenta, and mammary gland de-
velopment and involution. Angiogenesis is also a hallmark of
tumor growth and progression (Folkman 1975). It a multistep
event that involves the sprouting, branching, splitting, and
differential growth of vessels from the primary plexus of
existing vessel into a circulation system (Carmeliet 2000).
Angiogenesis is controlled by the interactions between tumor
cells, endothelial cells, stromal fibroblasts, and infiltrating in-
flammatory cells in the tumor microenvironment with extra-
cellular matrix proteins. It also requires a shift in the normal
balance of pro-angiogenic and anti-angiogenic factors
(Carmeliet 2005). The importance of angiogenesis in tumor
progression from growth to metastasis to distant organs was
initially proposed by Judah Folkman (Folkman 1971). His
group demonstrated that isolated solid tumors with continuous
arterial perfusion continued growing, while tumors with no
perfusion grew up to a maximum size of 1–2 mm.
Moreover, the cells within the tumor mass underwent necrosis
and died. On the other hand, the outer cells remained alive, but
there was no tumor growth or neovascularization. Similar to
cells in normal tissues, tumor cells require nutrients to grow
and stroma to support the tissue. However, tumors are very
heterogeneous in the amount of stroma that they have. This
variation has been demonstrated even within the composition
of stroma and tumor cells from one area of tissue to another in
a single tumor. These findings demonstrated the strong corre-
lation between tumor growth and vasculature formation and
prompted Folkman to present the idea that tumor growth was
angiogenesis-dependent, and therefore, inhibition of this
process could be considered therapeutic (Folkman 1971).
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Dormant cancer cells can be localized either in primary tu-
mors or micrometastases in distance organs and in some cases,
are left in the minimal residual disease following treatment.
Under certain conditions, these cells can re-enter the prolifera-
tive stage and result in recurrence of tumors. Tumor dormancy
has long been considered a clinical challenge with lack of a
defined marker and unknown mechanism and has been ob-
served in many cancers including breast, prostate, and melano-
ma (Quail and Joyce 2013; Sosa et al. 2014). One major pro-
posed mechanism leading to tumor dormancy is angiogenic
dormancy (Almog 2010; Evans and Lin 2015; Indraccolo
et al. 2006). Angiogenic dormancy refers to the period when
the factors that inhibit endothelial cell proliferation and vessel
sprouting predominate leading to oxygen and nutrient depriva-
tion (Almog 2010; Naumov et al. 2006; Sosa et al. 2014). As a
result, there is a blockage of tumor growth and cells remain in a
quiescent state until there is an increase in pro-angiogenic fac-
tors as the result of interaction of tumor cells with their micro-
environment as well as the activity of immune cells. This event
initiates endothelial cell proliferation and recurrence of tumors
that, in some cases, cannot be treated. The term angiogenic
switch refers to the time when a tumor switches from a dormant
state to one in which angiogenesis promotes tumor growth. By
extension, it also refers to the change in phenotype that occurs
in the endothelial cell in response to pro-angiogenic signaling
molecules. In this review, we will concentrate on recent find-
ings regarding possible mechanisms for the angiogenic switch
on the cellular and molecular levels.

Molecular regulation of the angiogenic switch

Stimulation of angiogenesis by VEGFA

VEGFA is a member of the VEGF/PLGF family, which in-
cludes VEGFA, VEGFB, VEGFC, VEGFD and placental
growth factor (PLGF). VEGF was first identified in the super-
natant of rodent tumor cells as a vascular permeability factor
(VPF) in 1983 by Senger et al., (Senger et al. 1983). These
authors suggested that VPF is responsible for an increase in
vessel permeability, which is considered a crucial step in an-
giogenesis associated with tumors and wounds (Senger et al.
1983; Senger et al. 1986). Ferrara and coworkers also identi-
fied this protein in the conditioned media from bovine pitui-
tary follicular cells and demonstrated that it is a heparin-bind-
ing, heat and acid stable, cationic protein with a molecular
weight of 45 kDa (Ferrara and Henzel 1989; Leung et al.
1989). Moreover, they suggested that this protein had a mito-
genic effect on vascular endothelial cells and proposed the
name vascular endothelial growth factor or VEGF (Ferrara
and Henzel 1989, Leung et al. 1989).

