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Abstract Brain injuries such as trauma and stroke lead to
glial scar formation by reactive astrocytes which produce
and secret axonal outgrowth inhibitors. Chondroitin sulfate
proteoglycans (CSPG) constitute a well-known class of extra-
cellular matrix molecules produced at the glial scar and cause
growth cone collapse. The CSPG glycosaminoglycan side
chains composed of chondroitin sulfate (CS) are responsible
for its inhibitory activity on neurite outgrowth and are depen-
dent on RhoA activation. Here, we hypothesize that CSPG
also impairs neural stem cell migration inhibiting their pene-
tration into an injury site. We show that DCX+ neuroblasts do
not penetrate a CSPG-rich injured area probably due to Nogo
receptor activation and RhoA/ROCK signaling pathway as we
demonstrate in vitro with neural stem cells cultured as
neurospheres and pull-down for RhoA. Furthermore, CS-
impaired cell migration in vitro induced the formation of large

Electronic supplementary material The online version of this article
(doi:10.1007/s12035-017-0565-8) contains supplementary material,
which is available to authorized users.

>< Marimelia Porcionatto
marimelia.porcionatto @unifesp.br

Department of Biochemistry, Laboratory of Neurobiology,
Universidade Federal de Sdo Paulo, Rua Pedro de Toledo, 669 — 30
andar, Sdo Paulo, SP 04039-032, Brazil

Physiopathology Laboratory, Butantan Institute, Sao
Paulo 05503-900, Brazil

Department of Morphological Sciences, Universidade Federal do Rio
Grande do Sul, Porto Alegre 90050-170, Brazil

Department of Cell Biology, University of Virginia School of
Medicine, Charlottesville 22903, USA

Department of Cell and Developmental Biology, Biomedical
Sciences Institute, Universidade de Sao Paulo, Sdo Paulo 05508-000,
Brazil

mature adhesions and altered cell protrusion dynamics.
ROCK inhibition restored migration in vitro as well as de-
creased adhesion size.
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Introduction

In the adult mammalian brain, neuroblasts from the
subventricular zone (SVZ) travel through the rostral migratory
stream towards the olfactory bulb, where they differentiate
and integrate into the local circuitry [1-3]. Injury alters
neurogenesis and stimulates neuroblast migration from the
neurogenic niche to the injured area [4, 5]. Interaction of neu-
ral stem cells (NSC) with extracellular matrix (ECM) compo-
nents is critical for migration, and external stimuli are trans-
duced into cytoskeletal rearrangements that influence
neuroblast migration by the action of RhoGTPases [6].

After a trauma to the brain, injured neurons present a lim-
ited capacity to regenerate due to the formation of a glial scar,
which acts as a barrier for axons and neurite regrowth [7].
Glial scars are produced mainly by reactive astrocytes, oligo-
dendrocytes, and microglia. These cells produce axonal
growth inhibitory molecules, such as chondroitin sulfate pro-
teoglycans (CSPG), Nogo, myelin-associated glycoprotein
(MAG), and oligodendrocyte-myelin glycoprotein (OMGp)
[8]. CSPG comprise a heterogeneous class of proteoglycans
that includes, in the brain, RPTPf3, phosphacan, NG2,
brevican, aggrecan, and neurocan. These membrane and
ECM proteoglycans play important roles during CNS devel-
opment, including control of axonal outgrowth and guidance
[9, 10], directing neuronal precursor migration and regulating
Purkinje cell differentiation and maturation in the developing
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cerebellum [11]. The CS side chains of CSPG are re-
sponsible for the inhibitory activity, and degradation of
CS by the action of the bacterial enzyme chondroitinase
ABC attenuates CSPG inhibitory activity and promotes
axon regrowth [12—14]. Recent studies identified recep-
tor protein tyrosine phosphatase sigma (RPTPo) and
Nogo receptor family members (NgR) as CSPG recep-
tors that act through binding to CS [15-17].

Inhibition of neurite outgrowth mediated by CSPG de-
pends on RhoA activation [16, 18, 19], and RhoA regulates
maturation of cell-matrix adhesions and cell contractility
through activation of myosin II [20]. Cell adhesion, contrac-
tility, and signaling help to polarize migrating cells and allow
directional motility. Integrins, paxillin, and FAK (focal adhe-
sion kinase), among other proteins, generate the signals that
regulate directed cell migration [21].

In light of the importance of CSPG/CS in axonal growth
inhibition and RhoA activation [8, 19, 22], we hypothesized
that a similar mechanism may occur during neural stem cell
adhesion and migration. Here, we report how CS regulates
adult NSC migration in vitro, describing changes in protrusion
formation and adhesion dynamics. Also, we suggest that these
processes are mediated by RhoA/ROCK signaling.

Material and Methods
Animals

Adult male C57BL/6 mice used for all experiments were
maintained under a 12 h light/dark cycle with access to water
and food ad libitum. All experimental procedures and animal
handling performed were approved by the Committee for
Ethics in Research from Universidade Federal de Sao Paulo
and University of Virginia Animal Care and Use Committee
and followed international guidelines for care and use of ex-
perimental animals (http:/www.iclas.org).

TBI Model and Tissue Preparation

Adult 12-week-old male C57BL/6 mice were anesthetized
with intraperitoneal injection of ketamine chloridrate
(66 mg/kg) and xylazine (32 mg/kg) mixture (Dopalen,
Brazil). Traumatic brain injury (TBI) was performed accord-
ing to previously described protocol [23]. Briefly, a metal
needle was chilled by immersion on isopentane on dry ice
and was inserted four times into mice motor cortex (stereotax-
ic coordinates from bregma: AP +0.198 mm; ML +0.175 mm;
DV —0.15 mm) [24]. Fourteen days later, mice were anesthe-
tized and intracardially perfused with 4% paraformaldehyde
(PFA) in 0.1 M PBS. Brain was removed from skull,
postfixed in 4% PFA overnight at 4 °C, submersed in
30% sucrose at 4 °C, and frozen using liquid nitrogen.

@ Springer

Cryostat coronal sections (20 um) were collected on silanized
slides (Superfrost slides, Fisher Scientific, USA) and prepared
for immunofluorescence staining for detection of CSPG and
DCX (marker for neuroblasts).

Neurosphere Assays and Transfection

NSC were obtained from the SVZ of 6-week-old C57BL/6
mice and cultured as neurospheres as previously described
[25]. Complete medium composition was DMEM:F12 1:1
(Gibco, USA), 2% B27 supplement (Gibco), 20 ng/ml EGF
(Sigma, USA), 20 ng/ml FGF2 (R&D Systems, USA), 1%
penicillin/streptomycin (Gibco), and 5 pg/ml heparin
(Sigma). Neurospheres were ready to passage when the ma-
jority of them was about 100-150 um in diameter [26].
Neurospheres were dissociated with trypsin and gently tritu-
rated to get single-cell suspension that was expanded as
secondary spheres, used as single cells or used for
nucleofection. Experiments were performed with cul-
tures between passages 3 and 10.

