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Introduction

Summary

To date, the pathogenesis of Méniere’s disease (MD) remains unclear. This
study aims to investigate the possible relationship between potential
immune system-related genes and sporadic MD. The whole RNA-
sequencing (RNA-seq) technology was used to analyse the transcriptome of
peripheral blood mononuclear cells of three MD patients and three control
individuals. Of 366 differentially expressed genes (DEGs), 154 genes were
up-regulated and 212 genes were down-regulated (|log, fold change| > 1 and
P < 0-05). Gene ontology (GO) enrichment analysis illustrated that immune
relevant factors played a key role in the pathogenesis of MD. Of 366 DEGs,
we focused upon analysing the possible immune-related genes, among
which the significantly up-regulated genes [glutathione S-transferase mu 1
(GSTM1), transmembrane protein 176 (TMEM176)B, TMEM176A] and
down-regulated genes [solute carrier family 4 member (SLC4A)10 and
SLC4A1] especially drew our attention. The mRNA expression levels of
GSTM1, TMEM176B, TMEM176A, SLC4A1 and SLC4A10 were analysed by
quantitative reverse transcription—polymerase chain reaction (qQRT-PCR).
The serum concentration of GSTM1, TMEM176B and SLC4A10 proteins
were measured by enzyme-linked immunosorbent assay (ELISA).
Considering the results of qRT-PCR and ELISA, it was noteworthy that
GSTM1 exhibited the highest fold change between two groups, which was
consistent with the deep sequencing results by RNA-seq. In conclusion, our
study first offers a new perspective in MD development on the basis of RNA
expression patterns, suggesting that immune factors might be involved in
the MD pathogenesis. Remarkably, GSTM1 might be a possible candidate
gene for the diagnostic biomarker of MD and provides the basis for further
biological and functional investigations.

Keywords: immune Méniere’s disease, RNA

transcriptome

system, sequencing,

multiple sclerosis [5-8]. Notably, it was estimated that defi-

Méniere’s disease (MD), a chronic and complex disease of
the inner ear, is characterized by episodic vertigo, fluctuat-
ing hearing loss, ear fullness, tinnitus and progressive ves-
tibular dysfunction. MD was found mainly in the 40-60-
year age group [1,2]. A sex difference has been reported in
MD, with the ratio of women to men 1-3 : 1 in Japan and
1-89 : 1 in the United States [3,4]. Epidemiological studies
showed that the estimated prevalence of MD varied from
17 to 513 cases per 100 000 individuals, which was higher
than the prevalence of systemic lupus erythematosus and

nite familial MD might be found in 6-3% of South Koreans
and 8-4% in Spain. Most cases were shown with an
autosomal-dominant inheritance pattern [9,10]. Recent
findings showed missense variants in protein kinase C beta
(PRKCB), dermatopontin (DPT) and semaphorin 3D
(SEMA3D) genes in familial MD patients influencing low-
to-middle frequency sensorineural hearing loss (SNHL)
[11,12]. In addition to the genetic factors, excess produc-
tion of free radicals or oxidative stress were involved in the
development of endolymphatic hydrops and chromogranin
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A (CgA) changes in the homeostatic mechanisms might
have a role in hydrops and vertigo clustering attack [13,14].
However, the pathogenesis of MD is still poorly under-
stood. It was speculated that MD might be an immune-
mediated or even an autoimmune disease [15-17]. The prev-
alence of systemic autoimmune diseases such as rheumatoid
arthritis, ankylosing spondylitis and systemic lupus erythem-
atosus in patients with MD were three- to eightfold higher
than in the general population [18,19]. Approximately one-
third of MD patients seemed to be of an autoimmune origin,
although the immunological mechanisms involved were not
clear [20,21]. Autoimmunity and human leucocyte antigen
(HLA) associations were focused on early investigations into
the causes of MD [22,23]. Studies found that the frequency
of human leucocyte antigen (HLA)Cw*04, HLA-DRB1*1101
and the allelic group HLA-DRB1*11 might suggest an
increased susceptibility to develop MD [22,24,25]. It has
been shown that some major histocompatibility complexes
(MHCs) and HLAs were related to MD, supporting that the
autoimmune mechanism might be involved in the pathoge-
nesis of MD [26,27]. Intratympanic injection of dexametha-
sone has been adapted as an anti-immune or anti-
inflammatory therapy for patients with intractable MD,
which preserved the inner ear function probably by its anti-
inflammatory and ion-homeostatic effects [17,28,29].

