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Awidely discussed paradigm for brain-computer interface (BCI) is themotor imagery task using noninvasive electroencephalogra-
phy (EEG) modality. It often requires long training session for collecting a large amount of EEG data which makes user exhausted.
One of the approaches to shorten this session is utilizing the instances from past users to train the learner for the novel user. In this
work, direct transferring from past users is investigated and applied to multiclass motor imagery BCI. Then, active learning (AL)
driven informative instance transfer learning has been attempted for multiclass BCI. Informative instance transfer shows better
performance than direct instance transfer which reaches the benchmark using a reduced amount of training data (49% less) in
cases of 6 out of 9 subjects. However, none of these methods has superior performance for all subjects in general. To get a generic
transfer learning framework for BCI, an optimal ensemble of informative and direct transfer methods is designed and applied.The
optimized ensemble outperforms both direct and informative transfer method for all subjects except one in BCI competition IV
multiclass motor imagery dataset. It achieves the benchmark performance for 8 out of 9 subjects using average 75% less training
data. Thus, the requirement of large training data for the new user is reduced to a significant amount.

1. Introduction

Brain-computer interface (BCI) is a system that establishes
a communication channel between the brain and control
devices without using the neuromuscular system of human
body [1].

One of the noninvasive modalities of BCI is electroen-
cephalography (EEG). BCI uses different types of EEG
control signal from the external scalp of the brain. Someof the
control signals used in BCI are visual evoked potential (VEP),
P300 evoked potential, slow cortical potential (SCP), and
sensory-motor rhythms (SMR) [2]. SMR can be modulated
by actual as well as imagery motor task by user [3, 4]. Thus,
SMRs are used in BCI as the control signal for translating
motor task (hand and foot movement) [5] and referred to
as motor imagery- (MI-) BCI. Hence, MI-BCIs are used for
supporting patients with spinal cord injury and stroke [6–
8]. MI-based BCI system possesses some drawbacks such as
lack of robustness, complex setup, and long calibration time
[1, 9, 10].

Generally, it is recommended to use at least five times
more training data per class than the features [11, 12].
Channel-frequency-time information makes the feature vec-
tor of EEG signal very high-dimensional [13, 14]. These high-
dimensional features necessitate the requirement for a large
number of EEG epochs to be collected to train the classifier
[15, 16]. But, EEG data acquisition is a lengthy and exhaustive
task for the user. For motor imagery purpose, it is sometimes
a day-long process [10, 16]. EEG signals recorded from the
scalp are very subjective. It varies from one subject to another
for same tasks. Even, it differs for same subject in different
sessions [4]. Consequently, each individual has to go through
this long data collection process in each attempt of using the
system. It is most likely that long calibration time for a user
has become one of the bottlenecks of BCI system. Calibration
time reduction approaches reported in literatures also reflect
the scenario well [17–22].

If labeled samples for certain tasks are available from
other users, these samples can be used for a new user. The
objective is to utilize the knowledge from data spaces of past
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users to learn predictive function for a new user.This process
of knowledge and information conveying from other domain
is known as transfer learning (TL) [23].

TL has been applied for BCI in two types: domain adapta-
tion and rules or knowledge sharing [24]. Some of the domain
adaptation approaches are subject invariant common space
[18, 19, 25–28], common stationary subspace transfer [29–
31], conditional andmarginal distribution adaptation [32, 33],
and subject-to-subject adaptation [34]. Rule adaptation or
sharing prior learning to learn new user prediction function
has been attempted in [20, 26, 28, 35]. Active transfer learning
(ATL) approach was proposed and implemented by Wu
et al. in [36] for VEP based BCI. In their work, actively
learned samples from the domain of new coming subject
were combined with the samples of historical subjects. QBC
was used as active learning method to select samples from
the subject-specific domain. The authors used all samples
from other subjects directly without any adaptation or
selection. An improved version of ATL was proposed and
implemented for binary MI-based BCI in our preliminary
work [37, 38]. Both works implemented ATL on binary
classification. In [36], authors did it for target and nontarget
VEP while our preliminary work was done on left-hand and
right-hand motor imagery classification with two different
feature extraction processes in sequence. Since instances are
transferred directly from the source to target domain, it is
named as direct transfer with active learning (DTAL). DTAL
needs to be investigated for multiclass BCI. Instead of direct
transfer, an informative and functional subdomain transfer
from source to target also needs to be introduced in DTAL.
In addition to finding actively learned samples from target
domain (in DTAL), active learning based on most uncertain
samples from the source to target domain is introduced in
this work. To serve these purposes, the following attempts are
made in this paper:

(i) Multiclass direct transfer with active learning
(mDTAL) is formulated and implemented. It is
the multiclass extension of active transfer learning
proposed in [36] formotor imagery BCI (Section 3.1).

(ii) Then, aligned instance transfer is introduced for
multiclass MI-based BCI (Section 3.2).