For migration assay, glass coverslips were covered with
10 pg/ml poly-L-lysine (Sigma) for 30 min at room tempera-
ture, washed three times with 0.1 M PBS, dried on air, incu-
bated with 50 pug/ml laminin (Sigma) for 30 min at 37 °C,
washed with DMEM (Gibco), and finally incubated with
40 pg/ml CS-A sodium salt from bovine trachea (Sigma) for
4 h at 37 °C and washed with DMEM. All coverslips coated
with CS were previously coated with laminin. Neurospheres
were plated in complete medium, followed by incubation for
20 min at 37 °C in a CO, incubator (to allow cell adhesion)
prior to the treatment with 10 pM of ROCK inhibitor Y27632
(Santa Cruz, USA) or Nogo-66 (1-40) antagonist peptide
(NEP1-40, Sigma). Migrated distance was defined as the ex-
tent of cell migration measured from the border of the
neurosphere and the cell final position. Distance measure-
ments were performed blind by an unbiased observer using
Image] (http:/rsbweb.nih.gov/ij/).

For total internal reflection fluorescence (TIRF) assay,
neurospheres were dissociated and 3—5 x 10° cells were
nucleofected (Amaxa Biosystems, Germany) with 5 pg of
paxillin-GFP plasmid [27], according to the manufacturer’s
protocol (A-033) for adult neural stem cells. Immediately after
nucleofection, cells were transferred to a 6-well culture plate
with pre-warmed complete medium and incubated at 37 °C in
a CO, incubator for 24 h.

Pull-Down

Active RhoA was measured using pull-down assay kit from
Cytoskeleton (USA). Neurospheres were plated on laminin or
laminin + CS precoated plates and 3 h after plating,
neurospheres were washed with ice-cold PBS 0.1 M followed
by harvesting with 1x Cell Lysis Buffer supplemented
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with 1x Protease Inhibitor Cocktail. NSC protein extract
(240 png) was incubated at 4 °C for 1 h with 50 ug of
rhotekin-RBD beads, which binds specifically to GTP-Rho
protein. Bead samples were resuspended in 20 puL. Laemmli
buffer. Total extract (15 pg), His-Rho control protein (20 ng),
and bead samples were subjected to SDS-PAGE (12%) and
transferred to a nitrocellulose membrane (GE Healthcare,
UK). The membrane was blocked with 5% BSA (Sigma-
Aldrich, USA) in TBS-T (TBS, 0,01% Tween® 20) at room
temperature for 1 h and then incubated for 18 h at 4 °C with
anti-RhoA monoclonal antibody (1:500, Cytoskeleton) or B-
actin (1:10,000, Millipore, Germany). The nitrocellulose
membrane was washed three times with TBS-T and subse-
quently hybridized with horseradish peroxidase-conjugated
anti-mouse IgG (1:5000, Santa Cruz Biotechnology, EUA)
at room temperature for 1 h. After three washes with TBS-T,
immune complexes were visualized by adding Luminata Forte
Western HRP Substrate (Millipore, Germany) and chemilumi-
nescent signal was acquired on Odyssey FC® (LI-COR
Biosciences, USA). Molecular size of immunoreactive bands
was determined by Kaleidoscope prestained protein standards
(Bio-Rad, USA).

Microscopy

Migration Speed and Protrusion Dynamics NSC as single
cells were plated on laminin or laminin + CS glass-bottomed
dishes in complete medium containing 25 mM Hepes,
allowed to adhere for 20 min at 37 °C in a CO, incubator
and imaged in an inverted phase contrast microscope (TE-
300; Nikon, Japan) equipped with 37 °C heater and controlled
by Metamorph software (Molecular Devices, USA). For mi-
gration speed and directionality, time-lapse images were ob-
tained with a x10 objective at 5-min intervals for 18 h and
each cell was individually tracked using ImageJ software. For
protrusion dynamics, time-lapse images were acquired at 5 s
during 30 min, and for each protrusion, a line (5 pixels wide)
was drawn along regions oriented in the protrusion direction
and perpendicular to the lamellipodial edge. Protrusion pa-
rameters were quantified by kymograph [28], using Imagel
software. The results were plotted in a graph where the Y-axis
is the distance reached by the lamellipodium along that line,
and the X-axis is time.

Adhesion Dynamics NSC expressing paxillin-GFP were
plated on laminin or laminin + CS. After 40 min, images were
acquired on a Total Internal Reflectance Fluorescent (TIRF)
microscope (Olympus 1X70, 1.45 NA oil Olympus PlanApo
660 TIRFM objective) fitted with a Ludl modular automation
controller (LudlEletronic Products, USA) and controlled by
Metamorph. Paxillin-GFP was excited with a 488-nm laser
line of an Argon laser (MellesGriot, USA), and images were
acquired at 3-s intervals for 8 min and analyzed using ImageJ

software. The leading edge was zoomed in (150%) and the
size of paxillin-positive adhesions within focal adhesion sites
was measured when matured and before disassembly.

Immunohistochemistry

Fixed coronal brain sections, neurospheres, or single NSC
were permeabilized with 0.1% Triton X-100 for 10 min,
blocked with 5% fetal bovine serum in 0.1% Triton X-100
for 1 h at room temperature, and then incubated with primary
antibodies at 4 °C overnight. Incubation with the appropriate
secondary antibodies or FITC-Phalloidin (1:200, Sigma) and
DAPI (1:10,000, Molecular Probes, USA) was performed at
room temperature for 1 h. Glass slides were mounted using
Fluoromount G mounting medium (Electron Microscopy
Sciences, USA). Brain images were captured on a Leica
TCS SP8 confocal microscopy using LASAF software
(Leica, Germany), and NSC images were captured on an
Olympus FluoView 300 confocal system using the
FluoView software (Olympus, Japan).

Primary antibodies: mouse anti-CSPG (1:250, Abcam,
USA); guinea pig anti-DCX (1:1000, Millipore, USA); chick-
en anti-GFAP (1:500, Abcam). Secondary Antibodies
(Invitrogen, USA): Alexa Fluor 594-conjugated goat
anti-mouse IgG (1:300); Alexa Fluor 488-conjugated
goat anti-guinea pig IgG (1:1000); Alexa Fluor 488-
conjugated goat anti-chicken IgG (1:500).

Statistical Analysis

Data are presented as mean = SEM and analyzed using the
unpaired Student’s ¢ test by the use of Prism v5.0 software
(GraphPad Software, USA). Statistical significance was set
atp <0.05.

