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Abstract

Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target 
site are the most clinically important and challenging goals in cancer therapy. Liposomes are 
promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred 
accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient 
drug release at the target site and endosomal entrapment of long circulating liposomes are very 
important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies 
such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive 
liposomes are stable in blood circulation, however, activated by responding to external or 
internal stimuli and control the cargo release at the target site. This review focuses on state of 
the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including 
hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli 
(pH, reduction, and enzyme) responsive liposomes are covered.
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Introduction

Cancer is one of the most common causes 
of death in the world that was responsible for 
millions of deaths in the 20th century, and still 
remains one of most challenging diseases to treat. 
Cancer as a significant cause of morbidity and 
mortality with more than ten million new cases 
every year is the biggest public health concern 
(1, 2). Although chemotherapeutics are widely 
used for cancer treatment, and effective to some 
extent, their nonspecific biodistribution to normal 
tissues and affecting healthy rapidly dividing 
cells (enterocytes, white blood cells, etc.) cause 
drug-induced toxicity and numerous serious 

side effects. In addition, free cancer therapeutics 
suffer from poor solubility, low stability, 
rapid in-vivo degradation, and short plasma 
residence time. To overcome the aforementioned 
limitations of chemotherapeutics, various 
nanoparticulate systems including liposomes, 
polymeric nanoparticles, polymeric micelles, 
dendrimers, and inorganic nanoparticles have 
been increasingly investigated for cancer therapy 
due to several advantages (3-7).

The enhanced permeability and retention 
(EPR) effect, which is due to unique structural 
features of many solid tumors, including 
hypervasculature, poorly aligned defective 
endothelial cells lacking smooth muscle layer, 
and impaired lymphatic drainage (Figure 1), has 
the critical role in nanoparticles accumulation 
at the tumor site (8, 9). However, the effective 
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nanocarriers of chemotherapeutics cannot only 
rely on the EPR effect. In order to use beneficial 
features of the EPR effect for anticancer 
delivery, nanomedicines should exhibit 
prolonged circulation time. Size, surface charge, 
hydrophobicity, composition, PEGylation, and 
shape are critical parameters in pharmacokinetic 
properties of nanostructures (10, 11).

Although nanoparticle accumulation in 
tumor site is very critical for antitumor efficacy 
enhancement and reduced adverse effects, 
inefficient drug release at the target site and 
endosomal entrapment of nanoparticles are very 
important obstacles for achieving maximum 
efficacy. To overcome these problems, stimuli-
responsive nanocarriers are designed to trigger 
drug release by either externally applied stimuli 
(such as hyperthermia (HT), magnetic, light, and 
ultrasound) or pathophysiological characteristic 
of tumors (internal stimuli). Usually in tumors, 
the pH value is lower and reduction potential 
and enzyme activity are different. These features 
provide the opportunity to use these endogenous 
factors as triggers to control cargo release at the 
target sites (12-16).

Among various nanoparticles, liposomes 
are widely-studied colloidal particles for 
cancer therapeutics delivery. Liposomes are 

bilayer vesicles composed of phospholipids and 
cholesterol and formed spontaneously when 
lipids are dispersed into an aqueous phase. 
Liposomes have numerous advantages such as 
biodegradability, excellent biocompatibility, 
non-immunogenicity, lack of toxicity, ability 
to incorporate hydrophilic and hydrophobic 
cargoes, enhanced bioavailability, and high 
stability that make them a unique carrier for 
drug and gene delivery (17-20). Beyond cancer, 
liposomes are used to enhance drug efficacy 
in various diseases including cardiovascular 
diseases (21-23), infections (24), autoimmune 
disorders (25), and skin diseases (26). In this 
article, we focus on recent studies of stimuli-
sensitive liposomes for cancer therapy. Both 
external stimuli-responsive liposomes, including 
HT, magnetic, light, and ultrasound-sensitive 
liposomes and internal stimuli (pH, reduction, 
and enzyme) responsive liposomes will be 
covered (Figure 2).

External stimuli-responsive liposomes
Thermosensitive liposomes
Hyperthermia (HT) was mentioned as a 

cancer treatment throughout the Middle ages 
(27). However, unsatisfactory heating techniques 
and equipment, the lack of precise non-invasive 

Figure 1. Schematic illustration of enhanced permeability and retention (EPR) effect and passive targeting of nanocarriers to solid 
tumors.
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Figure 1. Schematic illustration of enhanced permeability and retention (EPR) effect and 

passive targeting of nanocarriers to solid tumors. 

 

Among various nanoparticles, liposomes are widely-studied colloidal particles for cancer 

therapeutics delivery. Liposomes are bilayer vesicles composed of phospholipids and 

cholesterol and formed spontaneously when lipids are dispersed into an aqueous phase. 

Liposomes have numerous advantages such as biodegradability, excellent biocompatibility, 

non-immunogenicity, lack of toxicity, ability to incorporate hydrophilic and hydrophobic 

cargoes, enhanced bioavailability, and high stability that make them a unique carrier for drug 

and gene delivery (17-20). Beyond cancer, liposomes are used to enhance drug efficacy in 

various diseases including cardiovascular diseases (21-23), infections (24), autoimmune 

disorders (25), and skin diseases (26). In this article, we focus on recent studies of stimuli-

sensitive liposomes for cancer therapy. Both external stimuli-responsive liposomes, including 

HT, magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, 

and enzyme) responsive liposomes will be covered (Figure 2). 
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thermometry, and ineffective targeting of deeply-
seated tumors hampered clinical applications of 
HT (28). During the past two decades, testing HT 
as a component of cancer treatment strategies in 
a total of 109 trials has improved confidence in 
its clinical potential (29). The combination of 
mild HT with chemotherapy and radiation has 
been shown to improve cancer outcomes (30).