(iii) After that, informative instances transfer framework
is formulated and implemented with and without
aligned subspace. Here, multiclass entropy as uncer-
tainty criterion is applied in the source to target
domain transfer (Section 3.3).

(iv) To address the subject-dependent performance vari-
ation of different methods, a generic optimized
weighted ensemble of all proposed methods is con-
structed and applied (Section 3.4).

The main goal of this work is to develop an informative
transfer learning framework for MI-BCI which is expected
to perform better than direct transfer (mDTAL).

The rest of the paper is organized as follows: Section 2 will
describe the concept of different terms and methods which
are used for further algorithm’s development. Section 3 will

describe developed multiclass frameworks and optimized
ensemblemethod. Section 4will describe experimental setup.
Then, Section 5 will analyze and discuss the results. Finally,
Section 6 will conclude the paper with the scope of future
improvement.

2. Methods

2.1. Transfer Learning (TL). At first, we need to define some
terms to state our problem in the scope of transfer learning.

Domain. A domain𝐷 consists of {𝜒, 𝑃(𝑋)}. Here 𝜒 is features
of 𝑛 dimension (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑃(𝑋) means marginal
distribution. So,𝐷𝑆 = 𝐷𝑇means𝑃𝑆(𝑋) = 𝑃𝑇(𝑋) and𝜒𝑆 = 𝜒𝑇.
Similarly, 𝐷𝑆 ̸= 𝐷𝑇 means 𝑃𝑆(𝑋) ̸= 𝑃𝑇(𝑋) or/and 𝜒𝑆 ̸= 𝜒𝑇
[23].

Task. 𝑇 = {𝑌, 𝑓(⋅)}, where Y is set of all class label and
𝑓(⋅) is prediction function which is trained on {𝑋, 𝑌}. From
probabilistic view point,𝑓(⋅)will give conditional probability
𝑃(𝑌 | 𝑋). So 𝑇𝑆 ̸= 𝑇𝑇 means 𝑌𝑆 ̸= 𝑌𝑇 or /and 𝑃𝑆(𝑌 | 𝑋) ̸=
𝑃𝑇(𝑌 | 𝑋) [23].

Transfer Learning [23]. Given a source domain 𝐷𝑆 and
learning task 𝑇𝑆, a target domain 𝐷𝑇, and learning task 𝑇𝑇,
transfer learning aims to help improve the learning of the
target predictive function 𝑓𝑇(⋅) on 𝐷𝑇 using the knowledge
in𝐷𝑆 and 𝑇𝑆, where𝐷𝑆 ̸= 𝐷𝑇 or 𝑇𝑆 ̸= 𝑇𝑇.

Dataset of EEG epochs from a new user is the target
domain. EEG epochs with the label frompast users are source
domain. Same feature extraction method has been applied
for both target and source EEG epochs. So, it can be implied
that 𝜒𝑇 = 𝜒𝑆. Same types of classes are labeled for imagery
EEG epochs in both source and target domain. It implies that
𝑌𝑇 = 𝑌𝑆. But, different subjects neural responses to same
motor imagery action have different characteristics. As a
result, marginal distribution and conditional distribution are
different for source and target domain [33]. That means
𝑃𝑆(𝑋) ̸= 𝑃𝑇(𝑋) and 𝑃𝑆(𝑌 | 𝑋) ̸= 𝑃𝑇(𝑌 | 𝑋).

So, samples from source domain cannot represent the tar-
get domain correctly. Hence, it needs to get some subdomain
from source efficiently which is related mostly to the target
domain.The aim of TL is to learn a target prediction function
𝑓(𝑋𝑇) → 𝑌𝑇 so that expected error on𝐷𝑇 is as low as possible
while 𝑃𝑆(𝑋) ̸= 𝑃𝑇(𝑋) and 𝑃𝑆(𝑌 | 𝑋) ̸= 𝑃𝑇(𝑌 | 𝑋).

In this paper, our approach is to select the most infor-
mative instances from source domains with the help of few
samples of the target domain.Then,wewill add them to target
domain samples to train a classifier for predicting the label of
independent test data of target domain.

2.2. Active Learning (AL). Active learningmethod queries for
unlabeled sampleswhich havemost uncertainty [40]. Trained
hypothesis on labeled samples gets confused over some
unlabeled samples. These samples are more close to decision
line. So, labeling these uncertain samples will accelerate
learning process of the model. Hence, these samples carry
more information than other certain samples (Figure 1). In
this work, active learning method is applied to two ends.
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Figure 1: Visual presentation of AL. (a) 2D presentation of binary
class dataset with expected decision boundary. (b) Learned decision
line on randomly selected samples. (c) Learned decision line on
actively selected samples which is more close to expected line.
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Figure 2: Illustration of linear version space. Each hypothesis in
version space is consistent on 𝐿 (labeled training set). Each of them
represents different regions of version space.

At first, query by committee is applied to select the most
informative samples from target domain.