RNA-seq can quantify accurately the expression levels of
genes and establish a global view of the whole genome
[30,31]. RNA-seq has become a powerful tool to resolve the
global pattern of gene expression, including the discovery
of an unprecedented capability of new genes, expression
and sequence variation of allele-specific expression [32,33].
The most common use of RNA-seq has identified that
genes are expressed differentially between two or more con-
ditions. High-throughput RNA-seq offers the ability to dis-
cover new genes or transcription groups and detects
transcript expression [34].

RNA-seq technology has been reported on the potential
molecular aetiology or therapeutic targets in a variety of
malignancies, including liver cancer [35], prostate cancer
[36] and lung cancer [37], etc. However, there are no
reports on the application of RNA-seq in the study of MD.
Here, we use RNA-seq technology to characterize and iden-
tify those differentially expressed genes in MD. The study
of MD blood samples may help to detect the underlying
pathogenesis of MD, understand the causes more clearly
and even develop more effective and targeted treatment of
MD in the future.

Materials and methods

Patients and controls

The protocols and informed consent forms used in this
study were approved by the Ethics Committee of the Shan-
dong Provincial Hospital affiliated to Shandong University,

Jinan, China. All the participants signed a written informed
consent. The diagnostic criteria of definite unilateral MD
were formulated by the Classification Committee of the
Barany Society in 2015 [38]. Sporadic patients who we
selected from the Department of Otolaryngology — Head
and Neck Surgery (Shandong Provincial Hospital affiliated
to Shandong University) met the 2015 diagnostic criteria.
All patients we chose met unilateral MD type 1, which was
defined as sporadic and classic MD without family factors,
migraine and autoimmune disorder (AD) [39,40]. A com-
plete neuro-otology assessment was carried out to exclude
patients with tympanic membrane perforation, infection or
tumour of ear and acoustic nerve disease. Brain magnetic
resonance imaging (MRI) was performed to rule out any
concomitant neurological lesions. The controls were volun-
teers without cochlea-vestibular disorders and systemic
autoimmune diseases.

Sample collection and RNA extraction

Blood was collected from three volunteers and three
patients with unilateral MD type 1 between 7:00 a.m. and
10:00 a.m. to limit the effect of circadian variation of cyto-
kine production. For each individual, 4 ml blood was put
into an ethylenediamine tetraacetic acid (EDTA) BD Vacu-
tainer tube (BD, New York, NY, USA) and diluted with an
equal volume of sterile phosphate-buffered saline (PBS).
Peripheral blood mononuclear cells (PBMCs) from the
venous blood of healthy volunteers and MD patients were
isolated by Ficoll-Hypaque density-gradient separation
(Lympholyte-H; Cedarlane Laboratories, Burlington,
Ontario, Canada). Briefly, blood samples were first centri-
fuged at 800 g for 20 min at room temperature. The well-
defined lympholyte layer at the second interface (from the
top) was then transferred carefully to another new centri-
fuge tube. Lymphocytes were washed three times and cen-
trifuged at 250 g for 10 min at —80°C before RNA
extraction. Total RNA of PMBCs from MD patients and
healthy volunteers were isolated using Trizol reagent (Life
Technologies, Carlsbad, CA, USA). RNA quality was
assessed using the Agilent 2100 Bioanalyzer and the RNA
6000 Nano Kit (Agilent Technologies Inc., Santa Clara, CA,
USA).

RNA preparation, library construction and
Mlumina sequencing

A total amount of 2 pug RNA per sample was used as input
material for the RNA sample preparations. Sequencing
libraries were generated using NEBNext” Ultra™ RNA
Library Prep Kit for Mlumina® (NEB, Ipswich, MA, USA),
following the manufacturer’s recommendations, and index
codes were added to attribute sequences to each sample.
Briefly, mRNA was purified from total RNA using poly-T
oligo-attached magnetic beads. Fragmentation was carried
out using divalent cations under elevated temperature in
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Table 1. Polymerase chain reaction (PCR) primer sequences used in the experiment.