When combined with thermosensitive 
liposomes (TSL), HT can improve treatment 
efficacy by various mechanisms: (i) increasing 
liposomes accumulation in the tumor site by 
increasing tumor vascular permeability and local 
blood flow, (ii) triggering cargo release from TSL 
within tumor vasculature and interstitium, (iii) 
increasing cancer cell membrane permeability 
to the released drugs, and (iv) being directly 
cytotoxic to tumor cells (31, 32). Therefore, 
combination of HT and TSL administration 
holds great potential in cancer therapy (Table 1).

The design of TSL is based on pioneering 
work of Yatvin et al. (33) in 1978 on neomycin 
liposomal formulation which was the first 
formulation of traditional TSL. Over the next 
few decades, traditional TSL were further 
developed from lipid membranes that undergo 
phase transition from a gel to a liquid phase upon 
heating and the encapsulated cargoes leak out of 
the liposome during the phase transition. Early 
formulations of traditional TSL were generally 
composed of dipalmitoylphosphatidylcholine 
(DPPC), a saturated 16-carbon chain fatty acid 
with transition temperature (Tc) around 41 
°C (32, 34 and 35). Increased drug release in 

response to heat was observed with pure DPPC 
TSL, however the amount and rate of release 
were relatively limited (33).

Adding either distearoyl phosphocholine 
(DSPC) or hydrogenated soy phosphocholine 
(HSPC) to the DPPC TSL increased packing 
incompatibility, bilayer permeability, and the 
amount and rate of cargo released (32, 36). 

Following the development of stealth 
PEGylated liposomes in 1990, PEGylated TSL 
were studied in 1994 (37). Koning and his coworkers 
investigated the optimum 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-N-PEG(2000) 
(DSPE-PEG) percentage in TSL to achieve 
stealth liposomes with enhanced content release 
under mild HT. Different percentages of DSPE-
PEG (1 to 10 mol %) were incorporated in TSL 
and cargo release as well as vesicle stability 
were monitored. Cargo leakage at physiological 
condition was reported with 6 mol% and higher 
DSPE-PEG. TSL with 5 mol% DSPE-PEG were 
stable at 37 °C, released 60% carboxyfluorescein 
in 1 min and almost 100% of cargo in 1 h at 42 
°C and reported as the optimum TSL (38).

Dewhirst and Needham proposed the idea 
of formulating lysolipid based TSL (LTSL) 
that promoted rapid drug release in mild 
HT condition (39-42 °C). This formulation, 
composed of DPPC, 1-stearoyl-2-hydroxy-sn-
glycero-3-phosphatidylcholine (MSPC), and 
DSPE-PEG (at 86:10:4 molar ratio), has been 
commercialized by Celsion under the trade 
name of ThermoDox®, the first and only TSL 
reaching clinical development. To ensure a sharp 

Figure 2. Schematic illustration of stimuli-responsive liposomes triggered upon external as well as internal stimulation.
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External stimuli-responsive liposomes 

Thermosensitive liposomes 

Hyperthermia (HT) was mentioned as a cancer treatment throughout the Middle ages (27). 

However, unsatisfactory heating techniques and equipment, the lack of precise non-invasive 
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(29). The combination of mild HT with chemotherapy and radiation has been shown to 

improve cancer outcomes (30). 
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to the released drugs, and (iv) being directly cytotoxic to tumor cells (31, 32). Therefore, 
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Table 1. Examples of recent studies on thermosensitive liposomes. 
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Cargo In-vivo tumor model Components Targeting ligand Reference 

vitro Marker _ DPPC, DSPC, DPPG2 _ (61) 
vitro Arsenic _ DPPC, MPPC _ (62) 
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Table 1. Examples of recent studies on thermosensitive liposomes.

Stage of study Cargo In-vivo tumor model Components Targeting ligand Reference

In-vitro Marker _ DPPC, DSPC, DPPG2 _ (61)

In-vitro Arsenic trioxide _ DPPC, MPPC _ (62)

In-vitro DOX _
DPPC, HSPC, Chol, 

DSPE-PEG, p(NIPAAm-
co-PAA)

_ (63)

In-vitro _ _ DPPC, C12H25-PNIPAM-
COOH, PnBA-PNIPAM _ (64)

In-vitro DOX, Marker _

DPPC, Chol, 
Dimyristoylphosphatidic 
acid, 2C12-p(NIPMAM-

co-NIPAM)

_ (65)

In-vitro DOX _
DPPC, DSPC, DSPE-

PEG, short-chain 
glucosylceramide,

_ (66)

In-vitro/In-vivo DOX, Marker Murine sarcoma 
(BFS-1 cells) DPPC, DSPC, DSPE-PEG _ (67)

In-vitro/In-vivo Cisplatin, Marker Cervical carcinoma 
(ME-180 cells)

DPPC, DPPG, MSPC, 
DSPE-PEG _ (68)

In-vitro/In-vivo DOX, Marker Breast cancer (MDA-
MB-435 cells)

DPPC, Chol, DSPE-PEG, 
ammonium bicarbonate, 

gold nanorods
_ (69)

In-vitro/In-vivo 5-FU, Marker Colorectal adenocarcinoma 
(HT-29 cells) DPPC, Chol, DSPE-PEG _ (70)