Then, entropy is applied as uncertainty measure to select
informative samples from the source domain.

Query by Committee (QBC) [41]. A hypothesis is a kind of
particular set of parameters that tuned on some training set
and it can make the prediction over new data. Hypothesis
space is all possible set of hypotheses. Version space is a subset
of these hypotheses which are consistent with the labeled
training set 𝐿 (Figure 2). Consistent means that the member
of version space canmake a correct prediction on all instances
of 𝐿. One of the aims of AL is to select instances which can
narrow down this version space. It will make the process of

learning target prediction function more precise with fewer
labeled instances.

QBCmaintains a committee of hypothesis (version space)
𝐶 = {𝐶0, 𝐶1, 𝐶2, . . . , 𝐶𝑀} (Figure 2). Each member of this
committee is trained on labeled data 𝐿 and represents a
candidate hypothesis (ℎ1, ℎ2, . . . , ℎ𝑛). Then, each member of
committee votes for unlabeled samples about their label. The
instances attaining the most disagreement about label among
the members are considered as the most informative. In
analytical perspective, QBC implementation has two steps:

(i) Construction of committee of hypotheses which de-
pict various regions of version space from specific to
general (Figure 2)

(ii) Quantification of disagreement among the members
of the committee.

In this work, linear discriminant analysis (LDA) is our
learning model. This model gives negative decision score
for one class and positive for others. So, decision boundary
ideally is zero scoreline. It is unlikely to get extreme negative
(−1) at the same time extreme positive (+1) score for a
single sample. Certain instances will have the extreme sum of
decision score forwhichmost of themembers are agreed. But,
uncertain instances will not have the extreme score for any
class. Itmakes the absolute value of the sumof the score for all
classes close to zero. In case of LDA, ensemble sumof decision
score close to zero represents more disagreement among the
members. So, instances attaining the lowest absolute value of
the algebraic sum of decision scores from members of the
committee are the most informative.

Entropy. Entropy is the amount of information to encode a
distribution [42]. It is used as the measurement of uncer-
tainty. For binary classification, entropy enforces us towards
posterior probability 0.5. For multiclass, entropy yields a
central confusing area of posterior probability. It considers
probability distributions for all classes.

𝑥Entropy = max
𝑥𝑖

−
𝑛𝐶

∑
𝑐=1

𝑃𝜃 (𝑦𝑐 | 𝑥𝑖) log𝑃𝜃 (𝑦𝑐 | 𝑥𝑖) . (1)

Here, 𝑃𝜃(𝑦𝑐 | 𝑥𝑖) is the predicted probability of 𝑖th sample 𝑥𝑖
for class 𝑦𝑐 by the model 𝜃. 𝑛𝐶 is the number of classes.

2.3. Feature Extraction: Common Spatial Pattern (CSP). This
method maximizes the variance for one task and minimizes
the variance for other task. Therefore, it yields to generate
discriminating features of two classes for EEG classification
[43–45]. Let us consider that 𝑋𝑖 ∈ 𝑅ch×𝑡 is the 𝑖th single-trial
bandpass EEG signal and 𝑍 ∈ 𝑅ch×𝑡 is the spatially filtered
signal with CSP projection matrix 𝐴 ∈ 𝑅ch×ch. Here, ch is
the number of channels and 𝑡 is the number of time points in
single-trial bandpass EEG epoch.

𝑍 = 𝐴𝑇𝑋𝑖. (2)
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Figure 3: Multiclass direct transfer with active learning (mDTAL). Here, 𝑛 is the number of samples to be selected from each class of new
subject.

Δ 1 and Δ 2 are the covariance matrixes of EEG signals 𝑋 for
two classes which can be obtained by

Δ𝑌 =
1
𝑛𝑌

∑
𝑖∈𝐼𝑌

𝑋𝑖𝑋
𝑇
𝑖 𝑌 = [1, 2] . (3)

Here, 𝐼𝑌 is the set of indices of trials corresponding to class
𝑌 and 𝑛𝑌 is the total number of trials from class 𝑌. 𝐴 is the
transformation matrix satisfying below optimization.

max
𝐴

𝐴𝑇Δ 1𝐴
𝐴𝑇Δ 2𝐴

. (4)

This CSP filter matrix 𝐴 can be obtained by solving

Δ 1𝐴 = (Δ 1 + Δ 2) 𝐴𝐷. (5)

Here,𝐷 is a diagonal matrix and it contains eigenvalues.
Generally, 𝑚 first and 𝑚 last rows of 𝐴 (represented by

𝐴∗ ∈ 𝑅𝑐×2𝑚) make the spatial filtered signal 𝑍∗ [46]:

𝑍∗ = 𝑋𝑇𝐴∗. (6)

Finally, logarithm of variance of𝑍will give the feature vector
𝐹.