Immunological dysfunction in Méniére’s disease

Gene Forward sequence Reverse sequence

GSTM1 GGGACGCTCCTGATTATGAC TTGCTCTGGGTGATCTTGTG
TMEM176B GGCGAAGTCAAGAGAACCAA CAAGACACAGACAGCCAGGA
TMEM176A TACACCCTCCTCGTCACCTC CAGGGCCCAGTATGTACCAC
NSE-P1 CGACAAGATGGCAGCAGAAT GGCTTCAATGTCCTTCACCA
MYL4 GCCAGAACCCTACCAATGC CCCTCCACGAAGTCCTCATA
SLC4A1 ATGGAGGAGAATCTGGAGCA GGGTGTGATGTGGTGTGGTA
SLC4A10 AGATTCCTCCAGGTGCTGAA CTTCAGCCAGTCCTTGAAGC
UTY ACTGGAATGGTGGCCAGAGT TGCTCGCAGTTGTTCCAAGT
18S rRNA CGCGGTTCTATTTTGTTGGT AGTCGGCATCGTTTATGGTC

GSTMI = glutathione S-transferase mu 1; TMEM176 = transmembrane protein 176; NFS-P1 = N-ethylmaleimide sensitive factor, vesicle

fusing ATPase; MYL4 = myosin light-chain 4; SLC4A = solute carrier family 4 member; UTY = ubiquitously transcribed tetratricopeptide repeat

containing, Y-linked (UTY).

NEB Next first-strand synthesis reaction buffer (X5).
First-strand c¢DNA was synthesized using random
hexamer primer and RNase H. Second-strand cDNA syn-
thesis was performed subsequently using buffer, dNTPs,
DNA polymerase I and RNase H. The cDNAs were
assessed using Agilent Bioanalyzer 2100 system (Agilent
Technologies, USA) and ABI StepOnePlus™ real-time
PCR system (ABI, Life Technologies, Carlsbad, CA, USA).
The libraries were sequenced on an Illumina Hiseq 4000
platform, and 150 base pairs (bp) paired-end reads were
generated.

Reverse transcription—polymerase chain reaction
(RT-PCR)

Total RNA was extracted from PMBCs of 30 paired patients
with unilateral MD type 1 and control individuals using
the Trizol Reagent (Life Technologies), according to the
manufacturer’s instructions. In the presence of random pri-
mers, 1 pg of total mRNA was reverse-transcribed into
complementary DNA using the Revert Aid First-Strand
cDNA Synthesis Kit (Thermo Scientific, Fremont, CA,
USA), following the manufacturer’s protocols. Gene
expression was examined by quantitative RT-PCR (qRT-
PCR) with the SYBR Premix Ex Taq (TaKaRa, Shiga, Japan)
and an Eppendorf PCR machine (Hamburg, Germany).
The PCR conditions were as follows: initial denaturation at
95°C for 5 min, followed by 40 cycles of denaturation at
95°C for 40s; annealing at 60°C for 40s; and extension at
72°C for 45s. The primer sets are described in Table 1. The
specificity of each PCR reaction was confirmed by melting
curve analysis. The expression levels of genes were normal-
ized by 18S rRNA. Each group contained three samples and
each PCR was repeated in triplicate. The expression of gene
was analysed using the 2~ " method.

Enzyme linked immunosorbent assay (ELISA)

Blood was collected from another 30 paired patients with
unilateral MD type 1 and control individuals at 7:00 am to

10:00 am in order to eliminate the effect of circadian vari-
ation of cytokine secretion. After samples were centri-
fuged at 1000 g for 20 min at room temperature, blood
sera were collected from the top and stored at —80°C
before ELISA. Serum concentrations of glutathione S-
transferase mu 1 (GSTM1), transmembrane protein 176
(TMEM176)B and solute carrier family 4 member
(SLC4A)10 protein products were measured using ELISA
kits (MyBioSource, San Diego, CA, USA), according to
the manufacturer’s instructions. All analyses and calibra-
tions were performed in triplicate. The concentrations
were determined by comparing the optical density (OD)
values of the samples to the standard curve using a spec-
trophotometer at 450 nm.