In-vitro/In-vivo Cisplatin, Marker Cervical carcinoma 
(ME-180 cells)

DPPC, DPPG, MSPC, 
DSPE-PEG, _ (71)

In-vitro/In-vivo Marker Murine melanoma
 (B16B16 cells) 

DPPC, DSPC, DSPE-
PEG, DPTAP _ (72)

In-vitro/In-vivo DOX Melanoma (BLM cells) DPPC, DSPC, DSPE-PEG _ (17)

In-vitro/In-vivo DOX Murine squamous cell 
carcinoma (SSC-7 cells)

DPPC, Chol, DSPE-PEG, 
Elastin-like polypeptide _ (73)

In-vitro/In-vivo DOX, Marker Murine mammary tumor 
(EMT-6 cells)

DPPC, Chol, DSPE-PEG, 
Elastin-like polypeptide _ (50)

In-vitro/In-vivo Oxaliplatin Lewis Lung Cancer Cell 
(LLCC)

DPPC, MSPC, DSPE-
PEG, Poloxamer 188 _ (52)

In-vitro/In-vivo DOX, Marker _ DPPC, Polxamer 188 _ (51)

In-vitro/In-vivo DOX, Marker Murine colon cancer (C26 
carcinoma cells)

EPC, DOPE, Chol, DSPE-
PEG, EOEOVE-ODVE _ (74)

In-vitro DOX _ DPPC, Chol, Brij78 Pamidronate (75)

In-vitro DOX, Marker _ DPPC, DSPC, DSPE-PEG
Cetuximab 

(Fab' fragments), 
GE11 peptide

(57)

In-vitro/In-vivo DOX, Marker Breast cancer (MCF-7 cells)
DPPC, DSPC, Chol, 

DSPE-PEG, Elastin-like 
polypeptide

cRGD peptide (50)

In-vitro/In-vivo DOX, Marker Murine melanoma (B16B16 
cells) DPPC, DSPC, DSPE-PEG cRGD peptide (60)

In-vitro/In-vivo DOX, Marker Multi resistant breast cancer 
(MCF-7/ADR cells) DPPC, MSPC, DSPE-PEG CREKA peptide (76)

In-vitro/In-vivo DOX, Marker Epidermoid carcinoma 
(KB cells) DPPC, Chol, DSPE-PEG Folate (53)

In-vitro/In-vivo DOX, Marker Ovarian carcinoma 
(SK-OV3 cells)

EPC, Chol, DSPE-
PEG5000, EOEOVE-

ODVE
Trastuzumab (49)
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transition temperature, cholesterol was not added 
to the formulation; however, ThermoDox® has a 
relatively short plasma residence time (39, 40).

Banno et al. found out the lysolipid (MSPC, 
0-10 mol %) had a concentration-dependent 
effect on In-vitro drug release at 42 °C. However, 
within 1 h postinjection of LTSL, approximately 
70% of lysolipid was lost (41).

There are two proposed mechanisms for 
cargo release upon HT with LTSL: i) formation 
of nanopores by lysolipids and DSPE-PEG in 
the bilayer during the phase transition (39) and 
ii) desorption of lysolipids from the bilayer 
membrane at Tc and formation of molecular scale 
defects for drugs escape (41). Lysolipids transfer 
from LTSL into biological membranes and their 
dissociation upon LTSL dilution in the blood 
stream may result in a negative impact on the 
temperature-sensitivity, premature drug release 
at physiological conditions, and its associated 
adverse effects (32). 

The HEAT trial evaluating the combination 
of ThermoDox® and radiofrequency ablation 
in comparison to radiofrequency ablation 
alone for inoperable hepatocellular carcinoma 
treatment failed to reach its primary endpoint 
in progression-free survival. Allen and her 
coworkers extensively reviewed the possible 
reasons and factors underlying this failure (42). 

Lindner‘s group described a TSL based 
formulation based on 1,2-dipalmitoyl-sn-
glycero-3-phosphodiglycerol (DPPG2) for 
doxorubicin (DOX) (43) and pyrimidine 

analogue gemcitabine (44). While similar release 
profile with ThermoDox® was obtained (43), 
significantly prolonged plasma residence time 
was achieved (i.e. half-life of 5 h in rats and 9.6 
h in hamsters) (45). Gemcitabine prodrug loaded 
DPPG2 TSL were also stable at 37 °C in serum 
and exhibited a temperature dependent cargo 
release > 40 °C. Plasma half-life of gemcitabine 
was significantly increased from 0.07 h (free 
drug) to 0.53-2.59 h (liposomal formulations). 
Therapy of soft tissue sarcoma BN175 with 
combination of gemcitabine loaded DPPG2 TSL 
and HT was the most effective treatment strategy 
(44).

Another approach for heat sensitizing of 
liposomal nanocarriers is to add synthetic 
polymers that are bilayer membrane disruptive 
in response to HT into lipid composition. Such 
polymers can either add to TSL to improve their 
heat-responsive functionality or incorporate 
to non-thermosensitive liposomes to make 
them thermosensitive. Temperature-sensitive 
polymers such as poly(N-isopropylacrylamide) 
(p(NIPAAm)) (46, 47), poly(N-vinyl ethers) 
(48, 49), elastin-like polypeptide (50), and 
poloxamers (Pluronic®) (51, 52), are among the 
most extensively studied temperature-sensitive 
polymer incorporated TSL.

Most of heat-responsive nanoparticles were 
not decorated with ligands for receptor-mediated 
targeting. However, a few recent studies have 
focused on design of next generation of TSL 
that combine targeting and triggered drug 

Table 1. Continued.