𝐹 = log (var (𝑍∗)) . (7)

This CSP is for binary class. We have used four 𝑜𝑛𝑒 V𝑠 𝑟𝑒𝑠𝑡
binary CSP for four classes implementation [44].

2.4. Linear Discriminant Analysis (LDA). LDA is simple and
fast to compute [47, 48] which is very successfully paired
with CSP feature extraction for MI-based BCI. For binary
classification, it deals with two scatter matrixes 𝑆𝑤 and 𝑆𝑏
which are named as within-class and between-class scatter. 𝑆𝑤
and 𝑆𝑏 are defined as follows:

𝑆𝑤 =
1
𝑛

𝑘

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑥𝑗𝑖 − 𝜔𝑖) (𝑥
𝑗
𝑖 − 𝜔𝑖)

𝑇
(8)

𝑆𝑏 =
1
𝑛

𝑘

∑
𝑖=1

𝑛𝑖 (𝜔𝑖 − 𝜔) (𝜔𝑖 − 𝜔)𝑇 . (9)

Here, 𝜔𝑖 denotes the mean vector of 𝑖th class and 𝜔 denotes
the total mean vector. 𝑘 and 𝑛 are number of classes and
total number of samples, respectively. Objective is set to
find matrix 𝐺 for transformation such that it can ensure
maximization of between-class and minimization of within-
class scatter. In this work, four 𝑜𝑛𝑒 V𝑠 𝑟𝑒𝑠𝑡 LDA classifiers are
used for 4-class classification.

max
𝐺

tr (𝐺𝑇𝑆𝑏𝐺)
tr (𝐺𝑇𝑆𝑤𝐺)

. (10)

Decision score is calculated by

𝑓 (𝑥) = 𝐺𝑥 + 𝑏. (11)

Here, 𝑏 is the bias value and sign of 𝑓(𝑥) will give the class
label.

3. Algorithms

3.1. Multiclass Direct Transfer with Active Learning (mDTAL).
Multiclass extension of direct transfer learning with active
learning or ATL [36] is formulated for MI-based BCI. CSP
is used for feature extraction combined with LDA classi-
fier since this combination is very successful for MI-based
BCI [16, 46]. For mDTAL, we have considered 𝑜𝑛𝑒 V𝑠 𝑟𝑒𝑠𝑡
approach [49, 50] in three sections of this algorithm (Fig-
ure 3):

(i) 𝑂𝑛𝑒 V𝑠 𝑟𝑒𝑠𝑡 method for QBC while selecting most
active samples from target domain

(ii) 𝑂𝑛𝑒 V𝑠 𝑟𝑒𝑠𝑡 CSP filter in feature extraction part
(iii) 𝑂𝑛𝑒 V𝑠 𝑟𝑒𝑠𝑡 method for LDA training and testing

part.

Stepwise process ofmDTALalgorithm is described as follows.
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Figure 4: Multiclass aligned instance transfer with active learning (AITAL).

Algorithm: mDTAL

Step 1. Start with randomly chosen 𝑁𝑙 labeled samples with
equal class proportion and 𝑁𝑢 unlabeled instances from
target domain.𝑀 number of other subjects with𝑁𝑚 labeled
instances from𝑚th subject are available.𝑁𝑡 independent test
samples of new subject are given for performance evaluation.

Step 2. Train classifier 𝐶0 using 𝑁𝑙 samples. Then, 𝐶0 will
calculate the decision score for each class of 𝑁𝑢 samples as
𝐷0𝑢.

Step 3. Train combined classifier𝐶𝑚 using𝑁𝑙∪𝑁𝑚 combined
training samples.

Step 4. Get 10-fold cross-validation accuracy 𝑎𝑚 on𝑁𝑙 ∪𝑁𝑚
training samples. Repeat Steps 2 and 3 for all historic subjects.

Step 5. Get ensemble weighted average decision score for
each class on𝑁𝑢 using the following equation:

𝐷𝑢 =
𝐷0𝑢 + ∑𝑀𝑚=1 (𝑎𝑚 ∗ 𝐷𝑚𝑢 )

1 + ∑𝑀𝑚=1 𝑎𝑚
. (12)

Here, 𝐷𝑚𝑢 is decision score calculated using classifier 𝐶𝑚 on
unlabeled samples 𝑁𝑢. For 𝐷0𝑢, weight has been assigned
as 1 to give subject-specific classifier higher priority over
combined classifier. Similarly, ensemble weighted average
decision score for test data set𝑁𝑡 is also calculated as follows:

𝐷𝑡 =
𝐷0𝑡 + ∑𝑀𝑚=1 (𝑎𝑚 ∗ 𝐷𝑚𝑡 )

1 + ∑𝑀𝑚=1 𝑎𝑚
. (13)

It is the ultimate output of the algorithm in each iteration.

