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Abstract
Amember of the lectin family, galectin-3 is a 250 amino-acid protein that contains a C-terminus carbohydrate recognition domain
(CRD) that recognizes β-galactosides. Considered to have certain common properties associated with matricellular proteins,
galectin-3 is expressed in the dermis and epidermis in healthy skin and is upregulated in skin healing, peaking at day 1 post
wounding in mice. Galectin-3 has been implicated in several processes central to the wound healing response, specifically in the
regulation of inflammation, macrophage polarization, angiogenesis, fibroblast to myofibroblast transition and re-epithelializa-
tion. However, it appears that many of the effects of Galectin-3 are highly tissue specific and context dependent. Genetic deletion
of galectin-3 shows different effects in skin compared to lung, heart, and kidney remodeling. In this review, we will compare
galectin-3 functions in these tissues. Furthermore, we will discuss, based on its identified regulation of cell processes, whether in
an exogenous form, galectin-3 could represent a novel therapeutic for impaired skin healing.
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Introduction

Matricellular proteins are non-structural components of the
extracellular matrix that become upregulated during wound
healing and pathological processes (Midwood et al. 2004;
Walker et al. 2015). During the wound healing process, they
act spatially and temporally to control specific cell behaviours.
Galectin-3, posited to possess certain properties of a
matricellular protein through its localization in the extracellu-
lar matrix (ECM) (Ochieng et al. 2002; Melo et al. 2011), is
also established to have several intracellular functions
(Funasaka et al. 2014; Honig et al. 2015; Fritsch et al.

2016). Galectin-3 is implicated in several inflammatory and
immunomodulatory processes, making it an ideal candidate
for treatment of chronic skin wounds, where the lesions re-
main in a toxic pro-inflammatory state (Elliott et al. 2015).
Galectin-3 has been shown to influence monocyte and mac-
rophage migration (Sano et al. 2000), increase clearance of
neutrophils (Karlsson et al. 2009), and regulate alternative
macrophage polarization (MacKinnon et al. 2008), all pro-
cesses that can contribute to modulating the inflammatory
response . Wi th demons t ra ted regu la t ion of re -
epithelialization (Cao et al. 2002; Saravanan et al. 2009;
Panjwani 2014) and contrasting data on its modulation of
myofibroblast differentiation (Okamura et al. 2011;
Mackinnon et al. 2012; Walker et al. 2016), it could be hy-
pothesized that the use of galectin-3 would provide an effec-
tive strategy in promoting healing by stimulating the prolifer-
ative phase of healing. The focus of this review is to discuss
the role of galectin-3 in various models of wound healing and
fibrosis, and whether galectin-3 could potentially be utilized
for resolution of impaired skin healing.

Galectin-3 protein structure

Galectin-3 is a protein consisting of 250 amino acids, separat-
ed into two distinct domains (Fig. 1) (Robertson et al. 1990).
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The carbohydrate recognition domain (CRD) of this protein
accounts for approximately 130 amino acids and is globular in
structure (Dumic et al. 2006). The CRD domain contains S-
lectin motifs that provide the protein with the ability to bindβ-
galactosides, a property shared by all proteins in the Galectin
family (Cherayil et al. 1990; Barondes 1994), as well as a
nuclear export signal (Nakahara et al. 2006). In addition to
its CRD, galectin-3 contains an amino terminal domain, which
spans approximately 120 amino acids and contains a highly
conserved tandem repeat rich in proline, glycine and tyrosine
(Seetharaman et al. 1998; Dumic et al. 2006). The N-terminus
contains a 12 amino acid leader sequence that is required for
galectin-3 secretion (Dumic et al. 2006). Within this leader
sequence serine can be phosphorylated, a process which sig-
nificantly reduces binding to two of its ligands, laminin and
mucin, and may act as an on/off switch for its ability to bind to
sugars (Mazurek et al. 2000). The N-terminal domain also
enables the formation of oligomers and is required for full
biological function of the protein, including its role in modu-
lating cell adhesion and inducing intracellular signalling
(Seetharaman et al. 1998; Ahmad et al. 2004). Galectin-3
has been detected within cells, localized in the nucleus and
cytoplasm, and has also been described outside of the cell,
despite its lack of a known transmembrane domain and se-
quence (Frigeri and Liu 1992; Dumic et al. 2006). It has been
found to interact with a variety of wound healing cell types
including monocytes , macrophages, neutrophils ,
keratinocytes, and fibroblasts (Sano et al. 2000; Dvorankova
et al. 2011; Liu et al. 2012).