All VEGF genes have seven exons that are highly con-
served, with the exception of VEGFA, which has eight exons

(Holmes and Zachary 2005). Alternative splicing of VEGFA
between exons six and seven results in six VEGFA isoforms
with 121, 145, 165, 183, 189, and 206 amino acids in human,
and 120, 145, 164, 183, 189, and 206 amino acids in mouse
(Holmes and Zachary 2005; Park et al. 1993). These isoforms
are expressed by a variety of cells including tumor cells, mac-
rophages, platelets, endothelial cells, keratinocytes, and fibro-
blasts. Because of its wide range of expression patterns and
diversity in its isoforms, VEGFA is involved in many physi-
ological functions not limited to wound healing, bone forma-
tion, and neovascularization (blood and lymphatic vessels)
(Eichmann and Simons 2012). The VEGFs play a role in
many diseases such as diabetic retinopathy, arthritis, neurode-
generative, various malignancies, and preeclampsia.
Moreover, VEGFA164/165 is recognized as a potent mediator
of vascular permeability, angiogenesis, lymphangiogenesis,
and tumorigenesis (Dvorak 2002; Hoeben et al. 2004).

The importance of VEGFA in mediating angiogenesis pro-
cesses is underscored by gene knockout studies. The findings
showed that targeting only a single allele of the VEGFA gene
in mice resulted in lethality between days 11 and 12 due to
impaired embryonic vessel development (Ferrara et al. 1996;
Holmes and Zachary 2005). VEGFA exerts its functions on
endothelial cells by binding to two receptor tyrosine kinases,
VEGFR-1 (Flt-1) and VEGFR-2 (KDR/FLK1), with
VEGFR-2 being considered the major receptor for pro-
angiogenic signaling (Ellis and Hicklin 2008; Olsson et al.
2006; Rahimi 2006). Recent studies have shown that
neuropilin-1, a non-tyrosine kinase transmembrane protein,
functions as a co-receptor for VEGFA (Fantin et al. 2014;
Gelfand et al. 2014). Binding of VEGFA to VEGFR-2 results
in conformational changes that promote receptor dimerization
and autophosphorylation of various tyrosine residues in its
cytoplasmic domain. These phosphorylated tyrosines can re-
cruit a variety of adaptor proteins including Shc, Grb2, c-Src,
PLCγ, and TSad, to promote signal transduction pathways
that induce proliferation and migration, nitric oxide release,
survival, and vascular permeability (Kliche and Waltenberger
2001, Nagy et al. 2007, Olsson et al. 2006). All these findings
have increased our knowledge of VEGFA and its signaling
pathways in normal and pathological angiogenesis and pro-
vided promising opportunity for the development of new and
more effective therapeutic approaches for the treatment of
cancer and a variety of other diseases.

Inhibition of angiogenesis by TSP-1

Like most biological processes, angiogenesis is tightly regu-
lated by positive and negative signal transduction pathways.
TSP-1 was the first naturally-occurring protein to be identified
as an endogenous inhibitor of angiogenesis (Good et al. 1990;
Lawler and Detmar 2004; Taraboletti et al. 1990). Tumors
grow more quickly and exhibit increased angiogenesis in
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TSP-1-null mice (Lawler et al. 2001; Rodriguez-Manzaneque
et al. 2001). Consistent with this observation, over-expression
of TSP-1 in transgenic mice reduces the angiogenic response
that occurs during wound healing (Streit et al. 2000). The
TSPs are a group of high molecular weight multi-domain gly-
coproteins consisting of fivemembers (TSP-1, through −4 and
cartilage oligomeric matrix protein or COMP). They can be
divided into two subgroups based on their structure (Adams
and Lawler 2004; Lawler and Lawler 2012; Stenina-
Adognravi 2013; Stenina-Adognravi 2014). All TSPs have a
highly conserved carboxyl-terminal region that consists of a
variable number of EGF-like domains, seven TSP type 3 re-
peats, and a globular C-terminal domain (Fig. 1) (Adams and
Lawler 2004). The amino-terminal domain is found in all
members of TSP family except for COMP and has variable
sequences among the TSPmembers. Other features of the TSP
family are the presence of a von Willebrand Factor type C
(VWC) domain and the three tandem type 1 repeats, designat-
ed 3TSR, that are only present in subgroup A consisting of
TSP-1 and TSP-2 (Carlson et al. 2008). Because of multi-
domain structure, TSPs can bind to multiple membrane recep-
tors, which, in turn, can activate distinct signaling pathways
eventually resulting in different cellular phenotypes and tissue

specific effects (Adams and Lawler 2004; Carlson et al. 2008;
Kosfeld et al. 1991; Mosher 1990; Roberts 1996).

