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Abstract
CD99 is a cell surface protein with unique features and only partly defined mechanisms of action. This molecule is involved in
crucial biological processes, including cell adhesion, migration, death, differentiation and diapedesis, and it influences processes
associated with inflammation, immune responses and cancer. CD99 is frequently overexpressed in many types of tumors,
particularly pediatric tumors including Ewing sarcoma and specific subtypes of leukemia. Engagement of CD99 induces the
death of malignant cells through non-conventional mechanisms. In Ewing sarcoma, triggering of CD99 by specific monoclonal
antibodies activates hyperstimulation of micropinocytosis and leads to cancer cells killing through a caspase-independent, non-
apoptotic pathway resembling methuosis. This process is characterized by extreme accumulation of vacuoles in the cytoplasmic
space, which compromises cell viability, requires the activation of RAS-Rac1 downstream signaling and appears to be rather
specific for tumor cells. In addition, anti-CD99 monoclonal antibodies exhibit antitumor activities in xenografts in the absence of
immune effector cells or complement proteins. Overall, these data establish CD99 as a new opportunity to treat patients with high
expression of CD99, particularly those that are resistant to canonical apoptosis-inducing agents.
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Introduction

CD99 is a transmembrane molecule that is encoded by the
pseudoautosomal gene MIC2 (Goodfellow et al. 1988). This
molecule is highly O-glycosylated and together with Xga and
CD99 antigen-like 2 (CD99L2) constitutes a family of mole-
cules that show no homology to any other known family (Ellis
et al. 1994a; Suh et al. 2003; Tippett and Ellis 1998).

CD99 is broadly expressed in humans and primates.
Although ubiquitously expressed in almost all human cell
types at low levels, CD99 displays strong expression in a
particular subtypes of cells (see below for details) and it is
involved in essential functions including apoptosis (Bernard
et al. 1997; Cerisano et al. 2004; Husak et al. 2010; Jung et al.
2003; Pettersen et al. 2001; Sohn et al. 1998), adhesion

(Bernard et al. 1995, 2000; Cerisano et al. 2004; Hahn et al.
1997; Kasinrerk et al. 2000), differentiation (Huang et al.
2012; Rocchi et al. 2010; Sciandra et al. 2014) and protein
trafficking (Bremond et al. 2009; Choi et al. 1998; Sohn et al.
2001; Yoon et al. 2003). CD99 expression is indeed essential
for the regulation of the transendothelial migration (TEM) of
various immune cells including leukocytes (Watson et al.
2015), monocytes (Schenkel et al. 2002), neutrophils (Lou
et al. 2007), and CD34+ cells (Imbert et al. 2006).

The regulatory role of CD99 have been implicated in path-
ological conditions. High CD99 expression has been observed
in Ewing sarcoma (EWS) (Ambros et al. 1991; Llombart-
Bosch et al. 2009), lymphoblastic lymphoma/leukemia
(Dworzak et al. 2004), myeloid malignancies (Chung et al.
2017) and malignant gliomas (Seol et al. 2012; Urias et al.
2014) and sporadically in synovial sarcoma (Fisher 1998),
mesenchymal chondrosarcoma (Brown and Boyle 2003),
rhabdomyosarcoma (Ramani et al. 1993), thymic tumors,
hemangiopericytoma (Rajaram et al. 2004), gastrointestinal
and pulmonary neuroendocrine tumors (Goto et al. 2004),
sex-cord stromal tumors (Baker et al. 1999) and a small per-
centage of breast carcinomas (Milanezi et al. 2001). However,
there is an emerging group of neoplasms, including pancreatic
endocrine neoplasms, gastric adenocarcinoma (Jung et al.
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2002; Maitra et al. 2003) and osteosarcoma (OS) (Manara
et al. 2006), in which CD99 expression is diffuse in benign
diseases and absent in the malignant counterparts.

CD99 has been reported to have a marked effect on the
migration, invasion and metastasis of tumor cells through
multiple and still controversial mechanisms of action (see be-
low for details), thereby emerging as a novel therapeutic tar-
get. CD99 had promising preclinical effectiveness in xeno-
graft models, and thus paves the way for further development
of antibodies to be used in clinical settings. Of note, CD99
engagement increases natural killer (NK) cell-mediated tumor
lysis by inducing heat shock protein 70 (HSP70) expression
(Husak and Dworzak 2012) and induces tumor cell death
through non-conventional mechanisms, such as methuosis
(Manara et al. 2016) or the induction of oncogenic stress
(Chung et al. 2017; Husak and Dworzak 2017), as described
for a number of oncogenes such as RAS (Serrano et al. 1997),
c-MYC (Evan et al. 1992) and BCR-ABL (Dengler et al. 2011).

Thus, CD99 can be used as a robust marker for several
tumors and a promising therapeutic target in cancer, particu-
larly in tumors arising from the transformation of
stem/precursors cells. Recently, CD99 was also shown as a
unique marker of the epidermis, being strongly expressed in
the basal/precursor cells of the epidermis and in hair follicles
(Choi et al. 2016). Additionally, it was shown to participate in
T cell recruitment into inflamed skin (Bixel et al. 2004), there-
fore appearing as a novel potential target for the treatment of
dermatologic lesions.