Statistical analysis

Data were analysed statistically using spss version 19.0 soft-
ware (SPSS, Inc., Chicago, IL, USA) and GraphPad Prism
Software (San Diego, CA, USA). All measurements and cal-
culations are presented as mean * standard error of the
mean (s.e.m.). Student’s t-test was used to compare data
between MD and control groups; P < 0-05 was considered
statistically significant.

Results

General information of the RNA sequencing data

The expression of every gene was measured by fragments
per kilobase of transcript per million fragments mapped
(FPKM). An average of 42 007 genes were detected in
sequenced samples, by requiring that the FPKM value was
greater than 0-1. The correlation analysis showed that the
average global profiles of gene expressions between MD
and control samples were correlated highly (correlation
coefficient r= 0-98, Fig. la). After excluding the following
FPKM baseline gene, 939 and 806 genes were expressed in
the volunteer and MD groups (Fig. 1b). A total of 366
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Fig. 1. Analysis of homogeneity between peripheral blood monocular cells of volunteers and Méniere’s disease (MD) patients. (a) Expression analysis of
volunteer and MD samples. The Pearson correlation coefficient is shown. (b) Venn diagram showing 939 and 806 genes expressed in volunteer and MD
group. (c) Scatterplot of differentially expressed genes and sample clustering analysis for all replicates of volunteer and MD samples. Results show the
expression levels of 154 genes are observed up-regulated and 212 genes are observed down-regulated (P < 0-05 and llog, fold changel >1). (d) Heat map
is generated from normalized fragments per kilobase (FPKM) of 366 consistent differentially expressed genes (DEGs) among three paired samples. The
expression level of each transcript is represented by a colour range from green (low) to red (high). [Colour figure can be viewed at wileyonlinelibrary.com]
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Fig. 2. Expression levels of the top 200 genes in volunteer and Méniere’s disease (MD) samples. (a) Expression levels of the top 200 genes in the
volunteer group in descending order. Numbers in blue on the right side of each panel represents the ranking of the same genes in MD group.
(b) Expression levels of the top 200 genes in the MD group in descending order. Numbers in red on the right side of each panel represents the
ranking of the same genes in volunteer group. [Colour figure can be viewed at wileyonlinelibrary.com]
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Fig. 3. Differentially expressed genes (DEGs) in control and Méniere’s disease (MD) groups. (a) All DEGs in control and MD samples. The red
line indicates the expression level of 36 333 transcripts in the control group, and each blue dot represents the expression level of the same
transcripts in the MD group. (b) The 150 most DEGs in the control group. The numerical values in red on the right side of each panel represent
the fold difference in expression for control versus MD. (c) The 150 most DEGs in the MD group. The numerical values in blue on the right side

of each panel represent the fold difference in expression for MD versus control. [Colour figure can be viewed at wileyonlinelibrary.com]

genes were expressed differentially between control and
MD samples, with 154 genes up-regulated and 212 down-
regulated in the MD group (llog, fold changel > 1 and
P < 0-05) (Fig. 1c). The expression patterns of these 366
DEGs were shown as a heat-map using hierarchical cluster
analysis (Fig. 1d). These results indicated that the RNA-seq
system was of good quality and accurate.

Expression levels of the top 200 most abundant genes
in MD or control groups

In order to describe the characterization of gene expression
profiles in the control and MD groups, genes that were
expressed most abundantly in two populations were ana-
lysed, respectively. The expression levels of the top 200
most abundant transcripts in control group are shown in
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Fig. 4. The top 50 uniquely expressed genes in control and Méniere’s disease (MD) groups. (a) The top 50 uniquely expressed genes in control

group in descending order. (b) The top 50 uniquely expressed genes in MD group in descent order. Glutathione S-transferase mu 1 (GSTM1)

exhibits highest fold change between MD patients and controls. [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 2a. For comparison, expression levels and abundance
rankings for the same transcripts in the MD group are pre-
sented at the same time. Figure 2b shows the 200 most abun-
dant transcripts in MD group in a similar manner. As shown
in both figures, the majority of the transcripts expressed
richly in one group were also expressed abundantly in the
other. Notably, among those most abundantly expressed
genes, HBB, FCGR3B and MAP3K7CL were only expressed
richly in the control group (Fig. 2a), and LRP1 and SLC11A1
were only expressed richly in the MD group (Fig. 2b).