TSP-1 was first detected as a 420 kDa homotrimeric gly-
coprotein released from theα-granules of platelets in response
to stimulation with thrombin (Baenziger et al. 1971; Lawler
et al. 1978). To date, as many as 12 cellular receptors have
been identified that bind to TSP-1 in a cell type-dependent
manner and regulate its function in a variety of physiological
and pathological processes (Adams and Lawler 2004;
Kazerounian et al. 2008; Lawler and Lawler 2012; Lopez-
Dee et al. 2012; Roberts et al. 2012; Sweetwyne and
Murphy-Ullrich 2012). However, the majority of attention
has been toward the role of TSP-1 in mediating anti-
angiogenic events. This function is mainly meditated through
the TSRs, which bind to the CLESH domain of CD36 and to
β1 integrins. The importance of the anti-angiogenic activity of
the TSRs is underscored by the fact that other proteins that
contain TSRs also have anti-angiogenic activity (Gaustad
et al. 2016). Engagement of α5β1 integrin by 3TSR inhibits
endothelial cell migration in a PI3K-dependent manner (Short
et al. 2005) (Fig. 2). The carboxyl-terminal globular domain
of TSP-1 interacts with CD47 (Roberts 1996; Roberts et al.
2012). Upon binding to some of these receptors on the surface

SPWSSCSVTCGDGVITRIR

3TSR:
type 2 type 3

Protein and glycosaminoglycan bindingTGF -activation

CD36 and HIV gp120 binding

KRFKQDGGWSHWSPWSSCSVTCGDGVITRIRLCNSPSPQMNGKPCEGEARETKACKKDACPI

KRFKQDGGWSHWSPWSSC GVITRIR

Inhibits FGF-2-induced 
angiogenesis in the CAM assay

Inhibits both VEGF and FGF-2-induced 
angiogenesis in the CAM assay

Inhibits endothelial cell migration 
toward VEGF and FGF-2

CD47 binding peptide: 
RFYVVMWK

Fig. 1 The structure of TSP-1. The various domains of TSP-1 are shown
and the sequence of the second TSR is written out. The sequence of the
peptides that have been shown to inhibit angiogenesis in various models
are listed below the sequence of the TSR. The fact that non-overlapping

sequences are active suggests that the protein folds to bring these sites into
proximity. A schematic diagram of the structure of the second TSR is
shown at the right
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of endothelial cells, TSP-1 promotes apoptosis and inhibits
nitric oxide signaling (Febbraio et al. 2001; Febbraio and
Silverstein 2007; Ren et al. 2009; Roberts et al. 2012;
Silverstein and Febbraio 2009). TSP-1 also suppresses angio-
genesis by (1) inhibiting the activation of MMP9 and thus the
subsequent release of VEGFA from the extracellular matrix,
and (2) binding directly to VEGFA and facilitating its clear-
ance from the extracellular space (Greenaway et al. 2007;
Gupta et al. 1999; Rodriguez-Manzaneque et al. 2001).
Therefore, the fact that TSP-1 antagonizes the pro-
angiogenic signals elicited by VEGFA and initiates anti-
angiogenic signals makes it a favorable target for developing
novel therapeutic strategies for a variety of diseases including
cancer. These strategies include direct delivery of TSP-1 mi-
metics, cell-based delivery of TSP-1 or systemic up-regulation
of TSP-1 (Lawler and Lawler 2012). Since TSP-2 is similar to
TSP-1, some groups have focused on developing portions of
TSP-2 to inhibit angiogenesis (Koch et al. 2011).

Since TSP-1 is a large multifunctional protein, several
groups have used a reductionist approach with synthetic pep-
tides to identify active sites within the molecule that are highly
specific and more readily synthesized (Fig. 1). Active peptides
for engagement of CD36 have been identified in the TSRs
(Dawson et al. 1999; Iruela-Arispe et al. 1999). Abbott
Laboratories took a derivative of the GVITRIR peptide, desig-
nated ABT510, to the clinic for the treatment of cancer
(Westphal 2004). Whereas this peptide was very well tolerated
in Phase I trials, it did not have sufficient activity as a single
agent in Phase II trials to warrant further development
(Ebbinghaus et al. 2007). The TSRs fold into a three-stranded
unique protein fold in a way that indicates that multiple se-
quences may be involved in CD36 binding (Fig. 1) (Tan et al.
2002). The tryptophan residues (W420, W423, and W426)
from the first strand form cation-π bonds with arginines
(R440 and R442) on the second strand. The structure is further
stabilized by interchain hydrogen bonds and three disulfide
bonds. As a result, it may be very difficult to capture the full-
anti-angiogenic activity of the 3TSRs with a short peptide.