Stage of study Cargo In-vivo tumor model Components Targeting ligand Reference

In-vitro/In-vivo siRNA-CPP, Marker Fibrosarcoma 
(HT1080 cells) DPPC, MSPC, DSPE-PEG NGR peptide (77)

Abbreviations: Brij78: Polyoxyethylene stearyl ether; C12H25-PNIPAM-COOH: C12H25-poly(N-isopropylacrylamide)-COOH; 2C12 
(PNIPMAM co NIPAM): 2C12 (poly N-isopropylmethacrylamide co poly N-isopropylacrylamide); Chol: Cholesterol; CREKA peptide: 
Cys-Arg-Glu-Lys-Ala; cRGD peptide: Cyclic Arg-Gly-Asp peptide; DOPE: 1,2-Dioleoylsn-glycero-3-phosphoethanolamine; DOX: 
Doxorubicin; DPPC: 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine; DPPG: 1,2-Dipalmitoyl-snglycero-3-phosphoglycerol; DPTAP: 
1,2-Dipalmitoyl-3-trimethylammonium-propane; DSPC: 1,2-Distearoyl-sn-glycero-3-phosphocholine; DSPE-PEG: 1,2-Distearoyl-
sn-glycero-3-phosphoethanolamine-(polyethylene glycol)-2000; EOEOVE-ODVE: Block copolymer compounds of octadecyl 
vinyl ether and 2-(2-ethoxy)ethoxyethyl vinyl ether; EPC: Egg phosphatidylcholine; 5-FU: 5-Fluorouracil; HSPC: Hydrogenated 
soy phosphatidylcholine; MPPC: Monopalmitoylphosphatidylcholine; MSPC: Mono-stearoyl-sn-glycero-3-phosphatidylcholine; 
NGR peptide: Asn-Gly-Arg peptide; PnBA-PNIPAM: Poly(n-butylacrylate-b-N-isoropylacrylamide)-poly(N-isopropylacrylamide); 
p(NIPAAm-co-PAA): Copolymer of N-isopropylacrylamide conjugated with propylacrilic acid; siRNA-CPPs: Small (or short) 
interfering RNA via disulfide-bonds conjugated with cell penetrating peptides.
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release. Various ligands such as folate (53, 54), 
trastuzumab antibody (herceptin) (49, 55 and 
56), epidermal growth factor receptor (EGFR) 
specific Fab̕ fragment (57), affibodies (58), and 
peptides (57, 59 and 60) were conjugated to TSL.

Multifunctional TSL conjugated with anti-
EGFR ligands (GE11 peptide and Fab̕ fragments 
of cetuximab) for targeted delivery and 
localized HT triggered release of chemotherapy 
were designed by our team (57) (Figure 3). 
Ligand decoration did not significantly alter 
the physicochemical characteristics of TSL. 
Compared to GE11 conjugated TSL, Fab̕-
coated TSL (Fab̕-TSL) bound to the EGFR 

overexpressed cancer cells more specifically and 
efficiently as shown by flow cytometry and live 
cell imaging analyses. Calcein loaded Fab̕-TSL 
exhibited adequate stability at the physiological 
condition (<4% calcein released after 1 h at 
37 °C in serum) and a temperature dependent 
release at > 40 °C. Combination of HT and Fab̕ 
modification enhanced cytotoxicity of DOX 
encapsulated TSL. The drug loaded Fab̕-TSL 
cytotoxicity was also correlated to EGFR density 
on the cancer cells (Figure 3) (57).

Magnetic field-sensitive liposomes
Magnetic nanoparticles, especially iron oxide 
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Figure 3. EGFR targeted thermosensitive liposomes (TSL) were successfully prepared for 

simultaneous tumor targeted and stimulus-responsive drug delivery. (A) Cellular uptake of 

Figure 3. EGFR targeted thermosensitive liposomes (TSL) were successfully prepared for simultaneous tumor targeted and stimulus-
responsive drug delivery. (A) Cellular uptake of labeled non-targeted and targeted TSL by cancer cells with different expression of EGFR 
receptors. Fab̕ modified TSL can more efficiently bind to the EGFR overexpressed cells as compared to GE11 decorated TSL. (B) Upon 
internalization dramatic intracellular cargo release was observed upon hyperthermia as confirmed by flow cytometry analysis. Reprinted 
from reference (57), Copyright 2016, with permission from Elsevier.
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nanoparticles, show great promise in biomedical 
applications due to their biocompatibility and 
unique features. They are used for magnetic 
resonance imaging (MRI), gene transfection, heat 
generation (or HT) under an alternating current 
(AC) magnetic field, targeted drug delivery, cell 
sorting, and cancer treatments (78-80).

The combination of magnetic nanoparticles 
and liposomes, commonly called 
“magnetoliposomes”, was first introduced in 
1988 by De Cuyper and Joniau (81). Since 
then, magnetoliposomes have been used in 
MRI imaging, targeted drug delivery, and HT-
mediated controlled drug release (82, 83).

Both bottom up and top down methods 
have been used for preparation of iron oxide 
nanoparticles. However, top down methods have 
some limitations on particle size and scale of 
production, thus bottom up techniques such as 
coprecipitation and thermal decomposition are 
more frequently used to prepare nanoparticles 
with hydrophilic and hydrophobic surfaces (84, 
85). 

