Skip to main content
. 2018 Mar 8;13(3):e0193966. doi: 10.1371/journal.pone.0193966

Table 3. Linear stepwise regression models–predicting exhaustion (n = 57).

Model 1 Model 2 Model 3 Model 4 Model 5
Variables ß (S.E.) ß (S.E.) ß (S.E.) ß (S.E.) ß (S.E.)
Constant 3.40*** (.22) 3.40*** (.22) 3.25*** (.24) 3.6*** (.19) 3.54*** (.21)
Step 1: Control Variables
Age .32** (.13) .32** (.14) .30** (.14) .30** (.13) .21 (.13)
Gender -.14 (.38) -.24 (.40) .01 (.40) -.44 (.30) -.30 (.31)
Executive Hierarchical Level -.97 (.96) -1.13* (.11) -.94* (.97) -.01 (.86) -.31 (.93)
Staff Member hierarchical level -.24 (.31) -.19 (.32) -.01 (.39) -.70** (.29) -.56 (.40)
Step 2: Volume Variables
E-mails Received .11 (.20) .30 (.21)
Step 3: Position Variables
Degree -.22* (.15) -.38*** (.16)
Constraint -.26* (.15) -.08 (.14)
Step 4: Behavior Variables
E-mails Sent During Out-of-office Hours -.45*** (.12) -.51*** (.14)
Higher Hierarchical Level Reciprocity .51*** (.14) .50** (.18)
R2 .15 .16 .21 .39 .47
Adjusted R2 .09 .08 .11 .32 .37
ΔR2 .01 .06 .24 .32
F 2.37* 1.98* 2.16* 5.42*** 4.69***

The table presents linear regressions models predicting the variance of exhaustion. Model 1 is the base model with controls. Models 2–4 include controls and each predictor in a stepwise procedure. Model 5 is the final model including all variables.

Standard errors are robust. Two-tailed tests for all variables.

*p < .1

**p < .05

***p < .01