Despite increasing evidence that CD99 has important func-
tions in several aspects of cell biology, this molecule has been
largely ignored by the scientific community, very likely be-
cause its functions have been confined to very specific areas of
interest for many years. A number of unresolved issues remain
to be clarified, particularly in terms of the mechanisms of
action of CD99. This review discusses recent mechanistic
studies that have had a major influence in the understanding
of the role of CD99 in various aspects of physiology, cancer
biology and therapeutics. NoCD99 counterpart has been iden-
tified with certainty in mice considering the distant homolo-
gies of CD99-like molecules described in both humans and
mice (Bixel et al. 2004). Thus, this review refers mostly to
data on human CD99.

Key Points

& Together with Xga and CD99L2, CD99 constitutes a fam-
ily of molecules that show no homology to any other
known family.

& CD99 has two isoforms, a long formwith 185 amino acids
(known as CD99wt, CD99 type I, or CD99LF) and a short
formwith 161 amino acids (known as CD99sh, CD99 type

II, or CD99SF) generated by alternative splicing of the
cytoplasmic region.

& CD99 acts through homophilic interactions and enables
homo- or heterotypic cell aggregation.

& CD99 can mediate diverse cellular processes such as ad-
hesion, transendothelial migration, differentiation, and
cell death, thereby affecting immune functions, inflamma-
tion and cancer metastasis.

& CD99 can act as an oncogene or as an oncosuppressor
depending on the cellular context.

CD99 gene/protein structure

CD99 is encoded by the pseudoautosomal geneMIC2, which
is located in the pseudoautosomal region (PAR) of both the X
(Xp22.33-Xpter) and Y (Yp11-Ypter) chromosomes in
humans (Aubrit et al. 1989; Banting et al. 1989; Ellis et al.
1994a, b; Fouchet et al. 2000; Goodfellow et al. 1986). The
MIC2 gene, localized to the proximal PAR1, is composed of
10 exons and is 50 kb in length.

To date, three CD99-related human genes which are the
result of sequential duplications of an ancestral PAR during
evolution have been described: a functional gene PBDX
(pseudoautosomal boundary divided on the X chromosome)
encoding the Xga antigen (Ellis et al. 1994a), the pseudogene
CD99L1 (CD99 antigen-like 1, also known as MIC2-related
sequence (MIC2R)) and CD99L2 (CD99 antigen-like 2) (Suh
et al. 2003). In particular, PBDX codes for the Xga blood
group antigen and shares a 48% homology with CD99 (Ellis
et al. 1994b), whileMIC2R (MIC2-related) is related to exons
1, 4, and 5 of MIC2. Transcripts from the MIC2R locus have
been detected in all human tissues but none of them contains a
functional open reading frame, making the role ofMIC2R still
unknown (Smith and Goodfellow 1994).

The CD99 gene encodes two distinct proteins as result of
alternative splicing process of the cytoplasmic region: a wild-
type full-length CD99 or type I (CD99wt) with 185
aminoacids (corresponding to a molecular weight of 32 kDa)
and a truncated form or CD99 type II (CD99sh) with 161
aminoacids (corresponding to a molecular weight of 28 kDa)
(Hahn et al. 1997). The CD99sh transcript contains an 18-bp
insertion at the boundary of exons 8 and 9 on the gene, which
introduces an in-frame stop codon that generates truncated
polypeptide (Hahn et al. 1997) (Fig. 1).

There are no predicted N-linked glycosylation sites, nor is
there biochemical evidence for N-linked glycosylation of
CD99 (Gelin et al. 1989); however, CD99 is extensively O-
glycosylated, with carbohydrate chains accounting for 14 kDa
(44%) of its apparent molecular size (Aubrit et al. 1989).

The CD99 protein is rich in proline residues and displays
an organization typical of an integral membrane protein
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comprising an extracellular domain of 100 aminoacids, a
transmembrane domain and a short intracellular C-terminal
domain of 38 aminoacids. In addition, the cytoplasmic regions
of the two CD99 isoforms contain shared motifs such as a
zone rich in positively charged amino acids and a cysteine
residue. An SHR motif for PKC and a leucine repeat are pres-
ent only in the long form of CD99 (Mahiddine et al. 2016). It
has been demonstrated that the cytoplasmic domain of the
long form contains two putative phosphorylation sites, a ser-
ine at amino acid residue 168 (S168) and a threonine at amino
acid residue 181 (T181). These potential phosphorylation sites
may be important for intracellular signaling events and/or ex-
tracellular molecular interactions. In fact, the S168 of the long
form of CD99 has been reported to be a site for PKC phos-
phorylation and it is required for the onco-suppressive func-
tion of CD99 in OS cells (Scotlandi et al. 2007).