Magnetoliposomes can be formed by three 
different approaches: i) encapsulation of 
hydrophilic nanoparticle in the aqueous core 
of liposomes; ii) incorporation of hydrophobic 
nanoparticle within lipidic bilayer of liposomes; 
iii) binding magnetic nanoparticles on the surface 
of liposomes (80, 86). The first two methods are 
more commonly used.

Magnetic nanoparticles are one of the 
promising carriers for targeted delivery. By 
applying external field gradient from magnet, 
magnetic nanoparticles are attracted to the 
magnetic force. One of the main applications 
of magnetoliposomes is heat triggered cargo 
release mediated by an externally applied AC 
magnetic field at specific region. The heating of 
the magnetic nanoparticles depends on magnetic 
property of nanoparticles, frequency and 
amplitude of the magnetic field, and surrounding 
environment. Therefore, in order to control the 
temperature rise of magnetic nanoparticles, in 
depth optimization of magnetic field condition 
and surrounding environment is crucial for each 
magnetic nanocarrier (80). HT generated by 
magnetic nanoparticle under AC magnetic field 
can result in phase transition of the lipid bilayer 
from gel to liquid and trigger and control release 

of drugs encapsulated in magnetoliposomes. 
By tuning the bilayer composition of 
liposomes, the membrane phase transition 
can be adjusted to be around HT temperature 
(34, 82). Table 2 summarizes some recent 
researches of HT-mediated triggered release 
from magnetoliposomes. As an example of these 
researches, docetaxel loaded magnetoliposomes 
were prepared from purified magnetite and 
liposomes for gastric cancers. Tumor volume on 
7th day after treatment was at least 6 times lower 
in the animal group received docetaxel loaded 
magnetoliposomes in addition to applying 
magnetic field compared to free drug group. 
However, drug loaded liposomes treatment 
group without exposing to AC magnetic field 
showed comparable efficacy to drug solution 
group (87).

Stimulating drug release from 
magnetoliposomes by pulsed or low frequency 
magnetic field is a recent area of research that 
draws a lot of attention for triggering cargo 
release under controlled temperature (Table 2). 
For achieving fast drug release, short magnetic 
pulses were applied to disrupt the membrane 
of magnetoliposomes (Figure 4). Ultrasound 
generation under this magnetic field may also 
play a role in the drug release from the magnetic 
liposomes (88). Carboxymethyl dextran-coated 
magnetoliposomes with high loading ability for 
DOX were prepared and showed on-demand 
drug release under low-frequency alternating 
magnetic field. The hybrid nanostructures were 
demonstrated as a potential T2-weighted contrast 
agent for In-vitro MRI measurements (89).

Ligand conjugated magnetoliposomes have 
been also studied to achieve more specific drug 
delivery. Magnetoliposomes have been decorated 
with folate (90), hyaluronic acid (91, 92), anti-
αvβ3 antibody (93), sugar moieties (94), and 
cell-penetrating peptides (CPPs) (95) to achieve 
ligand targeted magnetic liposomes. Hyaluronic 
acid, specifically bind to the CD44, is a promising 
ligand for tumor targeting due to overexpression 
of CD44 on various tumors including the colon, 
pancreas, breast, and ovarian (96). Hyaluronic 
acid decorated magnetoliposomes have been 
investigated for triggered release and targeted 
delivery of an anticancer drug (docetaxel). 
Docetaxel was incorporated in the vesicle 
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Table 2. Examples of recent studies on magnetic field-sensitive liposomes.

Stage of study Cargo In-vivo tumor model Components Magnetic field 
specifications1 Reference

In-vitro 5-FU _ PC, Fe3O4 nanoparticles f = 250 kHz, 
H = 4 kA/m (99)

In-vitro Gemcitabine _ DPPC, Chol, Fe3O4 
nanoparticles

f = 356 kHz, 
H = 30 kA/m, 

B = 2T
(100)

In-vitro Paclitaxel _ DPPC, PG, Fe3O4 
nanoparticles

f = 423kHz, 
H = 10 kA/m (101)

In-vitro Marker _

DSPC, POPC, SOPC, 
DSPE-PEG, Palmityl-
nitroDOPA, Iron oxide 

nanoparticles

f = 230 kHz (102)

In-vitro Curcumin _ DPPC, Chol, DSPE-PEG, 
Fe3O4 nanoparticles (103)

In-vitro Arsenic trioxide Hepatocarcinoma 
(SMMC-7721 cells)

DPPC, Chol, 
Mn0.5Zn0.5Fe2O4 

nanoparticles
f = 230 kHz (104)

In-vitro/In-vivo Docetaxel Gastric cancer 
(MKN45 cells)

DLPC, DOPE, FeFe2O4 
nanoparticles

f = 478 kHz, 
H = 6.36 kA/m, 

P = 1kW
(87)

In-vitro/In-vivo DOX-CPP 
conjugate, Marker

Breast adenocarcinoma 
(MCF-7 cells)

DPPC, MSPC, Fe3O4 
nanoparticles

f = 423kHz, H = 
10 k A/m (95)

In-vitro/In-vivo Marker _ SPC, Fe3O4 nanoparticles f = 20 kHz, 
H = 100 A/m (105)

In-vitro/In-vivo Marker _ HSPC, Chol, Fe3O4 
nanoparticles

f = 20 kHz, 
H = 60 A/m (106)

In-vitro/In-vivo Marker _
Cetyltrimethylammonium 

chloride, Myristic acid, 
Fe3O4 nanoparticles

f = 520 kHz, 
H = 28 kA/m, 
B = 145 mT

(107)

In-vitro/In-vivo DOX _ SPC, Fe3O4 nanoparticles f = 50 Hz, 
B = 30 mT (89)