Step 6. Linear classifier LDA has the negative score for
one class and positive for other. So, decision score close to
zero represents more uncertainty than others. Equation (12)
calculates ensemble decision score of the 𝑀 + 1 number of
models or a committee of models. Unlabeled samples getting
lowest or close to zero absolute decision score are more

likely to learn decision boundary than others. Considering
multiclass,𝐷𝑢(:, 𝑐) gives decision score for class 𝑐 V𝑠 𝑟𝑒𝑠𝑡. So,
the lowest absolute decision score of 𝐷𝑢(:, 𝑐) will give most
uncertain samples near class 𝑐 V𝑠 𝑟𝑒𝑠𝑡 boundary as follows
(Figure 6):

𝑆𝑐 = min
𝑛

𝑎𝑠𝑐𝑒𝑛𝑑 {abs {𝐷𝑢 (:, 𝑐)}} . (14)

Here, 𝑐 = 1, 2, . . . , 𝑛𝐶 (number of class) and 𝑛 is number of
samples to be selected from each class (Figure 3).

Step 7. All selected unlabeled subject-specific samples 𝑆𝑐 are
queried for label. Then this newly labeled samples are added
to 𝑁𝑙 and removed from 𝑁𝑢. Steps 2 to 7 are repeated until
maximum number of iteration.

3.2. Multiclass Aligned Instance Transfer with Active Learning
(AITAL). There is no adaptation or selection from historic
subjects in mDTAL method. Rather, it directly transfers all
labeled samples from historic subjects. But, all samples from
historic subjects may not be compatible with the domain of
new subject. As a result, it may yield to negative transfer effect
[51]. So, the idea is to transfer samples which are aligned with
new subject decision boundary (Figure 4). Subject-specific
model 𝐶0 classifies some samples accurately from historic
subjects. It can be assumed that these accurately classified
samples agree with the decision boundary of target domain
classifier𝐶0. So, these samples are considered as being aligned
with target domain.

AITAL is similar to mDTAL algorithm except Step 3
where it will not take all of 𝑁𝑚 samples from 𝑚th historic
subject. Instead, it will take 𝑁𝑚



aligned samples (see (15))
from 𝑚th historic subject which are determined by subject-
specific model 𝐶0 (Figure 4).

𝑁𝑚


= 𝑁𝑚 | {𝐿𝑚0 == 𝑌} , 𝑌 = [1, . . . , 4] . (15)

Here, 𝐿𝑚0 is the label for samples from 𝑚th historic subjects
which are predicted by subject-specific classifier 𝐶0. 𝑌 is the
true class label for these samples.
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MIITAL.

3.3. Most Informative Instance Transfer with Active Learn-
ing (MIITAL). According to active learning query method,
samples lying close to decision boundary are more likely
uncertain to be predicted. It makes uncertain samples more
informative to learn decision boundary than that of other
samples. If informative samples from historic subjects are
transferred to learn classifier for new user, it will be more
effective. In this work, entropy of instances are used as
the quantification of information carried by these samples.
Entropy can be calculated by

𝐸 (𝑖) = −∑
𝑐

𝑃𝜃 (𝑦𝑐 | 𝑥𝑖) log𝑃𝜃 (𝑦𝑐 | 𝑥𝑖)

𝑖 = 1, 2, . . . , 𝑁𝑚, 𝑐 = [1, . . . , 4] .
(16)

Here, 𝑃𝜃(𝑦𝑐 | 𝑥𝑖) is probability of samples 𝑥𝑖 to be in class 𝑦𝑐
which is determined by classifier𝐶0 and represented asmodel
𝜃.

For this work, we consider four 𝑜𝑛𝑒 V𝑠 𝑟𝑒𝑠𝑡 entropy calcu-
lation.Our goal is to finduncertain sampleswhich are close to
each 𝑜𝑛𝑒 V𝑠 𝑟𝑒𝑠𝑡 decision line. Ideally, samples having 50 : 50
probability ratio are most uncertain and have maximum
entropy. We consider samples with probability ratio equal or
more than 60 : 40 for this work. It yields to transfer samples
that have entropy equal or greater than 0.29228 according to
(16). This entropy limit is named information limit or cut-off
(𝑙).

There are two combinations of this algorithm:

(i) Transfer aligned andmost informative samples (most
informative and aligned instances transfer with AL
(MIAITAL)) (Figure 5):

𝑁𝑚


= 𝑁𝑚 | {𝐿𝑚0 == 𝑌, 𝐸 ≥ 𝑙} , 𝑌 = [1, . . . , 4] . (17)

(ii) Transfermost informative samples and ignore wheth-
er it is aligned or not (most informative instances
transfer with AL (MIITAL) (Figure 5)):

𝑁𝑚


= 𝑁𝑚 | {𝐸 ≥ 𝑙} . (18)

1 2, 3, 4

1 vs rest 
decision

boundary

1 vs rest QBC 
selected samples

Figure 6: One versus rest presentation of QBC for multiclass.