Results

A CSPG-Rich Environment Impairs NSC Migration
into the Injury Site

Following injury, migratory DCX+ neuroblasts leave the SVZ
niche located at the lateral ventricle wall and migrate towards
the injury guided by chemokines, ECM components, and
blood vessels [5, 29, 30]. To assess whether neuroblast migra-
tion into the CSPG-rich scar was impaired, we performed a
TBI model to the adult murine motor cortex, and 2 weeks after
TBI, DCX+ neuroblasts that migrated from the SVZ towards
the injury were immunolocalized. DCX+ neuroblasts did not
penetrate into the CSPG-rich injury site (Fig. 1), shown by
immunostaining for CSPG core protein. As soon as the
neuroblasts reach an area with high content of CSPG, cells
pile up at the injury border and migrate around it.
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Fig. 1 CSPG impairs NSC penetration into the injury site after TBI and
acts through NgR. a Two-week postinjury glial scar was already formed
and NSC migration was evaluated. DCX+ neuroblasts (green) leave their
niche at the lateral ventricle (LV) and migrate towards the injury site
characterized by high expression of CSPG (magenta). NSC are prevented
to enter the proteoglycan-rich regions, accumulate at the injury border,
and migrate around this area (detail). Scale bar at 100 um. b NSC cul-
tured as neurospheres were plated on laminin + CS with or without the

To assess how CS impairs NSC migration in vitro, SVZ-
derived NSC cultured as floating neurospheres were plated on
laminin + CS, which induces an inhibitory substrate for
neurite growth, and treated with NEP1-40, a Nogo-66(1-40)
antagonist peptide which blocks signaling through Nogo re-
ceptor 1 (NgR1). NgR1 is implicated as a functional receptor
for MAIs (myelin-associated inhibitors) [31, 32] and recently
characterized as receptor for CSPG expressed by neurons
[15]. NSC derived from neurospheres plated on laminin +
CS and treated with 10 uM NEP1-40 migrated longer dis-
tances (average 180 wm) when compared to NSC plated on
laminin + CS without NEP1-40 treatment (average 60 wm)
(Fig. 1b). These data suggest NgR1 as a CS receptor which
mediates impairment of NSC migration.

CS Inhibits NSC Migration and Decreases Migration
Speed In Vitro

In order to elucidate how CS might influence NSC migration
and to evaluate NSC migratory behavior in response to CS,
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NgR inhibitor NEP1-40. CS inhibits NSC migration and decreases the
distance traveled by the cells. In the presence of NEP1-40, NSC migrated
longer distances (p < 0.0001), suggesting that the inhibition of migration
promoted by CS is mediated by NgR. Data were collected 18 h after
neurospheres were plated. Number of neurospheres analyzed: with
NEP1-40 = 115; without NEP1-40 = 123. NSC were immunolabeled
with GFAP (green) and nuclei stained with DAPL. Scale bar at 200 um
(Color figure online)

neurospheres were plated on laminin only, a permissive sub-
strate, or on laminin + CS and measured migration distance
and speed. When adhered to laminin, cells migrate out of the
neurosphere, and in contrast, NSC migration was greatly
inhibited when neurospheres were plated on laminin + CS in
comparison to laminin alone (Fig. 2a; p < 0.0001).
Furthermore, all cells migrating from neurospheres plat-
ed on laminin + CS migrated less than 10 pum, whereas
the average migration distance of cells plated on lami-
nin was 100 pum. These results show the inhibitory
properties of CS on NSC migration, corroborating with
the in vivo results presented in Fig. 1.

Based on the observation that CS inhibited NSC migration
in vivo and in vitro, we wondered whether CS also affected
the speed of migrating cells. Neurospheres were dissociated
and NSC were plated as single cells on laminin + CS covered
glass bottom plates. Images were acquired at 5-min intervals
for 18 h. NSC migrating on laminin + CS migrated less dis-
tance than those on laminin (p = 0.0230) (Fig. 2b, ¢) and
moved significantly slower in the first hour (average speed
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Fig. 2 CS inhibits NSC migration, decreases speed, and alters
protrusion, and adhesion dynamics in vitro NSC cultured as
neurospheres were plated on laminin or laminin + CS. a CS impairs
NSC migration and decreases the distance traveled by the cells
(***p < 0.0001). Data were collected 18 h after neurospheres were
plated. Scale bar at 200 um. Number of neurospheres analyzed:
laminin = 17; CS = 10. b NSC were plated as single cells, and images
were captured every 5 min for 18 h. Cells are represented as dots and the
migration routes as lines 1 and 5 and 16 h after start. Scale bar at 20 um. ¢
Quantification of migration from start to finish from NSC plated as single
cells for 18 h represented on Fig. 2b (*p = 0.0230). Number of cells
analyzed: laminin = 20; CS = 16. d NSC average speed during 18 h of

11.8 um/h; p = 0.0181) when compared to cells plated on
laminin (average speed 20.3 pm/h). In the following hours,
although not reaching statistical significance (hour 2

migration. NSC are significantly slower within the first hour of migration
(*p =0.0181) and kept migrating lower over time although not reaching
statistical significance. From the hours 6 to 9, cells migrated faster (not
statistically significant) on laminin + CS than on laminin, and from hours
10-18, migration speed was similar in both substrates. Number of cells
analyzed: laminin n = 20; CS n = 15. e Kymographs of NSC plated on
laminin and laminin + CS. Protrusion progressions are outlined by the
yellow line. NSC protrusions on laminin + CS are nonproductive with no
retraction or progression. f NSC protrusions formation speed is slower on
CS (#p = 0.0167). Number of protrusions analyzed: laminin = 22;
CS = 17. At least three independent movies were acquired for each
condition. d distance, ¢ time. Scale bar at 200 um (Color figure online)

p=0.083; hour 3 p =0.109; hour 4 p = 0.058), the inhibitory
effect of CS was consistent among experiments, as cells kept
on moving slower on laminin + CS than on laminin (Fig. 2d
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and Online Resources 1 and 2), and there was an in-
crease although not statistically significant, in migration
speed of cells on laminin + CS up to 9 h. From the
tenth hour on, migration speed was equivalent on lam-
inin + CS and on laminin, suggesting that CS inhibits
the initiation of migration in vitro, and inhibition is not
sustained for longer periods of time.

CS Alters NSC Protrusion and Adhesion Dynamics

Protrusion formation and adhesion dynamics are early migra-
tory events. Following the observation that CS inhibits NSC
migration and decreases migration speed in vitro, the question
was whether CS would affect these key events in cell migra-
tion. The presence of CS in the substrate caused a 50% de-
crease in the number of cells displaying three or more protru-
sions when compared to cells grown on laminin alone (data
not shown), and the protrusions were more stable with in-
creased ruffling. Kymography revealed that protrusions of
NSC plated on laminin + CS exhibited no progression, and
the speed of protrusion formation was significantly slower
(p = 0.0167) compared to protrusion formed by cells plated
on laminin that induced persistent protrusion progression
(Fig. 2e, f). These data suggest impairment on cell adhesion
properties induced by CS.