The two isoforms of CD99 can naturally dimerize on the
cell surfaces. The dimerization process begins in the Golgi
apparatus and then the dimers are exported to the cell surfaces.
At that point, CD99 acts as a receptor that becomes activated
upon stimulation (Lee et al. 2008). The CD99 isoforms are
expressed in a cell type-specific manner and dictate distinct
CD99 functions (Alberti et al. 2002; Byun et al. 2006;
Scotlandi et al. 2007). Specifically, the expression of the long
form in a CD99-deficient Jurkat T cell line is sufficient to
promote CD99-induced cell adhesion, whereas the co-
expression of the two isoforms is required to trigger T cell
death (Bernard et al. 1997). On B cells, the short form of
CD99 inhibits homotypic adhesion, while the activation of
the long form promotes cell–cell adhesion, indicating that
the CD99 gene produces two distinct proteins with opposite

functions regarding adhesion in lymphocytes (Hahn et al.
1997). In tumors, the two forms exert opposite effects on cell
migration and metastasis (Byun et al. 2006; Scotlandi et al.
2007).

To determine the structural basis of CD99 functions, Kim
and co-workers carried out structural studies on the
cytoplamic domain of the long form of CD99 using circular
dichroism and multi-dimensional NMR spectroscopy (Kim
et al. 2004). The results revealed that the protein was unfolded
and that it has a hairpin structure anchored by two flexible
loops likely due to the heavy O-glycosylation of the CD99
protein. Consequently, human CD99 does not have any regu-
lar secondary structures (Kim et al. 2004).

Additionally, the search for CD99 homologs has been suc-
cessful only in primates, indicating a high level of sequence
divergence of this gene during evolution (Smith et al. 1993).
Moreover, Park SH and collaborators reported the identifica-
tion and characterization of a novel murine CD99 gene,
known as D4, which was identified, as a mouse ortholog of
the human CD99 according to phylogenetic analysis (Park
et al. 2005). D4 is located in the C7-D1 region of chromosome
4. Genomic organization analysis revealed that the gene con-
tains ten putative exons and the cDNA consists of nine exons
that encoder a protein with 46% homology with human CD99
(Park et al. 2005). Rodent CD99 has a short cytoplasmic do-
main, resembling CD99 type II in humans. In contrast, puta-
tive bovine, porcine and chicken (Gallus gallus) CD99 genes
are more similar to CD99 type I in humans, as is the cytoplas-
mic region of Xenopus CD99.

Suh YH and co-authors described the presence of a CD99
paralogous mouse gene, CD99L2 and its orthologs in human,

Fig. 1 a Representation of the structural characteristic of the MIC2 gene
(DNA) and the two transcribed isoforms: CD99 type I and type II
(mRNA). The splice site is indicated. b Amino acid sequences of CD99

isoform type I and isoform type II. The sequences of the two isoforms are
aligned for comparison
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rat, and zebrafish (Suh et al. 2003). The mouse CD99L2 gene
shares 45% homology with human CD99 gene and 81% ho-
mology with the human CD99L2 gene. Rat CD99L2 shows
77% overall amino acid homology with mouse CD99L2 and
68% homology with human CD99L2, indicative of
orthologous relationships among species. The deduced amino
acid sequence of zebrafish CD99L2 shows 44%, 43%, 51%
overall homology with mouse, rat, human CD99L2 respec-
tively. Therefore, the CD99L2 genes in these species are all
orthologous and evolutionarily conserved (Suh et al. 2003).

Regarding functions, only a partial overlap has been ob-
served in roles and mechanisms between human CD99 and
D4 or CD99L2. D4 has been identified as a ligand of the
paired Ig-like type 2 receptor (PILR) (Shiratori et al. 2004).
The cross-linking of D4with PILR-Ig induces the apoptosis of
thymocytes in the absence of T cell receptor signals constitut-
ing an active death signal, that removes thymocytes, predom-
inantly at the double positive stage (Park et al. 2010) similar to
some functions of human CD99 (see below).

CD99L2 is mainly expressed on leukocytes, endothelial
cells and neutrophils (Bixel et al. 2007; Schenkel et al. 2007;
Suh et al. 2003). Because of the high degree of conservation of
five putative functional regions between mouse CD99L2 and
human CD99, these two molecules may have similar func-
tions (Liu et al. 2013). A majority of the studies on mouse
CD99L2 have primarily described its roles in inflammation.
Mouse CD99L2 is involved in the extravasation of neutro-
phils, monocytes, and T cells in mice under inflammatory
conditions (Bixel et al. 2007, 2010; Schenkel et al. 2007;
Seelige et al. 2013). In addition, the expression of CD99L2
on both leukocytes and endothelial cells suggest a possible
role for this molecole in leukocyte–endothelial cell interactions
during leukocyte extravasation, espacially during diapedesis
(Schenkel et al. 2007).