In-vitro/In-vivo Marker _ DPPC, DSPC, Chol, Fe3O4 
nanoparticles

f = 214.8 Hz, 
B = 3 T (88)

In-vitro/In-vivo Oxaliplatin, 
Gemcitabine Breast cancer (MCF-7 cells) PC, DMPG, Chol, Fe3O4 

nanoparticles B = 0.5 T (108)

In-vitro/In-vivo DOX, Marker _ DPPC, Chol, DSPE-PEG, 
Fe3O4 nanoparticles

f = 290 kHz, 
H = 12 kA/m (109)2

In-vitro/In-vivo DOX _
DOPC, DSPE-

PEG, DPTAP, Fe2O3 
nanoparticles

f = 287 kHz, 
H = 5.9 

×105kA/m, P = 
1 kW

(90)2

In-vitro/In-vivo Marker Hepatocarcinoma 
(CD90+ stem cells)

DPPC, DSPE-PEG, Fe3O4 
nanoparticles f = 200 kHz (110)3

1 B, Magnetic induction; f, Frequency; H, Magnetic intensity; M, Magnetization; P, Magnetic power. 
2 Folate decorated nanocarrier for targeted delivery.
3 CD90 antibody decorated nanocarrier for targeted delivery.
Abbreviations: Chol: Cholesterol; CPP: Cell penetrating peptide; DLPC: Dilauroylphosphatidylcholine; DMPG: 1,2-Dimyristoyl-sn-
glycero-3-phosphoglycerol; DOPC: 1,2-Dioleoyl-sn-glycero-3-phosphocholine; DOPE: 1,2-Dioleoylsn-glycero-3-phosphoethanolamine; 
DOX: Doxorubicin; DPPC: 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine ; DPTAP: 1,2-Dipalmitoyl-3-trimethylammonium-
propane; DSPC: 1,2-Distearoyl-sn-glycero-3-phosphocholine; DSPE-PEG: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-
(polyethylene glycol)-2000; 5-FU: 5-Fluorouracil; HSPC: Hydrogenated soy phosphatidylcholine; MSPC: Mono-stearoyl-sn-glycero-
3-phosphatidylcholine; Palmityl-nitroDOPA: Palmityl-nitro 3,4-dihydroxyphenylalanine; PC: Phosphatidylcholine; PG: 1-Palmitoyl-2-
oleoyl-sn-glycero-3-phospho-rac-glycerol; POPC: 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; SOPC: 1-Stearoyl-2-oleoyl-sn-
glycero-3-phosphocholine; SPC: Soybean phosphatidylcholine.
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bilayers while citric acid-coated magnetic 
nanoparticles were encapsulated in the aqueous 
cores. Targeted nanoparticles were about 190 
nm and spherical in shape. Drug loaded targeted 
magnetoliposomes showed accelerated drug 
release under near-infrared laser irradiation and 
superior cellular uptake in comparison with the 
conventional non-targeted liposomes (91).

CPPs are attractive ligands in targeted drug 
delivery with the ability to transport various small 
and bulk cargoes intracellularly (97). However, 
their lack of specificity is a major limitation 
for CPPs’ systemic application (98). In order to 
control their biodistribution and present CPPs at 
target site, in a recent study, Lin et al. reported 
multifunctional targeted magnetoliposomes 
that encapsulated these ligands (95). CPP 
derived from penetratin was conjugated to 
DOX. CPP-DOX conjugate and Fe3O4 were 
co-encapsulated into lysolipid based TSL 
composed of DPPC:MSPC:DSPE-PEG2000 
(87:3:10 mass ratio). The results demonstrated 
that the vesicles possessed appropriate size 
(98 nm) and encapsulation efficiency (87%). 
When AC magnetic field was applied for 30 
min, about 86% CPP-DOX was released from 
the liposomes (12-fold compared to control 
condition). In-vitro cytotoxicity studies showed 
both CPP conjugation as well as HT-mediated by 
AC magnetic field improved anticancer efficacy. 
Moreover, in-vivo study in a breast xenograft 
model showed superior antitumor efficacy of 
multifunctional magnetoliposomes activated by 
AC magnetic field (95).

Light-sensitive liposomes
The success of light-triggered delivery system 

is dependent on adequate light source selection 
that can penetrate the tissues, photosensitizing 
properties of the therapeutic agents, and 
instrumentation. The preferred wavelengths are 
in the near-infrared (NIR) regions (~700 nm 
to 1100 nm) as the light penetration is more 
than 1 cm depth in the body (111, 112). Light 
absorbing pharmaceutical agents typically 
called as photosensitizers are promising 
candidates for photodynamic therapy (PDT). 
PDT is a minimally invasive cancer treatment 
generally based on light-mediated excitation of a 
photosensitizer resulting in localized production 
of reactive oxygen species (ROS) and destruction 
of nearby unwanted biological agents (113, 
114). Due to hydrophobic properties and non-
specific biodistribution of photosensitizers, their 
application in cancer therapy meets technical 
challenges. Nanoparticles especially liposomal 
formulations of photosensitizers are attractive 
systems for improved and targeted delivery 
of photosensitizers (114, 115) (Table 3). In 
formulation of successful photo-triggerable 
liposomes, retention of vesicle stability and 
entrapped cargo before accumulation at the target 
site as well as efficient activation/destabilization 
of liposomes in the tissue by the source light are 
very important parameters (111, 112). Visudyne 
is a successful example of photosensitizer 
(verteporfin) liposomal formulations that is 
currently clinically used. 