Next, NSC were plated on laminin or laminin + CS sub-
strates for 1 and 3 h, followed by fixation, FITC-phalloidin
staining, and measurement of cell area (Fig. 3a). At all time
points, NSC plated on laminin + CS displayed smaller
area in comparison to cells on laminin (Fig. 3b), and
the majority of cells remained rounded showing many
prominent stress fibers, which is usually associated with
inhibited migration. After 18 h, individual NSC spread
on laminin and formed clusters on laminin + CS, sug-
gesting that the inhibitory environment induces NSC to
migrate along or towards each other and not exhibit
exploratory behavior (Fig. 3a). After 18 h, cells were
overlapping and it was not possible to define boundaries
in order to have an accurate measure.

To evaluate adhesion formation and dynamics, NSC
expressing paxillin-GFP were imaged using TIRF micros-
copy 40 min after plating on laminin or laminin + CS.
Forty percent of the adhesions produced by NSC plated
on laminin matured into stable adhesions, and adhesions
were productive with active turnover, whereas CS promoted
the formation of large elongated and stable adhesions in ap-
proximately 57% of the adhesions near the cell leading edge,
and adhesions presented no turnover, assemble and disassem-
ble (Fig. 3c, d and Online Resources 3 and 4). All together,
these data suggest that CS induces the production of
stable protrusions and adhesions, which inhibits NSC
spreading and migration.
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RhoA Mediates CS Inhibitory Effects on NSC Migration

Signals from ECM and soluble factors regulate NSC migra-
tion, and most of these signals converge to RhoGTPases
which regulate cytoskeleton reorganization and cell migration
[6]. Treatment of neurospheres and NSC single cells with
Y27632, an inhibitor of ROCK, reversed the inhibitory effects
of CS on cell migration, suggesting that CS regulates RhoA/
ROCK signaling pathway (Fig. 4a). Inhibition of ROCK leads
to a significant increase in the distance NSC migrate out of the
neurosphere (p = 0.0004) (Fig. 4b). Furthermore, NSC spread-
ing area on laminin + CS substrate was larger in cells treated
with ROCK inhibitor than in untreated cells (Fig. 4c, d). After
3 h of Y27632 treatment, some cells formed two or more
protrusions and a long tail, and after 18 h, clusters of NSC
plated on laminin + CS were not observed (Fig. 4c).
Besides, while 70% of neurospheres plated on laminin +
CS had no cells migrating, addition of Y27632 induced
100% of the neurospheres to have cells migrating more
than 50 um (data not shown). TIRF analyses also revealed
that cells plated on laminin + CS in the presence of
Y27632 produced significantly smaller adhesions than
those produced by untreated cells (Fig. 4e, f and Online
Resource 5).

In order to determine if CS regulates RhoA/ROCK signal-
ing pathway during NSC migration, we assessed the activa-
tion of RhoA/ROCK using pull-down assay to measure active
RhoA (GTP-bound RhoA) 3 after neurospheres were plated
on laminin or laminin + CS. RhoA activity was increased in
neurosphere-derived cells plated on laminin + CS for 3 h
(Fig. 5). These results provide additional insight that CS in-
hibits the initiation of NSC migration in vitro through RhoA/
ROCK activation.

Discussion

In the adult injured nervous system, components of the glial
scar such as CSPG inhibit axon growth and regeneration [33].
The TBI-induced glial scar is a CS-rich environment that pre-
vents SVZ-derived migratory neuroblasts from entering the
injured area, reducing the chances for regeneration. Using
in vitro experiments, we were able to show that CS acts
through NgR and activates RhoA/ROCK signaling, decreases
distance and speed of NSC migration and also induces the
formation of large stable adhesions. Inhibition of ROCK
allowed NSC migration and reversed CS effects on NSC,
suggesting that CS inhibits NSC migration through RhoA/
ROCK activation.

Cell proliferation and migration to the injury site are the
initial steps in NSC recruitment to regenerate the injured tis-
sue. Traumas to the CNS such as ischemia or TBI activate
astrocytes and oligodendrocytes that, together with infiltrating
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Fig. 3 CS promotes formation of a
large and elongated adhesions. a,
b NSC were plated on laminin or
laminin + CS for 1 and 3 h, fixed,
and stained with FITC-phalloidin.
CS induced NSC to show a
smaller spreading area in
comparison to cells plated on
laminin. At least 30 cells were
measured for each condition in
three independent experiments.
After 18 h, NSC formed clusters
on laminin + CS, whereas cells
were isolated when plated on
laminin only. Scale bar at 20 um.
¢, d Cells were nucleofected with
GFP-paxillin and plated on lami-
nin or laminin + CS, and pictures
were captured using TIRF micro-
scope. CS induced formation of
larger and elongated adhesions on
NSC when compared to laminin
(***p = 0.0001). Scale bar at

6 um. Number of adhesions ana-
lyzed: laminin = 77; CS =71
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blood cells, express cytokines and chemokines as part of the
local inflammatory response. This localized increase in
chemokines produces a gradient that attracts NSC from the
neurogenic niche localized at the SVZ that migrate towards
the injured area [5, 34, 35]. Expression of chemokines and
their receptors is upregulated minutes after injury and can last
days depending on the severity of the trauma [29].

We investigated neuroblast migration towards TBI 2 weeks
postinjury and observed that there is extensive migration of
those cells from the SVZ to the lesion site. However, the glial
scar composed of OMGp, MAG, Nogo, and CSPG prevents
neuroblasts from penetrating the injury [36, 37]. The glial scar
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is well characterized as a specific ECM composition
that starts to form 7 days post-injury, is accompanied
of massive astrogliosis, and prevents axons from enter-
ing the lesion as well as causing growth cone collapse
due to filopodia retraction [38—40].