CD99 functions in normal cells

Although expressed in virtually any human cell types at low
levels, CD99 is expressed at particularly high levels in specific
cell types, including cortical thymocytes, pancreatic islet cells,
ovarian granulosa cells, Sertoli cells of testes, endothelial
cells, ependymal cells, bone marrow CD34+ cells, stromal
lymphocytes and a broad range of hematopoietic cells, with
the highest expression in the most immature lymphocytes and
granulocytes, such as immature thymic T-lineage cells and
tonsillar lymphoid progenitor cells (Banting et al. 1989;
Dworzak et al. 1994; Edlund et al. 2012; Gelin et al. 1989;
Levy et al. 1979; Tippett and Ellis 1998). Strong expression of
CD99 has also been reported in immature basal keratinocytes
(Choi et al. 2016).

Figure 2 shows examples of high and low expression of
CD99 in different human tissues and cells.

CD99 was originally described as a molecule involved
in the rosette formation of T cells with erythrocytes, in-
dicative of its role as an adhesion molecule (Bernard
et al. 1988).

Currently, CD99 is well known to play key roles in sev-
eral biological processes such as: cell adhesion (Bernard
et al. 1995, 2000; Cerisano et al. 2004; Hahn et al. 1997;
Kasinrerk et al. 2000), apoptosis (Bernard et al. 1997;
Cerisano et al. 2004; Husak et al. 2010; Jung et al. 2003;
Pettersen et al. 2001; Sohn et al. 1998), T cells differentia-
tion (Bernard et al. 1995, 1997), lymphocytes diapedesis to
inflamed vascular endothelium (Dufour et al. 2008; Watson
et al. 2015), and regulation of intracellular membrane pro-
tein trafficking (Bremond et al. 2009; Choi et al. 1998;
Sohn et al. 2001; Yoon et al. 2003). Thus CD99 is impor-
tant in peripheral immune responses and in processes in-
cluding hematopoietic and neural precursor cell differenti-
ation (Park et al. 1999).

Although the two CD99 isoforms have been reported to
dictate distinct functional events (Alberti et al. 2002; Byun
et al. 2006; Wingett et al. 1999) very few studies demonstrate
how the two isoforms are expressed in appropriate cellular
contexts and how they affect CD99-mediated intracellular
pathways. For example, on T cells, CD99 can be expressed
on the cell surface either as the long form (type I) or as het-
erodimers composed of the long form and the short form (type
II) (Hahn et al. 1997). The heterodimeric variants are usually
found on double-positive thymocytes and some immature T
cell lines. However, single-positive thymocytes and peripheral
T cells express the long form of CD99 only (Alberti et al.
2002).

Experiments involving CD99 transfection into CD99-
deficient Jurkat T cells have demonstrated that both isoforms
are required for the induction of apoptosis, whereas the pres-
ence of either isoform is sufficient to modulate cell adhesion;
however the activation of the actin cytoskeleton requires the
expression of the long isoform only (Alberti et al. 2002).
When co-expressed, the two isoforms form covalently bound
heterodimers, that localize within glycosphingolipid rafts and
induce sphingomyelin degradation. Cholesterol depletion ex-
periments have shown that this localization is required for the
induction of apoptosis (Alberti et al. 2002). On B cells, the
short form of CD99, inhibits homotypic adhesion, while the
long form promotes cell-cell adhesion. The opposite effects of
CD99 isoforms on homotypic B cell aggregation were shown
result from their opposing functions in the regulation of the
expression of the cell adhesion molecule LFA-1 (Hahn et al.
1997).

These data support the need of more extensive evalua-
tion of the expression of CD99 isoforms in different cells
and a deeper understanding of their role in physiology and
pathology. However, most of the information available
pertains to the long form of CD99, and this review
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specifically discusses these data. Most of the information
reported in the literature has been obtained by the engage-
ment of CD99 with murine monoclonal antibodies
(mAbs) such as DN16, 12E7, O13, F21, MSGB1, YG32
and 0662 (see Fig. 3 for details) (Jung et al. 2003).
Natural circulating ligands for human CD99 have not
been described as of yet. CD99-mediated signaling acti-
vation is thought to arise from homophilic interactions
among CD99 molecules on interacting cells (Schenkel
et al. 2002) and this phenomenon further reinforces the
importance of the level of expression of CD99 for deter-
mining its physiological functions.

Role of CD99 in lymphocyte development
and functions

CD99 is considered an important player in lymphocyte devel-
opment. In studies on anencephaly, CD99-deficient fetuses
typically demonstrated a marked impairment in thymic devel-
opment, which suggests a role of CD99 in normal thymus
ontogeny (Shin et al. 1999). In thymocytes, CD99 was shown
to elicit homotypic cell aggregation as well as induce cell
death at critical stages of thymocyte differentiation, when pos-
itive selection is known to occur (Bernard et al. 1995, 1997;
Pettersen et al. 2001). In particular, CD99 mediates cell death