A number of photo-triggerable synthetic 

Figure 4. Fast release of the liposomes’ payload by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with 
magnetic nanoparticles. Reprinted from reference (88) Copyright 2014, with permission from American Chemical Society.
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Figure 4. Fast release of the liposomes’ payload by using short magnetic pulses to disrupt the 

lipid bilayer of liposomes loaded with magnetic nanoparticles. Reprinted from reference (88) 

Copyright 2014, with permission from American Chemical Society. 

 

Ligand conjugated magnetoliposomes have been also studied to achieve more specific drug 

delivery. Magnetoliposomes have been decorated with folate (90), hyaluronic acid (91, 92), 

anti-αvβ3 antibody (93), sugar moieties (94), and cell-penetrating peptides (CPPs) (95) to 

achieve ligand targeted magnetic liposomes. Hyaluronic acid, specifically bind to the CD44, 

is a promising ligand for tumor targeting due to overexpression of CD44 on various tumors 

including the colon, pancreas, breast, and ovarian (96). Hyaluronic acid decorated 

magnetoliposomes have been investigated for triggered release and targeted delivery of an 

anticancer drug (docetaxel). Docetaxel was incorporated in the vesicle bilayers while citric 

acid-coated magnetic nanoparticles were encapsulated in the aqueous cores. Targeted 

nanoparticles were about 190 nm and spherical in shape. Drug loaded targeted 

magnetoliposomes showed accelerated drug release under near-infrared laser irradiation and 

superior cellular uptake in comparison with the conventional non-targeted liposomes (91). 

CPPs are attractive ligands in targeted drug delivery with the ability to transport various small 

and bulk cargoes intracellularly (97). However, their lack of specificity is a major limitation 

for CPPs’ systemic application (98). In order to control their biodistribution and present CPPs 
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Table 3. Examples of recent studies on light-sensitive liposomes.

Stage of study Cargo In-vivo tumor 
model Components Light 

wavelength
Photosensitizing 
agent or group Reference

In-vitro Marker _ DSPC, DMPC, Chol UV (365 nm) ZnPC (128)

In-vitro Marker _ DPPC, DSPC, Lyso PC, 
DSPE-PEG NIR (808 nm) ICG (129)

In-vitro Marker _ SOPC, DOPC, SLPC Visible (590 nm)
m-THPP, 

Pheophorbide a, 
Verteporfin

(130)

In-vitro DOX, 
Marker _ DPPC, DSPE-PEG, 

DC8,9PC Visible (514 nm) _ (125)

In-vitro Marker _ DPPC, MPPC, DPPE-
PEG NIR (760 nm) Gold 

nanoparticles (131)

In-vitro Marker _ DSPC, DPPC UV (365 nm)
Gold 

nanoparticles 
(Au NPs)

(132)

In-vitro/In-vivo Marker _ EPC, DPPC, DOPC, 
DLiPC, DPhPC

Visible 
(532, 633 nm)

AlPcS3, 
ZnPcGlyc4, 
Chlorin e6

(133)

In-vitro/In-vivo Marker _ EPC, PVA carrying a 
malachite green moiety UV _ (134)

In-vitro/In-vivo Marker _ DPPC, DSPE-PEG, 
DC8,9PC Visible (514 nm) _ (126)

In-vitro/In-vivo Marker _ DSPC, photocleavable 
lipid UV (365 nm)

Amphiphilic 
lipids containing 
amino acids and 

o-nitrobenzyl 
groups

(123)

In-vitro/In-vivo DOX _ HSPC, DMPG, Chol UV (365 nm) Azobenzene 
moiety (120)

In-vitro/In-vivo Marker _ DMPC, DMPG, DMPE, 
DMPS,

UV (365 nm), 
Visible (532 nm)

Azobenzene 
moiety (135)

In-vitro/In-vivo DOX Breast cancer 
(MCF 7 cells) DSPC, DSPE-PEG NIR (980 nm)

Upconversion 
nanoparticles; 
Azobenzene 

moiety

(121)1

In-vitro/In-vivo DOX, 
Marker

Ovarian 
carcinoma 

(SKOV3 cells), 
Lung 

adenocarcinoma 
(A549 cells)