Recently, LAR (leukocyte common-antigen related phos-
phatase) and NgR have been described as CSPG receptors,
both expressed by NSC. Dyck et al. [41] showed that knock-
down of LAR and RPTPo increases spinal cord NSC attach-
ment, spreading, survival, differentiation, and proliferation on
CSPG substrate in vitro. Furthermore, NgR1, NgR3, and
RPTPo knockout mice showed enhanced fiber regeneration
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Fig. 4 RhoA/ROCK inhibition
promotes NSC migration on CS.
a, b NSC migrate significantly
longer distances in the presence of
10 uM of Y27632 on laminin +
CS, 18 h after plating

(***p = 0.0004). Scale bar at
200 pm. ¢, d Inhibition of ROCK
increases NSC area 1 and 3 h after
plating on laminin + CS

(***p = 0.0001). At least 30 cells
were measured for each condition
in three independent experiments.
Eighteen hours after plating, NSC
do not form cell clusters on CS in
the presence of Y27632, as it was
observed without ROCK
inhibition. e, f TIRF analyses
revealed that adhesions were
significantly smaller on cells
plated on laminin + CS in the
presence of ROCK inhibitor
(**p = 0.0188). Number of
adhesions analyzed: CS = 71;

I
CS +Y27632 = 30. Scale bar at 8
6 pm N
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following injury to the optic nerve [15, 19], NgR1 inhibition
promoted NSC proliferation and differentiation [42, 43], and
mild hypothermia combined with small interfering RNA si-
lencing of NgR gene in NSC promoted NSC axonal out-
growth after SCI in rats [44]. Neurospheres plated on CS
substrate in the presence of the NgR antagonizing peptide
NEP1-40 were able to migrate, strongly suggesting that
NSC inhibition of migration by CS is mediated by NgR
followed by activation of RhoA/ROCK.

Several studies reported that the CS side chains are respon-
sible for CSPG-mediated inhibition of neurite outgrowth and

@ Springer

growth cone collapse, and treatment of neurons with
chondroitinase ABC, an enzyme that degrades CS, abrogates
the inhibition [12, 14, 45-47]; however, in vivo treatment with
chondroitinase ABC increases significantly the inflammatory
response in the injury site [12]. Based on those observations,
we investigated the effects of CS on NSC migration in vitro.

Laminin is a glycoprotein that mediates cell adhesion and
migration during development and wound healing, and is a
permissive environment for NSC migration both in vivo and
in vitro. NSC plated on laminin were able to migrate, whereas
migration was impaired by the addition of CS. Considering



Mol Neurobiol (2018) 55:3185-3195

3193

His-RhoA Pull down Input
- + = + CS

37kDa -

a-RhoA

“u.-e
WB:

— — — — a-pactin

Fig. 5 CS induces RhoA activation. Neurospheres were plated on
laminin or laminin + CS for 3 h, and pull-down assay was performed to
assess RhoA activity. Laminin + CS increased RhoA activation within 3 h
after neurospheres were plated. One pull-down experiment was per-
formed in triplicate

that neurospheres behave as a 3-D environment for stem cells
only when they are floating, when adhered to the plate cells
migrate out of the sphere on a 2D substrate, similar to what
happens to the dissociated cells. Although on the first hour, the
speed of single cells migrating on CS (12 um/h) is 60% of the
speed of cells migrating on laminin (20 um/h), the net traveled
distance, measured as a straight line from start to finish, is
inhibited by 55%, similar to what we observed for cells mi-
grating away from the neurosphere. Moreover, NSC moved
significantly slower during the first hour in the presence of
CS, probably due to impairment of protrusion speed and sta-
bility, indicating that the inhibitory effect of CS is relevant for
the initiation of the NSC migratory process. These results
agree with Gu et al. [45] who demonstrated that treatment of
embryo-derived neurospheres with chondroitinase ABC en-
hanced NSC migration in vitro.

Cell migration is a multistep process composed of leading
edge protrusion, focal adhesion turnover, generation of trac-
tion forces, and tail retraction and detachment. NSC plated as
single cells were unable to spread on CS surface, keeping a
smaller area at all time points analyzed. Protrusion stability
indicates that alterations in protrusion dynamics could be re-
lated to disturbances in adhesion formation. TIRF time-lapse
images showed that CS induced the formation of large, stable
adhesions. Assembly and disassembly of adhesions and cell
detachment are essential for cell migration, and migration
speed also relies on the strength of cell attachment [48—50].
Number and size of adhesions can influence cell migration.
This is supported by the observation that fibroblasts lacking
protein tyrosine phosphatase have an increased number and
size of adhesions, culminating in a migration defect [51]. Our
results suggest that as NSC adhesions on CS are larger than
those formed on laminin and do not disassemble, cells have
difficulty to detach from the CS substrate, hampering cell
protrusion and migration.

Rac and Cdc42 are required at the leading edge, mediating
the formation of lamellipodia and filopodia, respectively,
whereas Rho and its effector ROCK are required for actin/
myosin stress fibers assembly for adhesion maturation and
detachment of the cell rear [21, 52]. The function of Rho/
ROCK at the leading edge is less clear. However, our results
suggest that CS induces the activation of RhoA in the initia-
tion of cell migration in vitro, hampering migration process.

Here, we show that inhibition of ROCK significantly stim-
ulated NSC migration on CS. Cells lost the rounded shape and
after different periods of time assumed a migratory shape with
a leading actin protruded edge, although some cells exhibited
several protrusions and long tails, which persisted until the
18th hour. These morphological characteristics are consistent
with previous studies, which reported a long cell tail in hema-
topoietic stem cells, leukocytes, and fibroblasts induced by
treatment with ROCK inhibitor Y27632 [53-55]. Unlike what
was described in these studies, Y27632 did not lead to im-
paired cell migration; on the contrary, it has decreased the
adhesion sizes and stimulated NSC migration on the inhibito-
ry substrate, partially reverting CS inhibitory effect. Similar
results were observed with human keratinocytes that showed
increased migration in the presence of Y27632 [56] and mu-
rine myofibroblasts (C2C12), cells that increased cell migra-
tion and speed and significantly reduced the size of adhesions
when treated with ROCK inhibitor [57].

Inhibition of RhoA or ROCK leads to neural tissue regen-
eration after glial scar formation in spinal cord and optic nerve
[18, 58]. ROCK inhibitor also enhanced NSC migration
in vitro in SVZ explants cultured in Matrigel® [59].
Similar to other inhibitory molecules such as MAIs, CSPG
axonal growth inhibitory effect depends on RhoA activation
[19, 60]. Our results corroborate with that, as ROCK inhibi-
tion allowed NSC migration on CS.

In conclusion, repair to TBI or to other injuries to
the CNS is challenging mainly due to glial scar forma-
tion, axonal growth inhibition, and cell survival. NSC-
derived neuroblast migration to an injured site is an
endeavor to repair. Here, we show that neuroblasts mi-
grate towards the injury site but are prevented to enter
into the lesion and glial scar rich in CS among other
inhibitory molecules. Our in vitro experiments suggest
that CS hampers NSC migration due to changes in cell
protrusion and adhesion dynamics, which were recov-
ered by inhibition of RhoA/ROCK or modulation of
NgR activation.

Compliance with Ethical Standards

Funding This work was supported by Fundacao de Amparo a Pesquisa
de Sao Paulo - FAPESP (2011/00526-7; 2012/00652 to MP), Conselho
Nacional de Desenvolvimento Cientifico e Tecnoldgico - CNPq
(404,646/2012-3 to MP), and National Institute of General Medical
Sciences (GM23244 to ARH).