Differentially expressed genes in MD and
control groups

To determine the genes that were expressed differentially in
the control and MD groups, the expression levels of all tran-
scripts detected in the control group were compared with
those in the MD group, and the top differentially expressed
genes (DEGs) in both populations were selected. Figure 3a
shows the general view of the detected transcripts in both
populations. DEGs were classified as those whose expression
levels were above background and at least twofold different
in two groups (P < 0-05). Figure 3b,c illustrates the top 150
DEGs in the control and MD groups, respectively. Notably,
the DEGs highly expressed in the MD group, such as NSFPI,
TMEM176B, TMEM176A and MYL4, have not been charac-
terized previously and need to be studied further in future.

Figure 4a,b shows the top 50 uniquely expressed genes
(UEGs) in the control and MD groups, the majority of
which were expressed at relatively low levels in the other
group, with approximately half being uncharacterized
genes and half the known genes being non-coding RNAs. It
was noteworthy that GSTM1 was expressed specifically in
all MD RNA-seq data, which was in the first place in the
top50-UEGs list and was selected to be validated in the fol-
lowing validation.

Genes related to ion homeostasis

In order to alleviate vertigo in MD patients, it was impor-
tant to restore and maintain ion homeostasis. Figure 5
shows the possible genes related to ion homeostasis in the
control and MD groups. We found that the solute carrier
(SLC) family members were expressed differentially in both
populations, with SLC4A10, SLC4A1 being down-regulated
significantly as well as SLC9A2 and SLC8A2 up-regulated
in MD versus control (Fig. 5).

Gene ontology (GO) enrichment of the genes
expressed differentially in MD and control groups

In order to gain overall insight into the function of annota-
tion genes, the GO functional classification was performed.
A total of 298 clusters (P<0-05) was annotated
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Fig. 5. Genes related to ion homeostasis. (a) Comparison of expression levels for genes that encode proteins associated with ion homeostasis by

dividing the value of control with that of Méniere’s disease (MD). Numerical values in red in the right side of each panel represent the ratio of

control versus MD. (b) Comparison of expression levels for genes that encode proteins associated with ion homeostasis by dividing the value of

MD with that of control. Numerical values in blue in the right side of each panel represent the ratio of MD versus control. [Colour figure can be

viewed at wileyonlinelibrary.com]

significantly with the GO function of biological process
(BP). GO analysis demonstrated that the up-regulated
enrichment was enriched in specific biological processes,
including cellular response to corticotrophin-releasing
hormone stimulus, negative regulation of dendritic cell
differentiation, cellular response to histamine and down-
regulated with the chemokine-mediated signalling pathway
and fatty acid elongation (P < 0-01) (Fig. 6). The top four
of the up-regulated enrichments were related closely to the
immune system. These results suggest that further studies
may be required to elucidate whether the immune system
is involved in the pathogenesis of MD.

Protein—protein interaction (PPI) network for the
protein products of the differentially expressed genes
in MD and control groups

The PPI network was constructed based on the Search Tool
for the Retrieval of Interacting Genes (STRING) database
to depict their complex relationship between control and
MD patients. As shown in Fig. 7a, proteins encoded by
DEGs in both populations presented a complicated interac-
tion network, which might facilitate the further exploration

of molecular mechanisms underlying MD development.
The specific PPI networks for protein products of targeted
DEGs, GSTM1, SLC4A10, TMEM176A and TMEM176B
are shown in Fig. 7b, supplying us with feasible candidates
for further research concerning PPI.

Verification of RNA sequencing data by qRT-PCR
and ELISA

qRT-PCR was first applied to verify the expression levels of
candidate genes. As shown in Fig. 8, the relative mRNA
expression levels of GSTM1, TMEM176B, TMEMI176A,
NSFP1 and MYL4 were increased differentially and
SLC4A1, SLC4A10, UTY were decreased in MD patients,
which were consistent with the RNA-seq data.