Fig. 2 CD99 protein expression detected by immunohistochemical analysis in normal human tissue samples (scale bar: 100 μmwas shown). Anti-CD99
primary antibody: O13 (Biolegend, cat.# 915,601; dilution 1/80)
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of immature CD4 + CD8+ thymocytes that have an interme-
diate CD3 density, including all detectable CD69+ cells, how-
ever, CD99 has no effect on the survival of other thymocytes
or T cells (Bernard et al. 1997). Consistently, CD99-induced
cell death signaling occurs independently of major signaling
pathways implicated in the control of thymocytes and mature
pe r i phe r a l T ce l l s . CD99 engagemen t i nduce s
phosphatidylserine exposure on the surface of the immature
thymocytes (Aussel et al. 1993; Choi et al. 1998), but cell
death proceeds through classical or non-classical apoptotic
pathways depending on the different CD99 domains that are
activated by distinctive antibodies (Aussel et al. 1993;
Pettersen et al. 2001). The reason behind why different
CD99 domains are linked to different death pathways is not
clear, but a similar complex situation in which the engagment
of distinct domains induces either caspase-dependent or
caspase-independent cell death has either been reported with
other molecules such as the major histocompatibility complex
(MHC) class I molecules (Genestier et al. 1998; Pettersen
et al. 1998). Of note, CD99 participates to the upregulation
of MHC class I and II and TCR expression on the thymocytes
(Choi et al. 1998; Sohn et al. 2001). This increase is a result of
accelerated mobilization ofmolecules stored in cytosolic com-
partments to the plasma membrane, rather than increased
RNA and protein synthesis and it is more evident in the
TCR-low subpopulations of immature double-positive thymo-
cytes (Choi et al. 1998). By enhancing the efficiency of TCR-
MHC interactions (Hahn et al. 2000; Waclavicek et al. 1998;
Wingett et al. 1999), CD99 may create more opportunities for
the positive selection of thymocytes. Thus, CD99 has a dual
and contradictory function, and it participates in the cell mat-
uration when cell death and selection occur also take place.

The engagement of MHC class II molecules has an antag-
onistic effect on CD99 engagement-related phenotypes (Kim
et al. 2003), suggesting that complex regulatory interactions
exist between CD99 and MHC class I and II signaling during
thymocytes development and maturation (Kim et al. 2003). In
addition, several lines of evidence have indicated a possible

role of CD99 in T cell activation. Stimulation of CD99 with
agonistic antibodies enhanced the expression of several T cell
activation markers on anti-CD3-activating Tcells and induced
the elevation of intracellular Ca2+ and tyrosine phosphoryla-
tion of cellular proteins (Waclavicek et al. 1998; Wingett et al.
1999), leading to differential activation of mitogen-activated
protein kinase (MAPK) members, including extracellular
signal-regulated kinase (ERK), JNK and p38 MAPK and src
kinase (Hahn et al. 2000; Lee et al. 2002). Binding of CD99
and suboptimal CD3-induced T cell activation led to translo-
cation of TCR complexes to lipid rafts, without concomitant
migration of CD99 to the rafts, or consequent enhancement of
TCR-mediated signaling (Oh et al. 2007). Upon T cell activa-
tion, CD99 translocates to immunological synapses and anti-
CD99 mAb has been shown to inhibit T cell proliferation,
indicating an important role for CD99 in T cell activation
(Pata et al. 2011). Moreover, CD99 is required for the effect
of IFN-γ on HLA class I expression (Bremond et al. 2009).

CD99 may also have a pivotal role in early B
lymphopoiesis. The levels of CD99 type I protein and
mRNA have been found to be significantly linked to the mat-
uration of normal B cell precursors (BCPs), with the highest
levels observed in the most immature stage 1. The alternative-
ly spliced CD99 type II mRNA is either absent in normal
BCPs or present at extremely low levels with no effect on
maturation (Husak et al. 2010). In these very immature normal
BCPs, the binding of CD99 with corresponding mAb can
induce cell death after long term incubations (7 days), sug-
gesting a physiologic role of CD99 in clonal deletion neces-
sary for B cell selection.

In B cell subsets from human tonsils, CD99 expression was
found to be highest in tonsillar plasma cells (PCs).
Furthermore, CD99 engagement did not influence apoptosis,
differentiation, or antibody secretion of PCs but it reduced
chemotactic migration of PCs toward CXCL12 and reduced
ERK activation by CXCL12, suggesting that CD99-engaged
PCs were less sensitive to the chemoattractive stimuli of
CXCL12 (Gil et al. 2015).