@ Springer



3194

Mol Neurobiol (2018) 55:3185-3195

Contflict of Interest

The authors declare that there are no conflicts

of interest.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

10.

12.

14.

Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration
in the adult mammalian brain. Science 264(5162):1145-1148

Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain mi-
gration of neuronal precursors. Science 271(5251):978-981
Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining
germinal niches in the adult brain. Neuron 41(5):683-686

Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H,
Sawamoto K (2010) Subventricular zone-derived neural progenitor
cells migrate along a blood vessel scaffold toward the post-stroke
striatum. Stem Cells 28(3):545-554. doi:10.1002/stem.306
Filippo TR, Galindo LT, Barnabe GF, Ariza CB, Mello LE, Juliano
MA, Juliano L, Porcionatto MA (2013) CXCL12 N-terminal end is
sufficient to induce chemotaxis and proliferation of neural stem/
progenitor cells. Stem Cell Res 11(2):913-925. doi:10.1016/j.scr.
2013.06.003

Leong SY, Turnley AM (2011) Regulation of adult neural precursor
cell migration. Neurochem Int 59(3):382-393. doi:10.1016/j.
neuint.2010.12.024

Busch SA, Silver J (2007) The role of extracellular matrix in CNS
regeneration. Curr Opin Neurobiol 17(1):120-127. doi:10.1016/j.
conb.2006.09.004

Rhodes KE, Fawcett JW (2004) Chondroitin sulphate proteogly-
cans: preventing plasticity or protecting the CNS? J Anat 204(1):
33-48. doi:10.1111/1.1469-7580.2004.00261.x

Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen
M]J, Flanagan JG, Yamaguchi Y et al (2004) Semaphorin 5A is a
bifunctional axon guidance cue regulated by heparan and chondroi-
tin sulfate proteoglycans. Neuron 44(6):961-975. doi:10.1016/j.
neuron.2004.12.002

Siebert JR, Conta Steencken A, Osterhout DJ (2014) Chondroitin
sulfate proteoglycans in the nervous system: inhibitors to repair.
Biomed Res Int 2014:845323. doi:10.1155/2014/845323

Tanaka M, Maeda N, Noda M, Marunouchi T (2003) A chondroitin
sulfate proteoglycan PTPzeta /RPTPbeta regulates the morphogen-
esis of Purkinje cell dendrites in the developing cerebellum. J
Neurosci 23(7):2804-2814

Coulson-Thomas YM, Coulson-Thomas VI, Filippo TR, Mortara
RA, da Silveira RB, Nader HB, Porcionatto MA (2008) Adult bone
marrow-derived mononuclear cells expressing chondroitinase AC
transplanted into CNS injury sites promote local brain chondroitin
sulphate degradation. J Neurosci Methods 171(1):19-29. doi:10.
1016/j.jneumeth.2008.01.030

Lin R, Kwok JC, Crespo D, Fawcett JW (2008) Chondroitinase
ABC has a long-lasting effect on chondroitin sulphate glycosami-
noglycan content in the injured rat brain. J Neurochem 104(2):400—
408. doi:10.1111/j.1471-4159.2007.05066.x

Bartus K, James ND, Didangelos A, Bosch KD, Verhaagen J,
Yanez-Munoz RJ, Rogers JH, Schneider BL et al (2014) Large-
scale chondroitin sulfate proteoglycan digestion with
chondroitinase gene therapy leads to reduced pathology and mod-
ulates macrophage phenotype following spinal cord contusion

@ Springer

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

injury. J Neurosci 34(14):4822-4836. doi:10.1523/JNEUROSCI.
4369-13.2014

Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker
SJ, Askew KL, Wood A, Geoffroy CG etal (2012) NgR1 and NgR3
are receptors for chondroitin sulfate proteoglycans. Nat Neurosci.
doi:10.1038/nn.3070

Shen Y, Tenney AP, Busch SA, Horm KP, Cuascut FX, Liu K, He Z,
Silver J et al (2009) PTPsigma is a receptor for chondroitin sulfate
proteoglycan, an inhibitor of neural regeneration. Science
326(5952):592-596. doi:10.1126/science.1178310

Fry EJ, Chagnon MJ, Lopez-Vales R, Tremblay ML, David S
(2010) Corticospinal tract regeneration after spinal cord injury in
receptor protein tyrosine phosphatase sigma deficient mice. Glia
58(4):423-433. doi:10.1002/glia.20934

Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK
(2003) The Rho/ROCK pathway mediates neurite growth-
inhibitory activity associated with the chondroitin sulfate proteogly-
cans of the CNS glial scar. Mol Cell Neurosci 22(3):319-330
Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL,
Bachoo R et al (2011) Leukocyte common antigen-related phos-
phatase is a functional receptor for chondroitin sulfate proteoglycan
axon growth inhibitors. J Neurosci 31(40):14051-14066. doi:10.
1523/INEUROSCI.1737-11.2011

Vicente-Manzanares M, Newell-Litwa K, Bachir AI, Whitmore
LA, Horwitz AR (2011) Myosin IIA/IIB restrict adhesive and pro-
trusive signaling to generate front-back polarity in migrating cells. J
Cell Biol 193(2):381-396. doi:10.1083/jcb.201012159

Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: inte-
grating cytoskeletal dynamics and cellular tension. Nat Rev Mol
Cell Biol 11(9):633-643. doi:10.1038/nrm2957

Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN,
Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes
functional recovery after spinal cord injury. Nature 416(6881):636—
640. doi:10.1038/416636a

Chiba S, Ikeda R, Kurokawa MS, Yoshikawa H, Takeno M,
Nagafuchi H, Tadokoro M, Sekino H et al (2004) Anatomical and
functional recovery by embryonic stem cell-derived neural tissue of
a mouse model of brain damage. J Neurol Sci 219(1-2):107-117.
doi:10.1016/j.jns.2004.01.006S0022510X 04000152

Paxinos G, Franklin K (2001) The mouse brain in stereotaxic coor-
dinates. 2 edn. Academic Press, USA

Galindo LT, Filippo TR, Semedo P, Ariza CB, Moreira CM,
Camara NO, Porcionatto MA (2011) Mesenchymal stem cell
therapy modulates the inflammatory response in experimental
traumatic brain injury. Neurol Res Int 2011:564089. doi:10.
1155/2011/564089

Siebzehnrubl FA, Vedam-Mai V, Azari H, Reynolds BA, Deleyrolle
LP (2011) Isolation and characterization of adult neural stem cells.
Methods Mol Biol 750:61-77. doi:10.1007/978-1-61779-145-1 4
Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE,
Parsons JT, Horwitz AF (2004) FAK-Src signalling through
paxillin, ERK and MLCK regulates adhesion disassembly. Nat
Cell Biol 6(2):154-161. doi:10.1038/ncb1094