Therefore, other groups have used a recombinant version of
the complete 3TSR sequence in in vitro experiments and pre-
clinical mouse models of cancer (Zhang et al. 2005a, b).

The TSRs of TSP-1 also bind to CD148, a transmembrane
protein tyrosine phosphatase that is expressed in endothelial
cells (Takahashi et al. 2016). Peptides based on the TSR se-
quence increase the activity of CD148 toward two of its sub-
strates, EGFR and Erk1/2. These peptides inhibit endothelial
cell proliferation and angiogenesis.

TSP-1 also inhibits angiogenesis through the suppression of
cell cycle progression through a CD36-independent mecha-
nism (Oganesian et al. 2008; Yamauchi et al. 2007). This effect
is mediated by very low density lipoprotein receptor, Akt and
MAPK in small vessel (Oganesian et al. 2008). By contrast,
p21 and p53 have been implicated as mediators of this effect in
large vessel endothelial cells (Yamauchi et al. 2007).

TSP-1 has also been reported to inhibit angiogenesis that is
induced by basic fibroblast growth factor (FGF-2) (Iruela-
Arispe et al. 1999; Margosio et al. 2008). This effect appears
to be mediated by two portions of the protein. Iruela-Arispe
et al. (1999) found that peptides that include sequences from
the TSRs inhibit angiogenesis in the chorioallantoic membrane
(CAM) assay. By contrast, Margosio et al. (2008) found that
sequences in the type 3 repeats bind FGF-2 in the presence of
calcium and inhibit its ability to promote endothelial cell
proliferation. Based on these data, Colombo et al. (2010) iden-
tified a non-peptidic small molecule called sm27 that mimics
the effect of TSP-1 on FGF-2. The sm27 molecule forms a
ternary complex with FGF-2 and its receptor (FGFR1), and
heparin sulfate proteoglycans to inhibit the action of down-
stream signal transduction pathways (Pagano et al. 2012).

Not all of the domains of TSP-1 have been reported to
inhibit angiogenesis. The N-terminal heparin-binding domain
reportedly stimulates endothelial tube formation and survival
(Ferrari do Outeiro-Bernstein et al. 2002). Whereas, the mo-
lecular basis for this effect remains to be determined, the pro-
teoglycan syndican-4 appears to be involved (Ferrari do
Outeiro-Bernstein et al. 2002). Since intact TSP-1 inhibits
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Fig. 2 Schematic representation
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signaling pathways involved in
response to TSP-1 and VEGFA
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angiogenesis, the pro-angiogenic activity of the N-terminal
domain is likely over-shadowed by the anti-angiogenic activ-
ity of other domains in the intact protein.

Integration of pro- and anti-angiogenic signaling

The behavior of endothelial cells is determined by the net
input of concurrent signals from pro- and anti-angiogenicmol-
ecules. Endothelial cells are quiescent in healthy adult tissue
where the presence of basal levels of TSP-1 that are present in
the vessel wall probably serve to keep endothelial cells from
initiating sprouting and capillary tube formation. Several stud-
ies have shown that TSP-1 activates apoptosis of endothelial
cells through a pathway that involves CD36-mediated activa-
tion of the Src family kinase, Fyn (Fig. 2) (Jimenez et al. 2000;
Ren et al. 2009). In the absence of TSP-1, Src is preferentially
associated with CD36, but in the presence of TSP-1, Fyn is
recruited to CD36 (Sun et al. 2009). Activation of Fyn in
endothelial cells leads to phosphorylation of Jun N-terminal
kinase (JNK), and up-regulation of FasL and death receptors
(DR4 and DR5), which ultimately leads to activation of both
caspase-8- and caspase-9-dependent cleavage of caspase-3
(Jimenez et al. 2000; Volpert et al. 2002; Ren et al. 2009).