Role in inflammation

Galectin-3 has been demonstrated to influence a variety of
processes associated with inflammation through its interaction
with various cell types including neutrophils, monocytes, and
macrophages (Yamaoka et al. 1995; Rabinovich et al. 2002;
Karlsson et al. 2009; Danella Polli et al. 2013). In the initial

stages of inflammation, neutrophils are recruited to the wound
to eliminate foreign particles and bacteria. In vitro studies
have shown that recombinant human galectin-3 can activate
neutrophils in a dose-dependent manner, through a process
involving its CRD (Yamaoka et al. 1995). A study investigat-
ing NADPH oxidase activity revealed that galectin-3 activated
exudate neutrophils, with increased activity corresponding to
increased surface-bound protein, while activity was unaltered
in peripheral neutrophils (Karlsson et al. 1998). In addition to
neutrophil activation, galectin-3 has been shown to facilitate
neutrophil adhesion to laminin in vitro and has been implicat-
ed in the recruitment of neutrophils in a murine model of
cutaneous infection (Kuwabara and Liu 1996; Bhaumik
et al. 2013).

The inflammatory phase of healing also involves the re-
cruitment of monocytes to the wound, which differentiate into
macrophages of varying phenotypes that play distinct roles in
inflammatory processes (Brancato and Albina 2011).
Galectin-3 induces monocyte migration in vitro, stimulating
chemotaxis at high concentrations and chemokinesis at lower
concentrations. A migratory effect from galectin-3 is also ob-
served in macrophages (Sano et al. 2000). Migration in both
monocytes and macrophages is increased in the presence of
fibronectin, suggesting that galectin-3 may mediate linkage of
these cells to fibronectin (Danella Polli et al. 2013). One role
of the macrophage in inflammation is to rid the wound of
neutrophils, ingesting them and inducing their apoptosis
(Brancato and Albina 2011). In vitro studies suggest that
galectin-3 can influence this process as the addition of exog-
enous galectin-3 increases apoptotic neutrophil uptake in mac-
rophages. It has also been postulated that galectin-3 acts as an
opsonin, linking the phagocytic macrophages to the neutro-
phils (Karlsson et al. 2009).

Galectin-3 has been linked to increasing the ratio of M2
alternatively activated macrophages to M1 classically activat-
ed macrophages (MacKinnon et al. 2008). These M2 macro-
phages are anti-inflammatory and promote tissue repair,

Fig. 1 Domains and structures
of recombinant human
galectin-3. Human recombinant
galectin-3 is a protein consisting
of 250 amino acids. It features a
120 amino acid N-terminal region
that contains a leader sequence
and a tandem repeat region rich in
proline, glycine and arginine. It
also comprises of a CRD
containing a β-galactoside
binding region and a sequence
required for nuclear export
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whereas their M1 counterparts are pro-inflammatory. A sum-
mary of macrophage activation and polarization is shown in
Fig. 2. MacKinnon et al. investigated the effect of galectin-3
on macrophage activation in bone marrow derived macro-
phages in vitro and in resident lung and recruited peritoneal
macrophages in vivo (MacKinnon et al. 2008). Bone marrow
derived macrophages from galectin-3 knockout and wild-type
mice showed similar release of cytokines TNFα and
interleukin-6 (IL-6) in response to stimulation with lipopoly-
saccharide (LPS) or interferon-γ (IFNγ). Interestingly, in all
macrophages derived from galectin-3 deficient mice, IL-4/IL-
13-induced M2 macrophage polarization was inhibited, sug-
gesting that galectin-3 is involved in the regulation of alterna-
tive macrophage activation (MacKinnon et al. 2008).
Moreover, this research showed following treatment with IL-
4, the knockout macrophages showed significantly lower
mRNA levels of the mouse M2 macrophage markers, man-
nose receptor, arginase I, FIZZ-1 and Ym-1. Thus, galectin-3
appears to be an extremely important modulator of both pro-
and anti-inflammatory cellular processes.

Role in angiogenesis

Galectin-3 has been shown to induce angiogenesis both
in vitro and in vivo. In vitro, the protein stimulated capillary

tube formation of human umbilical cord endothelial cells
grown on a matrigel, while in vivo, a galectin-3-loaded
matrigel was able to induce angiogenesis in nude mice. Both
processes relied on its CRD (Nangia-Makker et al. 2000).
Markowska et al. later proposed that galectin-3 modulated
VEGF and bFGFmediated angiogenesis by activating focal
adhesion kinase-mediated signalling pathways that modulate
endothelial cell migration during this process (Markowska
et al. 2010). The protein has also been linked to angiogenesis
and the migration of endothelial cells through integrin-linked
kinase signalling (Vemuganti et al. 2013). Galectin-3 was also
shown to bind to vascular endothelial growth factor receptor 2
(VEGFR2), promoting its phosphorylation and preventing its
internalization, leading to an increased angiogenic response of
human umbilical cord endothelial cells to VEGFA in vitro
(Markowska et al. 2011).