Hinz B, Alt W, Johnen C, Herzog V, Kaiser HW (1999)
Quantifying lamella dynamics of cultured cells by SACED, a
new computer-assisted motion analysis. Exp Cell Res 251(1):
234-243. doi:10.1006/excr.1999.4541

Jaerve A, Muller HW (2012) Chemokines in CNS injury and repair.
Cell Tissue Res 349(1):229-248. doi:10.1007/s00441-012-1427-3
Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S,
Ito M, Ishii J, Maeda Y et al (2007) Intravenously transplanted
human neural stem cells migrate to the injured spinal cord in adult
mice in an SDF-1- and HGF-dependent manner. Neurosci Lett
426(2):69-74. doi:10.1016/j.neulet.2007.08.048

Akbik F, Cafferty WB, Strittmatter SM (2012) Myelin associated
inhibitors: a link between injury-induced and experience-dependent


http://dx.doi.org/10.1002/stem.306
http://dx.doi.org/10.1016/j.scr.2013.06.003
http://dx.doi.org/10.1016/j.scr.2013.06.003
http://dx.doi.org/10.1016/j.neuint.2010.12.024
http://dx.doi.org/10.1016/j.neuint.2010.12.024
http://dx.doi.org/10.1016/j.conb.2006.09.004
http://dx.doi.org/10.1016/j.conb.2006.09.004
http://dx.doi.org/10.1111/j.1469-7580.2004.00261.x
http://dx.doi.org/10.1016/j.neuron.2004.12.002
http://dx.doi.org/10.1016/j.neuron.2004.12.002
http://dx.doi.org/10.1155/2014/845323
http://dx.doi.org/10.1016/j.jneumeth.2008.01.030
http://dx.doi.org/10.1016/j.jneumeth.2008.01.030
http://dx.doi.org/10.1111/j.1471-4159.2007.05066.x
http://dx.doi.org/10.1523/JNEUROSCI.4369-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.4369-13.2014
http://dx.doi.org/10.1038/nn.3070
http://dx.doi.org/10.1126/science.1178310
http://dx.doi.org/10.1002/glia.20934
http://dx.doi.org/10.1523/JNEUROSCI.1737-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.1737-11.2011
http://dx.doi.org/10.1083/jcb.201012159
http://dx.doi.org/10.1038/nrm2957
http://dx.doi.org/10.1038/416636a
http://dx.doi.org/10.1016/j.jns.2004.01.006S0022510X04000152
http://dx.doi.org/10.1155/2011/564089
http://dx.doi.org/10.1155/2011/564089
http://dx.doi.org/10.1007/978-1-61779-145-1_4
http://dx.doi.org/10.1038/ncb1094
http://dx.doi.org/10.1006/excr.1999.4541
http://dx.doi.org/10.1007/s00441-012-1427-3
http://dx.doi.org/10.1016/j.neulet.2007.08.048

Mol Neurobiol (2018) 55:3185-3195

3195

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

plasticity. Exp Neurol 235(1):43-52. doi:10.1016/j.expneurol.
2011.06.006
Llorens F, Gil V, del Rio JA (2011) Emerging functions of
myelin-associated proteins during development, neuronal
plasticity, and neurodegeneration. FASEB J 25(2):463—475.
doi:10.1096/1j.10-162792
Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate
proteoglycans in regeneration and plasticity in the central nervous
system. Brain Res Rev 54(1):1-18. doi:10.1016/j.brainresrev.2006.
09.006
Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ
(2007) Monocyte chemoattractant protein-1 plays a critical role in
neuroblast migration after focal cerebral ischemia. J Cereb Blood
Flow Metab 27(6):1213-1224. doi:10.1038/sj.jcbfm.9600432
Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang
L, Wang Y, Zhang C et al (2006) Stromal cell-derived factor lalpha
mediates neural progenitor cell motility after focal cerebral ische-
mia. J Cereb Blood Flow Metab 26(1):125-134. doi:10.1038/s;j.
jcbfin.9600172
Garwood J, Heck N, Reichardt F, Faissner A (2003) Phosphacan
short isoform, a novel non-proteoglycan variant of phosphacan/
receptor protein tyrosine phosphatase-beta, interacts with neuronal
receptors and promotes neurite outgrowth. J Biol Chem 278(26):
24164-24173. doi:10.1074/jbc.M211721200
Garwood J, Schnadelbach O, Clement A, Schutte K, Bach A,
Faissner A (1999) DSD-1-proteoglycan is the mouse homolog of
phosphacan and displays opposing effects on neurite outgrowth
dependent on neuronal lineage. J Neurosci 19(10):3888-3899
Carulli D, Laabs T, Geller HM, Fawcett JW (2005)
Chondroitin sulfate proteoglycans in neural development
and regeneration. Curr Opin Neurobiol 15(1):116-120. doi:
10.1016/j.conb.2005.01.014
Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat
Rev Neurosci 5(2):146-156. doi:10.1038/nm 1326
Villapol S, Byrnes KR, Symes AJ (2014) Temporal dynamics of
cerebral blood flow, cortical damage, apoptosis, astrocyte-
vasculature interaction and astrogliosis in the pericontusional region
after traumatic brain injury. Front Neurol 5:82. doi:10.3389/fheur.
2014.00082
Dyck SM, Alizadeh A, Santhosh KT, Proulx EH, Wu CL, Karimi-
Abdolrezaee S (2015) Chondroitin sulfate proteoglycans negatively
modulate spinal cord neural precursor cells by signaling through
LAR and RPTPsigma and modulation of the Rho/ROCK pathway.
Stem Cells. doi:10.1002/stem.1979
Wang F, Zhu Y (2008) The interaction of Nogo-66 receptor
with Nogo-p4 inhibits the neuronal differentiation of neural
stem cells. Neuroscience 151(1):74-81. doi:10.1016/j.
neuroscience.2007.10.034
Li X, Su H, Fu QL, Guo J, Lee DH, So KF, Wu W (2011) Soluble
NgR fusion protein modulates the proliferation of neural progenitor
cells via the Notch pathway. Neurochem Res 36(12):2363-2372.
doi:10.1007/s11064-011-0562-7
Wang D, Liang J, Zhang J, Liu S, Sun W (2014) Mild hypothermia
combined with a scaffold of NgR-silenced neural stem cells/
Schwann cells to treat spinal cord injury. Neural Regen Res 9(24):
2189-2196. doi:10.4103/1673-5374.147952
Gu WL, Fu SL, Wang YX, Li Y, Lu HZ, Xu XM, Lu PH (2009)
Chondroitin sulfate proteoglycans regulate the growth, differentia-
tion and migration of multipotent neural precursor cells through the
integrin signaling pathway. BMC Neurosci 10:128. doi:10.1186/
1471-2202-10-128