Algorithm of MIAITAL or MIITAL is the same as mDTAL
except Step 3. In Step 3, MIAITAL or MIITAL will take 𝑁𝑚



according to (17) and (18) in place of𝑁𝑚.
MIAITAL attempts to transfer most informative samples

which are perfectly classified by classifier from previous itera-
tion, whereas MIITAL attempts to transfer most informative
samples (determined by entropy) and ignores alignment of
those informative samples (Figure 5).

3.4. Optimized Ensemble for Multiclass Actively Learned Space
Transfer. EEG epochs due to various motor imagery actions
are not stable. So, finding prominent features followed by
learning classifier does not always yield the expected result.
As a result, performance is not generic for all subjects; it
is subject-dependent. Some methods perform well for some
subjects while not very good for others. The ensemble of
different methods can give a general and steady performance
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Figure 8: (a) Timing for one session [39]. (b) Timing for a single trial [39]. (c) Baseline method.

for all subjects. An optimized weighted ensemble is proposed
to serve the purpose (Figure 7).

Some arbitrary weight (say 𝑊) is assigned for each class
in each method. Then, these weights are optimized for
minimum loss on a validation set. Loss function for 𝑛th
subject is as follows:

LOSS𝑛 = ∑
𝑖∈𝑉

(𝑌𝑡𝑛 (𝑖) − 𝑊𝑐𝑚 ∗ 𝑃𝑐𝑚 (𝑖))
2
. (19)

Here, the validation set 𝑉 is 10 percent of the subject-specific
training set and is randomly chosen from that data set. The
initial value of weight 𝑊 is some random value in the range
of [0, 1]. Then, 𝑊 is optimized by the genetic algorithm
using the loss function from (19). Ensemble decision-making
probability on test set 𝑇 using optimized𝑊 is then obtained
by

𝑃𝑐opt (𝑥) =
∑𝑀𝑚=1𝑊

𝑐
𝑚 ∗ 𝑃𝑐𝑚 (𝑥)

∑𝑀𝑚=1𝑊𝑐𝑚
, 𝑥 ∈ 𝑇. (20)

Here, 𝑃𝑐𝑚 is probability generated by 𝑚th method for class 𝑐
and 𝑊𝑐𝑚 is optimized weight for corresponding class 𝑐 and
method𝑚.

4. Experiment Setup

4.1. Experimental Data. Algorithms described in Section 3
are implemented for BCI competition IVdataset 2A [39].This
dataset consists of 9 subjects. In this dataset, each subject
performs four types of motor imagery action for left hand,
right hand, both feet, and tonguemovement. Data is recorded
in two sessions for each subject. In each session, a subject
performs 72 trials per class which turns into 288 in total.

In each session, there are approximately 5 minutes of
electrooculogram (EOG) recording keeping eyes open, close,
and moving. Then, it is followed by the run of trials (Fig-
ure 8(a)). Each subject was facing a computer screen which
was showing different indication guideline to the subject.
Each single-trial starts (𝑡 = 0 s) with a fixation cross on the
screen in front of the subject. After 2 seconds (𝑡 = 2 s), a
cue appeared on the screen indicating arrow with the desired
movement sign (left hand, right hand, foot, and tongue).
After 1.25 seconds of cue appearing, subject starts to imagine
the motor action and continues until 𝑡 = 6 s. A short break
(black screen) is given until next trial starts (Figure 8(b)).
EEG epoch of 2 seconds after 0.5 seconds of cue appearing
is taken as training data. 22 channels (Ag/AgCl) are used for
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EEG signal recording and other three monopolar electrodes
are used for EOG recording. The montage of the electrode
was according to the international 10-20 system. Both of the
EEG and EOG channels were sampled 250Hz. After that,
they had been filtered using 0.5Hz to 100Hz ranged bandpass
filter. A 50Hz notch filter was also enabled during recording
to omit the line noise. The sensitivity of the amplifier
was set to 100 uV and 1mV for EEG and EOG recording,
respectively.

4.2. Data Preprocessing and EOG Correction. Linear EOG
correction method [52] is applied for artefact correction on
raw EEG signals. 𝛽 rhythms (12–30Hz) of EEG signals are
desynchronized with real movement or motor imagery [53].
𝜇 rhythms (8–12Hz) of EEG signals related to motor actions
and sometimes correlate with 𝛽 rhythms [54, 55]. For this
reason, corrected EEG signal is bandpass filtered using casual
Chebyshev Type II filter between 8Hz and 32Hz. After that,
CSP is applied and features are extracted according to (6) and
(7). Here,𝑚 is set to 2 for𝐴∗ in (6). So, 4 features are obtained
from each EEG epoch.

4.3. Experiment and Simulation. For all method, first session
of each subject is used as training set and second session is
used as test set.

For comparison purpose, a baseline method is also
implemented. In baseline method, the full training set of the
respective subject is used to train LDA classifier. No sample
from other users is used. After applying data preprocessing
as described in Section 4.2, four 𝑜𝑛𝑒 V𝑠 𝑟𝑒𝑠𝑡 LDA classifiers
are trained. These models are applied to predict label for
respective independent test session (Figure 8(c)).