In combination with galectin-1, galectin-3 can activate and
prevent the internalization of VEGFR1, another process that
enhances angiogenesis (Vemuganti et al. 2013). Despite these
findings, we have recently demonstrated that during excision-
al wound repair in skin, galectin-3 deficient mice show no
difference in vascular density or expression of angiogenic
markers relative to wild-type mice (Walker et al. 2016).
These conflicting findings indicate that the role of galectin-3
in angiogenesis is likely tissue and context-dependant
(Walker et al. 2015).

Role in re-epithelialization

The first association of galectin-3 with re-epithelialization
came from Kasper and Hughes who noted the surface expres-
sion of galectin-3 in Type I and II alveolar epithelial cells in a
model of irradiation-induced lung inflammation and repair
(Kasper and Hughes 1996). In a model of corneal wound
healing, galectin-3 deficient mice were found to exhibit re-
duced re-epithelialization rates relative to wild-type counter-
parts. Interestingly, galectin-3 did not alter proliferation rates
of epithelial cells and elevated levels of galectin-3 were de-
tected in the migrating epithelial front following injury, sug-
gesting the protein promotes epithelial cell migration (Cao
et al. 2002). This was supported by later studies showing that
galectin-3 promotes cell scattering, lamellipodia formation,
and motility in human corneal epithelial cells (Saravanan
et al. 2009). Furthermore, studies in mouse corneas showed
that galectin-3 knockout mice exhibit impaired re-
epithelialization (Cao et al. 2002). The effect of the addition
of exogenous galectin-3 has also been investigated in models
of murine corneal healing, where the addition of exogenous
galectin-3 increased re-epithelialization in wild type (WT)
mice, but not galectin-3 deficient mice (Cao et al. 2002).
The increase in re-epithelialization in WT mice was attributed
to the modulation of galectin-7 by exogenous galectin-3, as
galectin-7 was found to accelerate re-epithelialization in

Fig. 2 Macrophage activation and polarization. Monocytes can
undergo classical activation in the presence of interferon gamma (IFN-
γ) and lipopolysaccharides (LPS) or TNF-α into M1-polarized
macrophages, which are associated with inflammation. M1
macrophages produce inducible nitric oxide synthase (iNOS) as well as
pro-inflammatory cytokines. In mice, markers of M1 macrophages
include iNOS, chemokine ligand 9 (CXCL9), CXCL 10, and CXCL11.
Monocytes can undergo alternative activation through stimulation with
IL-4 or IL-13 into M2-polarized macrophages. M2 are associated with
tissue remodeling and secrete arginase I and anti-inflammatory cytokines.
M2 markers in mice include arginase I, Mrc I, Fizz I, Ym1, and Ym 2
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galectin-3 knockout mice and because mouse embryonic fi-
broblasts from galectin-3 knockout mice showed reduced
levels of galectin-7 (Cao et al. 2002). Studies of epithelial
wounds in monkey corneal explants also demonstrated en-
hanced re-epithelization when recombinant human galectin-
3 was added exogenously to the media (Fujii et al. 2015).

Consistent with studies in the cornea, studies in skin have
revealed that keratinocytes from galectin-3 knockout mice
exhibit a migratory defect (Liu et al. 2012), and that re-
epithelialization is delayed in galectin-3 deficient mice (Liu
et al. 2012; Walker et al. 2016). However, in skin this defect
was attributed to deficient EGFR endocytosis and recycling,
which is controlled by cytosolic galectin-3 binding to ALG-2
interacting protein X (ALIX) (Liu et al. 2012). Additionally,
there were no differences between levels of galectin-7 in
wound tissue from WTand knockout mice at day 7 post inju-
ry, during which re-epithelialization was impaired (Walker
et al. 2016). Therefore, as is evident in the regulation of in-
flammatory processes, the influence of galectin-3 deletion in
skin appears to contrast with other tissues.