Fig. 3 Schematic representation of the CD99 protein (S: signal sequence;
E: extracellular domain; TM: transmembrane domain; C: cytoplasmic
domain). The locations of the epitopes recognized by anti-CD99 mouse

monoclonal antibodies are highlighted. The aminoacid sequence and the
length of each epitope are also shown (Modified from Jung et al. 2003)

60 Pasello M. et al.



Role of CD99 in cell adhesion and leukocyte
diapedesis

CD99 can act as an adhesion molecule and CD99 engagement
has also demonstrated to induce the expression of adhesion
molecules, including LFA-1, α4β1, ELAM-1, VCAM-1 and
ICAM-1 (Alberti et al. 2002; Bernard et al. 2000; Dustin and
Springer 1989; Hahn et al. 1997), which are associated with
leukocyte adhesion and TEM, a critical step during the inflam-
matory processes. CD99 is expressed at the intercellular bor-
ders of endothelial cells (Schenkel et al. 2002) and it has been
shown to be essential for TEM of monocytes, neutrophils,
lymphocytes and CD34+ cells both in vitro (Lou et al. 2007;
Manes and Pober 2011; Winger et al. 2016) and in vivo
(Dufour et al. 2008; Imbert et al. 2006; Watson et al. 2015).
CD99 has been shown to function downstream of PECAM,
another critical molecule involved in TEM (Lou et al. 2007;
Schenkel et al. 2002; Sullivan et al. 2013) and to act through
homophilic interactions. Recently, the homophilic interaction
of endothelial CD99 with leukocyte CD99 was shown to fa-
cilitate TEM of leukocytes through the activation of protein
kinase A (PKA) via a signaling complex formed with the
lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-
kinase anchoring protein ezrin, and soluble adenylyl cyclase
(sAC) (Watson et al. 2015). PKA can then stimulate mem-
brane trafficking from the lateral border recycling compart-
ment to sites of TEM, thereby facilitating the passage of leu-
kocytes across the endothelium. In these studies, blocking of
CD99 bymAbs or by gene inactivation (Goswami et al. 2017)
arrested migrating cells within the endothelium.

Additionally, migration of T cells into the skin (Bixel et al.
2004) and of neutrophils and monocytes into the peritoneal
cavity (Dufour et al. 2008) can be blocked by interfering with
CD99 functions, indicating the potential therapeutic applica-
tions of CD99 in the control of inflammation and immune cell
infiltration. Recently, CD99 has been shown to be cleaved by
meprin β , a mult idomain type I t ransmembrane
metalloprotease that acts as an initiator of regulated
intramembrane proteolysis of cell adhesion molecules, has
been demonstrated (Bedau et al. 2017). Meprin β cleaves
CD99 at the cell surface and influences CD99-dependent per-
meability of endothelial cells.

Role of CD99 in mesenchymal differentiation
and osteoblastogenesis

CD99 is expressed in human mesenchymal stem cells at var-
iable levels (Elsafadi et al. 2016; Rocchi et al. 2010; Sciandra
et al. 2014). CD99 expression has been reported to decrease
during the differentiation of mesenchymal stem cell toward a
neural phenotype (Rocchi et al. 2010), while CD99 expression
was shown to increase during normal osteoblastogenesis and
osteoblast maturation (Sciandra et al. 2014). The CD99-

encoding gene MIC2 has been shown to be controlled by the
transcription factor RUNX2 (Bertaux et al. 2005), which is
essential for human osteoblast differentiation (Lian et al.
2004). CD99 was found in cell adhesion structures of osteo-
blastic cell cultures in vitro, and on osteoblasts adhering to one
other and lining the bone surface in tissue samples in vivo
(Manara et al. 2006). More recently, Oranger and colleagues
have demonstrated an increase in CD99 levels during the dif-
ferentiation of osteoblasts and bone marrow mononuclear
cells, further supporting the role of CD99 in osteoblastogene-
sis (Oranger et al. 2015). The activation of CD99 with specific
agonist antibody results in increased osteoblast differentiation
and activation as demonstrated by the upregulation of alkaline
phosphatase, Collagen I, RUNX2, and JUND expression.

Role of CD99 in tumors

Although alterations in CD99 expression have been demon-
strated in a broad range of neoplastic human tissues, the actual
relationship of CD99 expression with the development of hu-
man cancers has been somewhat controversial, often with op-
posing functions, depending on the cellular context. High
CD99 expression has been shown in EWS, and CD99 is rou-
tinely used for the differential diagnosis of EWS from other
types of small round cell tumors in children (Ambros et al.
1991; Fellinger et al. 1991; Stevenson et al. 1994). CD99
knockdown in EWS cells transplated into immunodeficient
mice induces terminal neural differentiation and reduces tu-
mor growth, migration and bone metastasis (Kreppel et al.
2006; Rocchi et al. 2010), supporting a central role for
CD99 in the pathogenesis of EWS. Several lines of evidence
suggest a functional link between the aberrant transcription
factor EWS-FLI, which is the pathogenetic driver of EWS,
and CD99 (Hu-Lieskovan et al. 2005; Miyagawa et al. 2008;
Riggi et al. 2008; Rorie et al. 2004). The oncogenic activity of
EWS-FLI is facilitated by CD99, and consistently, EWS-FLI
maintains high expression levels of CD99 (Hu-Lieskovan
et al. 2005; Miyagawa et al. 2008; Rocchi et al. 2010) either
directly through its binding to the CD99 promoter (Amaral
et al. 2014; Rocchi et al. 2010) or indirectly through miRNA
regulation (Franzetti et al. 2013). CD99 and EWS-FLI have
opposite effects on EWS cell differentiation, while EWS-FLI
induces neural differentiation, CD99 prevents it (Rocchi et al.
2010). The simultaneous expression of EWS-FLI and CD99
exerts a net effect on malignant cells to promote the expres-
sion of some neural features while maintaining cell growth
capacity. Silencing CD99 in human EWS cell lines induces
prolonged nuclear ERK1/2 phosphorylation (Rocchi et al. 2010),
which seems to be crucial for shifting the biological functions
of ERK1/2 toward neural development and differentiation
(Cheng et al. 2013) reduces AKT and NF-κB signaling
(Rocchi et al. 2010; Ventura et al. 2016) and orients the cells
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toward a terminal neural differentiation state regardless of the
presence of EWS-FLI. Suppression of CD99 may thus serve
as a mechanism to fine-tune the levels of transcriptional gene
regulation, to shift the equilibrium in favor of cell differentia-
tion rather than proliferation.