The accuracy achieved by this baseline method is the
benchmark performance by an individual user. The purpose
of other methods in this work is to achieve this performance
using a reduced amount of training samples. This baseline
process is followed for each internal model training and test-
ing phase of other algorithms. As benchmark performance is
a static value and does not depend on the iterative increment
of subjective training samples, it is a straight line parallel to
the horizontal axis.

Other methods in this work are iterative where samples
from the new subject are added in training pool iteratively.
Each subject is considered as the new user (target) while
other 8 subjects are considered to be past users (source). Each
simulation starts with 40 random samples (𝑁𝑙 in Step 1 of
mDTAL algorithm) with equal class distribution from the
target domain.Then, 2 samples per class (𝑛 in (14)) are added
in each iteration until 20 iterations (maximum number of
iteration in Step 7 of Section 3). So, maximum 200 subjective
samples for each subject is added at final iteration. This
amount of training samples from the newuser is good enough
to observe whether the new subject can reach the benchmark
using a lower amount of training samples. For this reason,
the maximum number of iterations is set to 20. This whole
simulation is repeated 20 times for each subject to negate
random starting samples effect. Then, the average of ten
repeats in each iteration is taken as the performance of that
iteration.

Only first session of each historical subjects is taken as
source domain because label for the second session was kept
closed in BCI competition IV. Training samples from the
first session of target subject are added iteratively and the
classification performance in each iteration is computed on
the independent second session of the target subject.

5. Results and Discussion

The performance of proposed methods in this work is evalu-
ated based on the following two criteria: first, investigation
to find whether the method has reached the maximum
baseline performance; second, the number of subjects for
which intended method reaches the maximum baseline
performance. Direct transfer method (mDTAL) is the mul-
ticlass extension of active transfer learning [36] for motor
imagery BCI. Proposed informative space transfer algorithms
(AITAL, MIAITAL, and MIITAL) will be compared with
mDTAL based on the evaluation criteria mentioned above.
Figure 9 presents the accuracy of all methods for comparison.
The following observations can be drawn out from this result
based on the above-mentioned evaluation criteria:

(i) mDTAL method fails to achieve the baseline per-
formance except for subject A03, A06, and A08.
But, it is showing gradual increment in accuracy as
the training data from target domain increased. In
mDTALmethod, all samples from source domain are
transferred to the target domain directly. The results
reflect that, due to high variability among subjects,
there is a high chance of completely different types of
domain transfer in direct transfer method.

(ii) AITAL method reaches the baseline for subjects A01,
A02, A03, and A06. It depicts that transferring solely
aligned information does not always yield to trans-
fer of discriminative features transformation. Widely
sparse distributionmay be aligned butmight not have
much information for target domain learning process.
Moreover, aligned samples are not ensured to be equal
in class distribution. So, there is a high possibility
of introducing class-imbalance into the combined
domain (source + target).

(iii) MIITAL and MIAITAL transfer most informative
samples in each iteration. Both of them reach baseline
or close to baseline for subjects A01, A02, A03,
A06, A08, and A09. MIITAL shows better perfor-
mance than MIAITAL. The reason behind this is that
MIITAL emphasizes only on information carried out
by samples while MIAITAL requires both informa-
tive and aligned samples. Some of the informative
samples may not be aligned. These nonaligned infor-
mative samples with higher entropy are excluded in
MIAITAL but are included inMIITAL.Thus,MIITAL
outperforms MIAITAL with more informative sam-
ples.

From above observation, it is clear that informative
transfer approaches (MIITAL and MIAITAL) have reached
the baseline for six out of nine subjects while direct transfer
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Figure 9: Performance of mDTAL, AITAL, MIITAL, MIAITAL, and optimized ensemble method on BCI competition IV dataset 2A.
Accuracy is along the 𝑦-axis and the number of subject-specific training samples is along the 𝑥-axis.

(mDTAL) reaches baseline only for three out of nine subjects.
It implies that informative subspace transferring enables the
new subject to achieve the baseline performance with a
reduced number of training data formore number of subjects
compared with direct transfer methods. Table 1 shows the
number of subject-specific training samples required to reach
baseline or close to baseline. It also implies that MIITAL
method reaches baseline or close to baseline using average
49% less subject-specific data for 6 out of 9 subjects.

Though informative instance transfer achieves better
performance for most of the subjects, this is not a generic
outcome for all subjects. Subject A05 and subject A07 are

much closer to baseline, but they do not reach it. Exception-
ally, subject A04 is very far from the expected line for all
the methods. To find a generic solution for all subjects, an
optimized weighted ensemble of the proposed four methods
is applied (Figure 7). Performance of optimized weighted
ensemble method is shown in Figure 9 (solid black line).