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

Houle JD, Tom VJ, Mayes D, Wagoner G, Phillips N, Silver J
(2006) Combining an autologous peripheral nervous system
“bridge” and matrix modification by chondroitinase allows robust,
functional regeneration beyond a hemisection lesion of the adult rat
spinal cord. J Neurosci 26(28):7405-7415. doi:10.1523/
JNEUROSCI.1166-06.2006

Garcia-Alias G, Barkhuysen S, Buckle M, Fawcett JW (2009)
Chondroitinase ABC treatment opens a window of opportunity
for task-specific rehabilitation. Nat Neurosci 12(9):1145-1151.
doi:10.1038/nn.2377

Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH,
Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrat-
ing signals from front to back. Science 302(5651):1704-1709. doi:
10.1126/science.1092053302/5651/1704

Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, dis-
assembly and turnover in migrating cells—over and over and over
again. Nat Cell Biol 4(4):E97-100. doi:10.1038/ncb0402-¢97
Ayoub E, Hall A, Scott AM, Chagnon MJ, Miquel G, Halle M,
Noda M, Bikfalvi A et al (2013) Regulation of the Src kinase-
associated phosphoprotein 55 homologue by the protein tyrosine
phosphatase PTP-PEST in the control of cell motility. J Biol Chem
288(36):25739-25748. doi:10.1074/jbc.M113.501007
Angers-Loustau A, Cote JF, Charest A, Dowbenko D, Spencer S,
Lasky LA, Tremblay ML (1999) Protein tyrosine phosphatase-
PEST regulates focal adhesion disassembly, migration, and cytoki-
nesis in fibroblasts. J Cell Biol 144(5):1019-1031

Rottner K, Hall A, Small JV (1999) Interplay between Rac and Rho
in the control of substrate contact dynamics. Curr Biol : CB 9(12):
640-648

Fonseca AV, Freund D, Bornhauser M, Corbeil D (2010)
Polarization and migration of hematopoietic stem and progenitor
cells rely on the RhoA/ROCK I pathway and an active reorganiza-
tion of the microtubule network. J Biol Chem 285(41):31661—
31671. doi:10.1074/jbc.M110.145037

Smith A, Bracke M, Leitinger B, Porter JC, Hogg N (2003) LFA-1-
induced T cell migration on ICAM-1 involves regulation of MLCK-
mediated attachment and ROCK-dependent detachment. J Cell Sci
116(Pt 15):3123-3133. doi:10.1242/jcs.00606

Zhou C, Petroll WM (2010) Rho kinase regulation of fibroblast
migratory mechanics in fibrillar collagen matrices. Cell Mol
Bioeng 3(1):76-83. doi:10.1007/s12195-010-0106-2

Gandham VD, Maddala RL, Rao V, Jin JY, Epstein DL, Hall RP,
Zhang JY (2013) Effects of Y27632 on keratinocyte procurement
and wound healing. Clin Exp Dermatol 38(7):782—786. doi:10.
1111/ced. 12067

Goetsch KP, Snyman C, Myburgh KH, Niesler CU (2014) ROCK-2
is associated with focal adhesion maturation during myoblast mi-
gration. J Cell Biochem 115(7):1299-1307. doi:10.1002/jcb.24784
Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase
inhibition enhances axonal regeneration in the injured CNS. J
Neurosci 23(4):1416-1423

Leong SY, Faux CH, Turbic A, Dixon KJ, Turnley AM (2011) The
Rho kinase pathway regulates mouse adult neural precursor cell
migration. Stem Cells 29(2):332-343. doi:10.1002/stem.577
Schweigreiter R, Walmsley AR, Niederost B, Zimmermann DR,
Oertle T, Casademunt E, Frentzel S, Dechant G et al (2004)
Versican V2 and the central inhibitory domain of Nogo-A inhibit
neurite growth via p75SNTR/NgR-independent pathways that con-
verge at RhoA. Mol Cell Neurosci 27(2):163—174. doi:10.1016/].
men.2004.06.004

@ Springer


http://dx.doi.org/10.1016/j.expneurol.2011.06.006
http://dx.doi.org/10.1016/j.expneurol.2011.06.006
http://dx.doi.org/10.1096/fj.10-162792
http://dx.doi.org/10.1016/j.brainresrev.2006.09.006
http://dx.doi.org/10.1016/j.brainresrev.2006.09.006
http://dx.doi.org/10.1038/sj.jcbfm.9600432
http://dx.doi.org/10.1038/sj.jcbfm.9600172
http://dx.doi.org/10.1038/sj.jcbfm.9600172
http://dx.doi.org/10.1074/jbc.M211721200
http://dx.doi.org/10.1016/j.conb.2005.01.014
http://dx.doi.org/10.1038/nrn1326
http://dx.doi.org/10.3389/fneur.2014.00082
http://dx.doi.org/10.3389/fneur.2014.00082
http://dx.doi.org/10.1002/stem.1979
http://dx.doi.org/10.1016/j.neuroscience.2007.10.034
http://dx.doi.org/10.1016/j.neuroscience.2007.10.034
http://dx.doi.org/10.1007/s11064-011-0562-7
http://dx.doi.org/10.4103/1673-5374.147952
http://dx.doi.org/10.1186/1471-2202-10-128
http://dx.doi.org/10.1186/1471-2202-10-128
http://dx.doi.org/10.1523/JNEUROSCI.1166-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.1166-06.2006
http://dx.doi.org/10.1038/nn.2377
http://dx.doi.org/10.1126/science.1092053302/5651/1704
http://dx.doi.org/10.1038/ncb0402-e97
http://dx.doi.org/10.1074/jbc.M113.501007
http://dx.doi.org/10.1074/jbc.M110.145037
http://dx.doi.org/10.1242/jcs.00606
http://dx.doi.org/10.1007/s12195-010-0106-2
http://dx.doi.org/10.1111/ced.12067
http://dx.doi.org/10.1111/ced.12067
http://dx.doi.org/10.1002/jcb.24784
http://dx.doi.org/10.1002/stem.577
http://dx.doi.org/10.1016/j.mcn.2004.06.004
http://dx.doi.org/10.1016/j.mcn.2004.06.004

	Chondroitin Sulfate Impairs Neural Stem Cell Migration Through ROCK Activation
	Abstract
	Introduction
	Material and Methods
	Animals
	TBI Model and Tissue Preparation
	Neurosphere Assays and Transfection
	Pull-Down
	Microscopy
	Immunohistochemistry
	Statistical Analysis

	Results
	A CSPG-Rich Environment Impairs NSC Migration into the Injury Site
	CS Inhibits NSC Migration and Decreases Migration Speed In�Vitro
	CS Alters NSC Protrusion and Adhesion Dynamics
	RhoA Mediates CS Inhibitory Effects on NSC Migration

	Discussion
	References