Human serum samples were analysed for the levels of
GSTM1, TMEM176B and SLC4A10 protein products by
ELISA. As shown in Fig. 9, the total GSTM1, TMEM176B
and SLC4A10 protein levels are shown in MD serum com-
pared to those in the control group, respectively (P < 0-05),
consistent with the results of qRT-PCR. The serum con-
centration of GSTMI protein was increased substantially in
MD patients. These indicate that the gene expression
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Fig. 6. Top gene ontology (GO) analysis of differentially expressed genes (DEGs) in Méniere’s disease (MD) patients. The top enriched GO terms

of the up-regulated and down-regulated DEGs in biological progress are shown. The adjusted enrichment P- values are labelled in different

colours in the graph. [Colour figure can be viewed at wileyonlinelibrary.com]

observed in blood transcriptome between the two groups
was highly credible.

Discussion

To our knowledge, this is the first description of the global
transcriptome of differential genes between controls and
sporadic MD patients using RNA-seq technology. In the
present study, we found that a total of 366 genes were
expressed differentially between control and MD samples,
in which 154 genes were up-regulated and 212 were down-
regulated in the MD group. These findings indicate that
the initial data are obtained successfully with RNA-seq
technology, which lays a solid foundation for the subse-
quent experiments.

Of these top 150 DEGs, certain genes, i.e. TMEM176B
and TMEM176 highly expressed in MD, especially drew
our attention. Previous reports have suggested that
TMEM176B was an immature dendritic cell marker and its
expression was up-regulated in blood of patients with acute
rejection, indicating that it was associated preferentially
with alloantigen presentation and inflammation [41,42].
Moreover, studies have demonstrated that TMEM176A and
TMEM176B were expressed highly in immature monocytes
and dendritic cells (DCs) of rat and human cancer tissues
[43,44]. It is conceivable that TMEM176B and TMEM176A
may contribute to the pathogenesis of MD via regulation of
the activities in the immune system.

It was reported that a genetically induced dysfunction of
ionic transport, which affected the ion homeostasis in the
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inner ear, might act as a predisposing factor to develop MD
[45,46]. In this study, we found that SLC4A10 and SLC4Al
were down-regulated significantly in MD. A previous
report suggested that SLC4A10 participated in the regula-
tion of pH homeostasis in leucocytes, which indicated that
inflammation was associated with a local pH reduction and
might be a ‘danger signal’ to activate immune responses
[47]. Recently, another SLC family member, SLC4A1, had
been hypothesized to be a candidate gene in the pathogene-
sis of lupus and lupus nephritis, which stimulated the func-
tional activity of innate immune cells and cell-specific
functions [48]. Interestingly, SLC4A1 was reported to be
over-expressed significantly in the human endolymphatic
sac, compared to adjacent dura mater [49], which was con-
trary to the result seen in our study. Possible explanations
might be that the methods and the sources of the organiza-
tions are different and thus require further investigation to
understand the potential differences.

Next, we analysed the PPI network for genomewide
RNA-seq of two groups. The analysis showed that DEGs
were enriched in different ways, supporting the hypothesis
that these genes might have different networks of mecha-
nisms mediated by a diverse array of signalling molecules.
The specific PPI network for protein products of targeted
DEGs, GSTM1, SLC4A10, TMEM176A and TMEM176B
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Fig. 7. Protein—protein interaction network
analysis of the differentially expressed genes
(DEGsS) in control and Méniére’s disease
(MD) groups. (a) PPI network for DEGs in
both groups supplying a complicated
interaction network. (b) Specific protein—
protein interaction (PPI) network for protein
products of glutathione S-transferase mu 1
(GSTM1), solute carrier family 4 member
(SLC4)A10, transmembrane protein 176
(TMEM176)A and TMEM176B. [Colour
figure can be viewed at wileyonlinelibrary.
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Fig. 8. Expression levels of differentially expressed genes (DEGs) in
validation cohort by quantitative reverse transcription—polymerase
chain reaction (QRT-PCR) in 30 paired samples. The mRNA
expression levels of glutathione S-transferase mu 1 (GSTM1), T
transmembrane protein 176 (TMEM176)A, TMEM176B, N-
ethylmaleimide-sensitive factor pseudogene 1 (NSF-P1), myosin
light-chain 4 (MYL4), solute carrier family 4 member (SLC4A)1,
SLC4A10 and ubiquitously transcribed tetratricopeptide repeat
containing, Y-linked (UTY) are presented, respectively. Data are
presented as the relative fold change in expression. Asterisk indicates
a significant difference when compares with controls. *P < 0-05;
P <0-01; ***P<0-001. DEGs: differentially expressed genes.
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Fig. 9. Validation of protein products by
enzyme-linked immunosorbent assay (ELISA)
in another 30 paired samples. (a-c) The serum
levels of glutathione S-transferase mu 1
(GSTM1), transmembrane protein 176
(TMEM176)B and solute carrier family 4
member (SLC4A)10 protein products