Apart from its role in EWS, CD99 was found to be fre-
quently overexpressed in several types of leukemia, including
acute lymphoblastic leukemia (ALL) (Dworzak et al. 2004),
acute myeloid leukemia (AML) and stem cells in
myelodysplastic syndromes (MDS) (Chung et al. 2017).
CD99 appears to be a robust marker of cancer stem cells and
a promising therapeutic target in these malignancies. Of note,
the treatment of B and T cell leukemia lines with anti-CD99
antibody induces HSP70 expression, rendering these cells
more prone to NK cell-mediated cytotoxicity (Husak and
Dworzak 2012).

In pediatric B-cell leukemia/lymphoma, CD99 (MIC2) ex-
pression reflects maturation-associated patterns of normal B
lymphopoiesis, with CD34+ cells expressing the highest
levels of CD99 (Dworzak et al. 1999).

Regarding tumors of the central nervous system, a compre-
hensive study across a large series of astrocytomas of various
grades has indicated a clear relationship between tumor ag-
gressiveness and CD99 expression, with glioblastomas show-
ing the highest positivity (Urias et al. 2014). In malignant
gliomas, CD99 expression level is increased relative to that
in normal tissues and is correlated with increased tumor ag-
gressiveness and migration and invasion of tumor cells medi-
ated by the Rho/Rac pathway (Seol et al. 2012).

In other tumors, such as Hodgkin lymphoma (Kim et al.
2000), OS (Manara et al. 2006; Scotlandi et al. 2007), prostate
cancer and gastric cancer (Jung et al. 2002; Scotlandi et al.
2007), CD99 is expressed at low levels and the downregula-
tion of CD99 rather than its over-expression seems to be re-
quired for tumorigenesis. The loss of CD99 expression is a
significant molecular event for the induction of morphological
and immunological phenotypes associated with Hodgkin’s
and Reed-Sternberg cells (HRSCs) (Jian et al. 2015; Kim
et al. 1998, 2000). These cells are more resistant to attack by
cytotoxic T lymphocytes (CTLs) and apoptosis, indicating
that the persistent lack of CD99 surface expression in
HRSCs may favor their survival (Lee et al. 2011). In contrast,
CD99 upregulation induces differentiation of Hodgkin lym-
phoma cells into terminal B-cells (Jian et al. 2015).

CD99 is known to function as a tumor suppressor in OS
(Manara et al. 2006; Sciandra et al. 2014; Scotlandi et al.
2007; Zucchini et al. 2014). Forced expression of CD99 in-
hibits cancer metastasis through the suppression of C-SRC
and ROCK2 activities (Scotlandi et al. 2007; Zucchini et al.
2014), while increasing osteoblast differentiation through
ERK/RUNX2-mediated reactivation of osteoblastogenesis
(Sciandra et al. 2014). CD99, which is expressed in osteo-
blasts, thus appears as a crucial regulator of malignancy in

OS. Whenever tumor cells regain CD99 expression, they be-
come prone to reactivation of terminal differentiation pro-
grams and lose migratory and metastatic propensities.

In gastric cancer, CD99 is present in normal gastric epithe-
lium and its levels decrease in less differentiated tumors (Choi
et al. 2004; Jung et al. 2002). In a group of 283 gastric ade-
nocarcinoma samples, Lee JH et al. found that a decreased
expression of CD99 was strongly associated with poor surviv-
al and unfavorable clinicopathological variables. The authors
demonstrated that CD99 downregulation was due to hyperme-
thylation of the protein-promoter region and loss of heterozy-
gosity (LOH) of the CD99 gene locus together with SP1
downregulation (Lee et al. 2007). Similarly, among pancreatic
tumors, CD99 is highly expressed only in pancreatic endo-
crine tumors (PETs), while the molecule is absent or weakly
expressed in other histotypes (Goto et al. 2004). In gastroin-
testinal and pulmonary neuroendocrine tumors, there is an
inverse correlation between CD99 expression and prolifera-
tion, local invasion and/or distant metastases (Pelosi et al.
2000; Pelosi et al. 2006).