Interestingly, CD36, β1 integrins and VEGFR-2 form a
complex in the plane of the endothelial cell plasma membrane
(Kazerounian et al. 2011). The formation of this complex is
dependent upon the presence of TSP-1 with markedly dimin-
ished association of VEGFR-2 with CD36 seen in TSP-1-null
mice (Kazerounian et al. 2011). These complexes are probably
included in CD36 nanoclusters that include multiple copies of
CD36 and Fyn (Githaka et al. 2016). The presence of TSP-1
reportedly increases the size of these nanoclusters (Githaka
et al. 2016). Primo and colleagues (Primo et al. 2005) reported
that expression of CD36 in human umbilical vein endothelial
cells (HUVECs), which don’t normally express CD36, medi-
ates TSP-1-induced suppression of VEGFR-2 phosphoryla-
tion in response to VEGF. This activity of TSP-1 is lost when
C464 of CD36 is mutated to serine. This mutation abolishes

the ability of CD36 to associate with the β1 integrin subunit
(Primo et al. 2005). These results showed for the first time that
TSP-1 not only activated anti-angiogenic signal transduction,
but also antagonized pro-angiogenic signaling induced by
VEGF. The decreased phosphorylation of VEGFR-2 corre-
lates with increased association of the phosphatase SHP-1
with the VEGFR-2 protein complex (Chu et al. 2013). The
decrease in VEGFR-2 phosphorylation in turn results in a
decrease in Akt phosphorylation, which promotes the activity
of caspase-8 through modultion of cFLIP (Fig. 1) (Ren et al.
2009). Taken together, the data indicate that cross-talk be-
tween pro- and anti-angiogenic signaling occurs not only in
a membrane protein complex that includes CD36, VEGFR-2
and β1 integrins, but also in the downstream signaling path-
ways of these receptor complexes. The changes in the com-
position of these protein complexes over time regulates the
initial steps in angiogenesis. In the resting state, when VEGF
is not present, basal levels of TSP-1 inhibit angiogenesis
(Fig. 3). Note that we do not know what percentages of
CD36 and VEGFR-2 are associated with each other, however,
in the absence of VEGFA, we expect the VEGFR-2 signaling
pathway to be silent. Expression of VEGFA leads to a very
strong positive signal for induction of angiogenesis that shifts
the angiogenic signaling balance to the Bon^ state. This effect
can be seen in normal tissue such as the mammary gland or the
hair follicle of the mouse where VEGFA levels initially in-
crease to induce angiogenesis. The basal levels of TSP-1 ap-
pear to promote the initial response to VEGF by recruiting
spleen tyrosine kinase (Syk) to the receptor complex
(Kazerounian et al. 2011). We have found that Syk, which is
a target of Src family kinases, is capable of phosphorylating
VEGFR-2 on tyrosine 1175. This phosphorylation event is
critical to VEGFR-2 function in that mutation of tyrosine
1175 results in an embryonic lethal phenotype (Sakurai et al.
2005). Over time, the VEGFA levels decrease and TSP-1
levels increase in normal adult tissue (Yano et al. 2003). The
increase in TSP-1 levels leads to an increased activation of the
CD36-mediated inhibitory pathway and recruitment of SHP-1
to VEGFR-2. These changes return the angiogenic state to the
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CD36:VEGFR-2
Src:Syk
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Fig. 3 Temporal regulation of the
pathways that are regulated by
VEGFA and TSP-1
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Boff^ position. Consistent with this model, angiogenic vessels
are slow to regress in the hair follicles of TSP-1-null mice as
compared to their wild-type counterparts (Yano et al. 2003).
Similarly, TSP-1 levels increase during the later stages of an-
giogenesis induced by histamine and serotonin to promote
vessel regression (Qin et al. 2013). The process of normal
termination of angiogenesis is disrupted in cancer because
the levels of VEGF remain high.

VEGF treatment of endothelial cells results in activation of
eNOS and the production of nitric oxide, which promotes an-
giogenesis (Simons et al. 2016). The carboxyl-terminal domain
of TSP-1 binds to CD47 and inhibits two downstream targets
on nitric oxide, soluble guanylate cyclase and cGMP-
dependent protein kinase (Kaur and Roberts 2011; Roberts
et al. 2012). In contrast to its effect on CD36 and VEGFR-2
where TSP-1 promotes association of the two proteins, TSP-1
stimulates the dissociation of CD47 fromVEGFR-2 (Kaur et al.
2010). Thus, TSP-1 decreases the association of VEGFR-2
with CD47 and increases its association with CD36. Whether
or not the removal of CD47 affects the internalization and/or
signaling activity of VEGFR-2 remains to be determined.