Galectin-3 in fibrosis

Galectin-3 has been implicated in different roles during fibro-
sis, a process which, much like chronic wound healing, in-
volves excessive inflammation initially. However, this phase
is overcome with inflammation yielding to myofibroblast dif-
ferentiation, excessive ECM synthesis resulting in fibrotic tis-
sue formation (Li et al. 2014). Thus, the mechanisms involved
in fibrosis have been suggested to be a potential guide for the
development of therapeutics for chronic wound healing,
where a fibrotic response is absent (Elliott and Hamilton
2011).

Galectin-3 is associated with fibrosis in several organs,
including heart (Gonzalez et al. 2014), lung (Mackinnon
et al. 2012) and kidney (Chen and Kuo 2016), although the
exact effect of the galectin-3 may differ in each tissue.
Galectin-3 knockout mice showed increased fibrosis in a uni-
lateral ureteral obstruction induced renal fibrosis model
(Okamura et al. 2011), but decreased fibrosis in a bleomycin
induced lung fibrosis model (Mackinnon et al. 2012).
However, both models were associated with reduced
myofibroblast number in the knockout mice, as determined
by α-SMA expression (Okamura et al. 2011; Mackinnon
et al. 2012). Interestingly in excisional skin healing, we have
shown galectin-3 knockout mice show similar levels of
myofibroblasts in vivo and the cells show the same differen-
tiation ability in vitro as their wild type counterparts (Walker
et al. 2016).

It has also been shown that galectin-3 can stimulate the
proliferation, differentiation, and collagen synthesis of pulmo-
nary adventitial fibroblasts in hypoxia-induced pulmonary ar-
terial hypertension (Luo et al. 2017). Indeed, galectin-3 levels

are predictive of mortality in pulmonary hypertension
(Mazurek et al. 2017). Galectin-3 as a recombinant protein
has also been shown to stimulate the proliferation, differenti-
ation, collagen deposition, and Nox4 expression of cardiac
fibroblasts (He et al. 2017). However, other research using
the knockout suggests that galectin-3 is not a critical modula-
tor of cardiac fibrosis but may delay the subsequent hypertro-
phic response (Frunza et al. 2016).

Even though there are varied results on the role of galectin-
3 in fibrosis, its role in activating fibroblasts into
myofibroblasts could be important as this differentiation is
reduced in a chronic wound (Elliott and Hamilton 2011;
Elliott et al. 2015) and its potential to increase ECM expres-
sion needs to be investigated in the context of a chronic
wound.

Future directions: Galectin-3 as a therapeutic
in impaired skin healing

Chronic skin wounds are subdivided into three categories:
pressure sores, venous ulcers and diabetic foot ulcers (Elliott
and Hamilton 2011). In the first stage of treatment, debride-
ment, achieved enzymatically, mechanically, or using insect
larvae (Gethin et al. 2015), is performed to remove necrotic
tissue and excessive inflammatory-cell infiltrate, which if
allowed to persist, leads to an extremely toxic wound environ-
ment (Falanga 1992; Elliott et al. 2015). While debridement
by itself can stimulate repair mechanisms (Steed et al. 1996), it
is not sufficient to cause wound resolution and a plethora of
advanced wound care products have been developed, ranging
from living-tissue equivalents (e.g., Dermagraft® (Bowering
1998), Apligraf® (Streit and Braathen 2000), Graftskin
(Veves et al. 2001)) to growth-factor delivery (Robson 1997;
Goldman 2004). Despite weak evidence of clinical efficacy
(Chaby et al. 2007), synthetic dressings (i.e. films, foams,
hydrocolloids, and hydrogels) still dominate the marketplace
– accounting for 46% of the wound-care market. The similarly
low clinical efficacy of growth factor technology was unfore-
seen and surprising based on their described functions (Elliott
and Hamilton 2011). Alternative strategies to induce wound
closure are clearly needed. As described above, galectin-3 has
been implicated in several processes associated with wound
healing, including modulating inflammation and contributing
to re-epithelialization, making it a possible adjunct therapy for
wound healing (Cao et al. 2002; MacKinnon et al. 2008;
Danella Polli et al. 2013). In this review, we will focus on
these processes, both of which are significantly impaired in
human chronic skin wounds.

Of major significance, we were the first group to investi-
gate galectin-3 expression surrounding and within human
chronic wound tissue (Pepe et al. 2014). In healthy skin,
galectin-3 is strongly expressed in the epidermis and the vas-
culature, but at the edge of chronic wounds, this expression is
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diminished. Based on the defined role of galectin-3 on regu-
lation of inflammatory processes, this data was surprising, as it
suggests that galectin-3 is not required for inflammatory cell
recruitment in this particular pathology. The inflammatory cell
profile in chronic wounds is associated with variable macro-
phage phenotypes and neutrophil infiltration, which is depen-
dent on the individual wound examined (Walker et al. 2016).