Overall, CD99 is found to act either as an oncogene or as an
oncosuppressor depending on the cellular context. Once the
molecule is appropriately inhibited or induced, the net result is
the reversion of tumor malignancy; these data establish CD99
as a promising therapeutic target for several tumors.

CD99 and therapy

Despite being poorly studied, CD99 appears to govern many
key components of cellular survival and metastatic processes
and may have a relevant role in inflammation and cell adhe-
sion processes. As indicated above, CD99 has indeed been
reported to influence the following processes: 1. adhesion
among different types of cells, either malignant or normal,
well as to extracellular matrix (ECM) components; 2. extrav-
asation across the endothelium; 3. cell survival, proliferation,
differentiation and response to stress; 4. regulation of stem cell
fate; 5. communication between immune cells as well as can-
cer cells and the tumor microenvironment via complex and
still poorly defined molecular interactions.

Being a cell surface molecule, CD99 can be easily targeted
by antibodies. Most of these antibodies have been reported to
activate cell death signals and inhibit cell migration. This
opens interesting therapeutic perspectives for tumors in which
CD99 acts as on oncogene, such as EWS, ALL, MDS, AML
and glioblastoma. CD99 engagement induces death in tumor
cells via non-conventional, caspase-independent programmed
cell death or through a non-apoptotic pathway resembling
methuosis (Cerisano et al. 2004; Manara et al. 2016;
Scotlandi et al. 2000; Sohn et al. 1998), a process character-
ized by excessive accumulation of vacuoles in the cytoplasm,
leading to compromised cell viability (Maltese and
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Overmeyer 2014). The capability to induce non-conventional
apoptotic signaling may be clinically relevant as tumor cells
are generally resistant to classical apoptotic cell death.
Accordingly, anti-CD99 antibodies exert additive/synergistic
effects when combined with conventional agents, such as
doxorubicin or vincristine (Guerzoni et al. 2015; Scotlandi
et al. 2006) and are effective even against chemoresistant tu-
mor cells (Manara et al. 2016). In EWS cells, antibody-
mediated engagement of CD99 rapidly evokes caveolin-1-
dependent endocytosis and promotes the upregulation of
IGF-1R and RAS/Rac1 signaling, leading to defective
vacuolization and death by methuosis (Manara et al. 2016).
The effects are more dramatic in malignant cells that express
high levels of CD99 and are facilitated by the reactivation of
p53, resulting from the CD99-induced degradation of MDM2
(Guerzoni et al. 2015). Neither p53 reactivation nor RAS in-
duction can be triggered in normal cells. In general, data ob-
tained in both EWS and leukemia (Husak et al. 2010) indicate
that CD99-induced cell death occurs preferentially in cells
with an aberrant genetic background, thus conferring selectiv-
ity of anti-CD99 approaches against tumor cells. Figure 4

summarizes CD99 signaling in EWS cells. In addition,
CD99 engagement increases NK cell-mediated tumor lysis
by inducing HSP70 expression (Husak and Dworzak 2012)
and inhibits tumor cell migration and metastasis through dif-
ferent mechanisms, including the suppression of C-SRC and
ROCK2 activities (Pinca et al. 2017; Scotlandi et al. 2007;
Zucchini et al. 2014) or the blockade of CD98-mediated β1
integrin signaling, which can suppress tumor progression by
inhibiting the positive feedback loop involving CD98/β1
integrin/focal adhesion kinase (FAK)/RHOA/ROCK (Lee
et al. 2017).

Therefore, mAbs against CD99 have promising pre-
clinical effectiveness in several types of tumors (EWS,
AML, ALL and glioblastoma) and are selective for ma-
lignant stem cells. Of note, a human diabody has been
recently developed (the diabody binding site falls, very
likely, into the CD99 extracellular domain included be-
tween residues 50 and 74) with in vivo efficacy against
EWS (Gellini et al. 2013; Guerzoni et al. 2015; Moricoli
et al. 2016), thus paving the way for further development
of this approach.

Fig. 4 Schematic representation of CD99 signaling in EWS cells. The mechanistic relationships between CD99 silencing and neural differentiation or
between antibody-mediated CD99 engagement and cell death are shown
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Critical issues/open questions

1. Due to the lack of sufficient reports on the different roles
for the two CD99 isoforms, a more detailed study of their
expression in normal and diseased cells is necessary.

2. The mechanisms of action of CD99 isoforms are strictly
dependent on the cellular context and need further
investigation.

3. CD99 likely acts by interacting with other cell surface
molecules, which are responsible for its signaling.
Hovewer, very limited data are available on the
heterophilic interactions of CD99.

4. The functional relationship between human and murine
CD99 is unclear.

Conclusion

CD99 has been largely ignored by the scientific community.
However, increasing evidence highlights a crucial role for this
peculiar transmembrane molecule in cancer and inflamma-
tion. CD99 regulates fundamental biological processes and
may have has promising clinical application in several fields
of medicine. Efforts should thus be made to improve our un-
derstanding of the mechanisms of action of CD99, as it is time
to give proper attention to this molecule.
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