Development of a recombinant version of the TSRs
as a therapeutic

Since angiogenesis is regulated by pro- and anti-angiogenic
signals, one would predict that it is possible to inhibit angio-
genesis by antagonizing the pro-angiogenic side of the bal-
ance or by promoting that inhibitory side. The vast majority of
drug development to date has focused on antagonizing the
pro-angiogenic pathway with antibodies and small molecules
that block the VEGFA/VEGFR-2 pathway. However, it is also
possible to amplify the anti-angiogenic side of the balance.
The recombinant protein 3TSR is a potent inhibitor of skin,
colon, and pancreatic cancer (Zhang and Lawler 2007). Its
activity is comparable to that of gemcitabine, a first line ther-
apy for pancreatic cancer (Zhang et al. 2005a, b). The effect of
3TSR on these cancers is mediated by inhibition of angiogen-
esis with no direct effects on the tumor cells. By contrast,
3TSR directly inhibits the growth of ovarian cancer cells and
this effect is mediated, at least in part, by CD36, which is
expressed on ovarian cancer cells (Russell et al. 2015; Wang
et al. 2016). Treatment of ovarian tumor-bearing mice with
3TSR markedly reduces the size of the primary tumor, the
number of metastases and the quantity of ascites production.
In addition, the 3TSR-treated mice display a significant in-
crease in survival and vascular normalization (Russell et al.
2015). Much of the tumor vasculature is tortuous and chaotic,
with little pericyte coverage and poor perfusion (De Bock
et al. 2011). Anti-angiogenic therapy specifically targets these
vessels leading to a more normal appearance and function, a
process referred to as “vascular normalization” (Carmeliet and

Jain 2011). An initial increase in perfusion is thus observed
when anti-angiogenic therapy is initiated. 3TSR induces vas-
cular normalization in an ovarian cancer model and conse-
quently leads to increased delivery of chemotherapeutics
(Russell et al. 2015). The combination of 3TSR with chemo-
therapy results in further decreases in tumor size and a marked
increase in survival as compared to either monotherapy. The
increase in survival seen with 3TSR as a single agent is greater
than that seen with chemotherapy alone (Russell et al. 2015).
Thus, 3TSR is a particularly effective inhibitor of ovarian
cancer because it is able to concurrently target endothelial
cells and ovarian cancer cells through CD36, which is
expressed by both cell types. An up-regulation of SHP-1 re-
cruitment to CD36 is also seen in both cell types.

Chemotherapeutics can be delivered by the traditional max-
imum tolerated dose regime or by metronomic dosing, which is
more frequent, continuous, treatments with low doses.
Metronomic chemotherapy reportedly inhibits angiogenesis
by increasing Fas expression on endothelial cells and increasing
circulating levels of TSP-1 (Bocci et al. 2003; Quesada et al.
2005). In addition, metronomic chemotherapy decreases
VEGFA secretion and depletes regulatory T cells (Mpekris
et al. 2017). The combination of 3TSR with metronomic che-
motherapy is more effective in a murine model of ovarian can-
cer than the combination of 3TSRwith chemotherapy delivered
as a maximum tolerated dose (Russell et al. 2015).

Conclusions

Angiogenesis is a carefully-regulated process that relies on the
integration of positive and negative signals at the plasma
membrane of endothelial cells. The anti-angiogenic protein
TSP-1 appears to have evolved with the ability to antagonize
the pro-angiogenic function of VEGFA in a number of ways,
including (1) inhibition of mobilization from the extracellular
matrix, (2) increased clearance from the extracellular space,
and (3) suppression of VEGFR-2 phosphorylation. Thus,
TSP-1 and 3TSR may be uniquely well-suited to inhibit
VEGF-induced angiogenesis.

The biochemical data indicate that the membrane proteins
that function as receptors are organized into multiprotein com-
plexes that facilitate integration of signal transduction. TSP-1
affects the size and composition of these complexes. The mo-
lecular interactions between TSP-1, CD36, Fyn, β1 integrins,
CD47 and VEGFR-2 determine the function and temporal reg-
ulation of these complexes, and integrate pro-and anti-angiogen-
ic signal transduction to determine endothelial cell behavior. A
complete understanding of the biochemistry of theses protein-
protein interactions will reveal novel therapeutic opportunities.

Strategies for regulating angiogenesis are showing promise
in the clinic for treatment of various diseases including age-
related macular degeneration and cancer. In addition, 3TSR
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can prevent the formation of cerebral cavernous malformations
in the brain (Lopez-Ramirez et al. 2017). Anti-angiogenic ther-
apy targets an essential step in tumor progression and can sig-
nificantly improve the delivery of other anti-cancer modalities
such as chemotherapy and immunotherapy.
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