Overall, our data shows that mRNA levels for galectin-
3 are low in the wound bed compared to non-involved
tissue in the same limb. Moreover, localization of M1
and M2 macrophage markers was independent of
galectin-3 expression, and negatively correlated with neu-
trophil infiltration. Given the identified roles of galectin-3
in neutrophil recruitment (Bhaumik et al. 2013), mono-
cyte migration and chemoattraction (Sano et al. 2000;
Danella Polli et al. 2013), and macrophage polarization

(MacKinnon et al. 2008), it is possible that galectin-3 is
not sufficient to stimulate a pro-regenerative phenotype in
chronic wounds or the expression levels of the protein are
too low. In dermal fibroblasts in vitro, galectin-3 is down-
regulated by both TGFβ1 and TNFα (Walker et al. 2016),
both of which are abundant in chronic wounds. If these
growth factors act in a similar manner on inflammatory
cells, it provides a potential explanation for the lack of
galectin-3 mRNA in the wound bed tissue, combined with
a reduced expression by mesenchymal cells. As endoge-
nous expression of galectin-3 surrounding the chronic
wound does not appear to influence the inflammatory pro-
cesses, it provides a strong rationale to assess whether
addition of exogenous galectin-3 could reset the inflam-
matory process and push the wound phenotype towards a
pro-regenerative M2 polarization.

Galectin-3 has also been shown to play a significant role
in re-epithelialization; studies have shown that although
galectin-3 knock-out mice do not exhibit altered wound clo-
sure kinetics (Walker et al. 2016), models of both corneal
and skin wound healing reveal that galectin-3 deficient mice
exhibit delayed re-epithelialization (Cao et al. 2002; Liu
et al. 2012; Walker et al. 2016). Despite unaltered wound
closure kinetics in galectin-3 knockout mice, studies in
mouse and monkey corneas reveal that the addition of ex-
ogenous galectin-3 enhanced wound re-epithelialization in
WT mice (Cao et al. 2002; Fujii et al. 2015). Whether ex-
ogenous galectin-3 has a similar effect in WT mice on re-
epithelialization during skin is unknown. However, it must
be considered that effects of genetic deletion of galectin-3
does not eliminate the possibility that protein could influ-
ence cell behavior when added exogenously, and whether
this would extend to a model of impaired wound healing,
although intriguing, has not been investigated.

Summary

Galectin-3 is involved in a great variety of additional in-
teractions that also seem to be highly context and locali-
zation dependent. Research utilizing the knockout mouse
has shown that the effects of galectin-3 on cell behavior
are very much dependent on the organ or tissue being
studied (Table 1). While genetic deletion of galectin-3
has given important insights into the role of the protein
in several cellular processes, less information is available
on the response of cells to exogenous galectin-3. Future
studies should focus on this area, particularly for potential
development of therapeutics for impaired skin healing.

Acknowledgments This work was funded by the Canadian Institutes of
Health Research (Operating grant RN247506) to D. W. Hamilton.

Table 1 Influence of Galectin-3 deletion on tissue remodeling and
pathology in different organ systems

Tissue Knockout Phenotype Model References

Skin Migratory defect in
keratinocytes

Single-cell
migration assay

(Liu et al. 2012)

Impaired
re-epithelialization

3 mm
full-thickness
skin wounds;

6 mm
full-thickness
skin wounds

(Liu et al. 2012;
Walker et al.
2015)

Cornea Impaired
re-epithelialization

Excimer laser
ablations,
alkali-burn
wounds

(Cao et al.
2002)

Heart Increased sized of
myocardial
infarction

Reduced fibrosis,
collagen deposition
and macrophage
infiltration at site of
myocardial
infarction

Permanent
coronary artery
ligature

(Gonzalez et al.
2014)

Accelerated cardiac
hypertrophy

Transverse aortic
constriction

(Frunza et al.
2016)

Lung Reduced fibrosis,
collagen levels and
levels of
myofibroblasts

Bleomycin induced
lung fibrosis

(Mackinnon
et al. 2012)

Kidney Increased fibrosis and
interstitial collagen
levels

Decreased renal tubular
integrity

Reduced levels of
interstitial
myofibroblasts

Disorganized interstitial
matrix pattern

Unilateral ureteral
obstruction

(Okamura et al.
2011)
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