Optimized ensemble of all methods achieves the baseline
and sometimes better than baseline with less amount of
subject-specific samples for 8 out of 9 subjects. As per results
in Table 1, optimized ensemble method reaches the baseline
or close to baseline using average 75.5% less subject-specific
training samples for 8 out of 9 subjects.
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Figure 10: Mean performance of all subjects for mDTAL, AITAL,
MIITAL, MIAITAL, and optimized ensemble methods. Accuracy is
along the 𝑦-axis and number of training samples added from the
new subject is along the 𝑥-axis.

Table 1: Number of samples to reach baseline for different methods.

Sub Base MIITAL
Reduction

by
MIITAL

Optimized
Reduction

by
optimized

A01 288 180 37.5% 40 86%
A02 288 180 37.5% 90 68.75%
A03 288 140 51.4% 40 86%
A04 288 × × × ×
A05 288 × × 120 58%
A06 288 170 41% 40 86%
A07 288 × × 100 65.3%
A08 288 60 79% 40 86%
A09 288 150 48% 70 75.7%
Mean 288 49% 76.56%
∗×: baseline cannot be reached.

To get a generic view irrespective of subjects, mean of
the accuracy of all subjects is presented in Figure 10. It
shows that proposed informative transfer learning methods
MIITAL and MIAITAL are performing always better than
that of direct transfer (mDTAL). It infers that informative
transfer has advantages over the direct transfer. However,
mean performance of both algorithms is behind the baseline
performance by 4-5%. On the other hand, mean of the
optimized ensemble is much closer to mean baseline of
all subjects (differs by only 1-2%). Subjective combination
adaptation would have yielded better results in comparison
to the optimized ensemble of the methods. However, this will
be considered in a future study.

Another observation is that subject A04 has no improve-
ment by all these methods. Any of the methods used in

this study is unable to improve the performance of subject
A04. This can be due to the fact that EEG response of some
subjects have complete dissimilarity with others [55].When a
completely dissimilar subspace is transferred and combined
with the target subject (A04), it does not much effect towards
the improvement of predictive function for the target domain.
A remedy for this issue could be achieved by clustering closely
related subject [28]. Closely related subjects or domains form
a cluster. Nonrelated or dissimilar subjects are excluded from
this cluster.Then, informative subspace from this close group
or cluster can make the transfer more effective. For EEG
epochs consisting large number of channels, EEG channels
selection could be a better addition for robustification [56–
60].

Presented results infer that a single method is working
well for some subjects and not up to the mark for others.
It implies that performance of proposed TL methods is
subject-dependent. Automatic selection of the best approach
for a subject is an open question to be investigated. One
of the possible causes behind the performance variation is
CSP applied for extracting features from a broad range of 𝜇
and 𝛽 rhythms (8–32Hz). Subjective frequency ranges can
be yielded into better feature extraction and selection [49].
Incorporating this subject adaptive frequency ranges will
ensure feature transfer from subjective range. Thus, it will
lead to better features transfer into proposed TL algorithm.
One concerning matter is the mean baseline performance of
multiclass BCI that is not up to the mark. Advance feature
extraction and learning algorithm could be applied to raise
up this baseline which leads to subsequent incorporation into
MIITAL and consequent performance raise of the MIITAL
algorithm.

In summary, this paper presents two slightly different
informative subspace transfer frameworks (MIAITAL and
MIITAL) on multiclass BCI. Though MIITAL has achieved
the expected result for a good number of subjects, still it
is lagging behind the baseline in general. The optimized
ensemble of these methods has overcome the gap. The
primary goal of this work is to investigate the functionality of
informative subspace transferring over the direct transfer for
multiclass BCI.Though it succeeded for most of the subjects,
there aremany scopes to improve in the proposed framework.
Secondary goal is to find comparatively better informative
transfer approach. From empirical results, it is clear that
MIITAL is serving the purpose better than MIAITAL.

6. Conclusion

In this work, we applied direct transfer learning with active
learning on multiclass motor imagery BCI. To improve the
performance, an informative instances transfer framework is
proposed. Its key advantage compared with direct transfer
methods is transferring informative instances that narrow
down the search spaces more precisely around the decision
line. Hence, it reduced training data significantly for most
of the subjects (6 out of 9). A generic optimized ensemble
of proposed methods is also implemented. It has achieved
expected accuracy with fewer subject-specific samples (using
average 75% less training samples) for 8 out of 9 subjects.
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Results achieved in this paper point out some directions
for future work as well. Subject adaptive method selection
could give a more fine-tuned performance. Cluster base
transfer combined with informative transferring could also
lead to better performance for the underperforming subject.
Another scope is filtering subject and subspace based on
distribution similarity.Domain adaptation based onmarginal
and conditional distribution could introducemore generalize
adaptation in the proposedTL framework. All these improve-
ments can reduce the calibration effort remarkably and lead
us towards a generic TL framework for BCI application.
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