are shown for each group studied.

Asterisk indicates a significant difference
when compared with controls. *P < 0-05; **
P < 0-01-
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were also presented, which indicated that the regulation of
those genes could be governed by the interaction with other
members of the components. Later, the results were con-
firmed by qRT-PCR and ELISA, which demonstrated the
accuracy and reliability of the RNA-seq data.

Interestingly, it is noteworthy that MD patients demon-
strated higher levels of GSTM1 transcripts relative to con-
trols. Several studies have suggested that GSTM1 was
associated with higher oxidative stress and increased risk
for inflammatory diseases, including rheumatoid arthritis
[50], systemic lupus erythematosus [51], ulcerative colitis
[52], ankylosing spondylitis [5] and inflammatory bowel
disease [6]. In addition, the increased frequency of HLA
and GSTM1 plays an important role in the alloimmune
responses of renal transplant recipients [53]. Moreover,
null genotypes of GSTM1 and GSTT1 involved in oxidative
stress and mitochondrial dysfunction were susceptible to
noise-induced temporary threshold shifts for high frequen-
cies and were found to have an 8-88-fold risk for the onset
of presbycusis [54,55].

Recent studies have demonstrated that several allelic var-
iations in immune response genes such as MHC class I
polypeptide-related sequence A (MICA), Toll-like receptor
(TLR)-10 or nuclear factor kappa B1 (NF-kB1) were associ-
ated with hearing loss progression in MD patients. Some
data suggested that allelic variants of MICA and TLR-10
genes, involved in the innate immune response, might

© 2017 British Society for Immunology, Clinical and Experimental Immunology, 192: 33-45

influence the susceptibility and time—course of hearing loss
of MD in European populations [56,57]. A study showed
that allelic variants in NF-kB1 influenced the hearing out-
come in patients with unilateral MD. Moreover, steroids
were potent blockers of the NF-kB1 pathway, which might
explain the observed response to systemic steroid treatment
in patients with sudden SNHL or MD [58]. Notably, a meta-
analysis demonstrated that the functional GSTM1 and NF-
kB1 polymorphisms were associated with SLE risk in Asians
[59].

However, there are no reports concerning the expression
of GSTMI in MD study. Our research shows that GSTM1
exhibits a high fold change between two groups and has
been proposed to have a functional association with MD.
The findings from the current study provide convincing evi-
dence that the immune system is involved in the pathogene-
sis of MD, which is consistent with a previous study [60].
Our results demonstrate that a high level of GSTM1 expres-
sion detected in MD blood indicates a higher probability of
immune system involvement in MD development. Biological
information analyses suggest that immune factors might be
involved in the development of MD and GSTM1 might be a
candidate potential biomarker for MD diagnosis.

In conclusion, the present study indicates that the RNA-
seq system is of good quality, accurate and reproducible.
The RNA expression patterns suggest that immunological
factors may be involved in MD pathogenesis. Additionally,
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the present work points out possible target genes related
with MD pathogenesis through layers of screening. To our
knowledge, the top UEG in MD, GSTM], is probably a
candidate for the diagnostic biomarkers of MD and pro-
vides as basis for further biological and functional investi-
gations. However, our results from RNA-seq were based on
a small sample size, which might not provide sufficient
information to support our hypothesis. Further studies
with large samples are needed to identify the accuracy of
GSTM1 in MD diagnosis and the relationship between
GSTM1 level and future treatment modalities, and to deter-
mine the true prevalence of immune pathological mecha-
nisms underlying MD.
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