DPPC, HSPC, Chol, 
DSPE-PEG NIR Gold 

nanoparticles (136)2

1 Folate decorated nanocarrier for targeted delivery.
2 HER2 antibody decorated nanocarrier for targeted delivery.
Abbreviations: AlPcS3: Aluminum trisulfophthalocyanine; Chol: Cholesterol; DC8,9PC: 1,2-Bis(tricosa-10,12-diynoyl)-sn-glycero-3-
phosphocholine; DLiPC: Dilinoleoylphosphatidylcholine; DMPC: 1,2-Dimyristoyl-sn-glycero-3-phosphocholine; DMPE: Dimyristoyl 
phosphatidylethanolamine; DMPG: 1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol; DMPS: Dimyristoyl phosphatidylserine; DOPC: 
1,2-Dioleoyl-sn-glycero-3-phosphocholine; DOX: Doxorubicin; DPhPC: Diphytanoylphosphatidylcholine; DPPC: 1,2-Dipalmitoyl-sn-
glycero-3-phosphocholine; DPPE-PEG: Dipalmitoylphosphatidylethanolamine-[N-methoxy(polyethylene glycol)-2000]; DSPE-PEG: 
1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-(polyethylene glycol)-2000; DSPC: 1,2-Distearoyl-sn-glycero-3-phosphocholine; 
EPC: Egg phosphatidylcholine; HSPC: Hydrogenated soy phosphatidylcholine; ICG: Indocyanine green; Lyso PC: 1-Stearoyl-2-
hydroxy-sn-glycero-3-phosphocholine; MPPC: Monopalmitoylphosphatidylcholine; m-THPP: [5,10,15,20-tetrakis(3-hydroxyphenyl)
porphyrin]; NIR: Near infrared; PC: Phosphatidylcholine; PVA: Poly(vinyl alcohol); SLPC: 1-Stearoyl-2-linoleoyl-sn-glycero-3-
phosphocholine; SOPC: 1-Stearoyl-2-oleoyl-sn-glycero-3-phosphocholine; UV: Ultraviolet; ZnPC: Zinc phthalocyanine; ZnPcGlyc4: 
Neutral zinc phthalocyanine with four glycerols attached to the peripheral (4,5) positions of the isoindoline subunits.
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phospholipids have been investigated to 
undergo various chemical processes including 
photosensitization, photopolymerization, 
photooxidation, photoisomerization, or the 
degradation of photocleavable lipids that 
have been explained in recent review articles 
(116, 117). The majority of these nanosystems 
were based on light-triggered modifications in 
conjunction with a photosensitizing molecule 
either incorporated in the bilayer membrane or 
encapsulated in the aqueous core. The photo-
induced modifications were mostly irreversible 
changes with the exception of phospholipid 
molecules with photo-triggering capability via 
the cis–trans isomerization (111, 112 and 117). 

Azobenzenes are a class of chemical 
compounds that undergo photoisomerization 
of their cis and trans isomers. Bis-Azo PC (a 
photochromic lipid) and azobenzene cholesterol 
derivatives were studied (118, 119). Recently, 
newly structured azobenzene derivatives, 
azobenzene-contained glycolipids, have been 
synthesized. The photo-induced control of DOX 
release from liposomes was investigated (Figure 
5). The isomerization process in ethanol solution 
was much faster than that in the liposome bilayer, 
indicating the hindering effect of surrounding 
lipids in the liposomal bilayer. Among the 
synthesized azobenzene-contained glycolipids, 

GlyAzoC7 was shown to be the most favorable 
photosensitive actuator for controlling cargo 
release. In the dark, less than 10% drug leakage 
was observed in 10 h but nearly 100% of cargoes 
instantaneously released with ultraviolet (UV) 
irradiation (120). However, due to limited 
tissue penetration of UV/visible wavelengths, 
achieving a suitable photo-triggering at in-
vivo conditions was a challenging issue. A new 
hybrid vesicle based on azobenzene liposome 
and phosphatidylcholine modified upconversion 
nanoparticle (UCNP) was designed for precise 
remote control of drug release using NIR light. 
The encapsulated UCNPs converted NIR light 
into the UV/visible region emissions which can 
be immediately absorbed by the photoresponsive 
azobenzene amphiphilic molecules in the 
liposomal bilayer (121).

Photocleavable liposome is another approach 
to trigger drug release in response to light and 
designed on the basis of destabilization and 
disruption of liposome membrane by breakdown 
products of irradiation. Chandra and co-workers 
synthesized several amphiphiles containing a 
nitrobenzyl moiety separating a polar amino acid 
headgroup from a long hydrophobic tail (122, 
123). To develop analogues with closer structure 
to lipids, a photocleavable 2-nitrobenzyl group 
embedded within the acyl chain was synthesized 

Figure 5. The diagram of photoisomerization induced burst release of doxorubicin from liposomes embedded by azobenzene-contained 
glycolipid. Reprinted from reference (120) Copyright 2017, with permission from American Chemical Society.
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Photocleavable liposome is another approach to trigger drug release in response to light and 

designed on the basis of destabilization and disruption of liposome membrane by breakdown 

products of irradiation. Chandra and co-workers synthesized several amphiphiles containing a 

nitrobenzyl moiety separating a polar amino acid headgroup from a long hydrophobic tail 

(122, 123). To develop analogues with closer structure to lipids, a photocleavable 2-

nitrobenzyl group embedded within the acyl chain was synthesized by Bayer et al. (124).  

Another research groups have focused on photopolymerization rendering the destabilization 

of liposomal bilayer by intermolecular photo-crosslinking of phospholipids. bis-sorbyl 

phosphatidylcholine and 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine 

(DC8,9PC) are some examples of photopolymerizable lipids that have been studied. Puri and 
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by Bayer et al. (124). 
Another research groups have focused 

on photopolymerization rendering the 
destabilization of liposomal bilayer by 
intermolecular photo-crosslinking of 
phospholipids. bis-sorbyl phosphatidylcholine 
and 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-
3-phosphocholine (DC8,9PC) are some examples 
of photopolymerizable lipids that have been 
studied. Puri and her coworkers developed 
DPPC:DC8,9PC formulations and the cargo 
release (DOX or calcein) occurred upon 
treatment with a 514 nm laser. Photo-triggering 
occurred primarily via a type-I photoreaction 
process (125, 126).

In addition to light-sensitive liposomes, photo-
stabilized liposomes are attractive candidates 
for sustained drug delivery. In this approach, a 
photopolymerizable group was introduced into 
lipid bilayer to prepare plasma stable liposomes. 
An example of photo-stabilized liposomes was 
vesicles prepared from the polymerizable lipid, 
1,2-dipalmitoyl-sn-glycero-3-phospho-N-(2-
hydroxymethyl)-3,5-divinylbenzamide (DPPE-
DVBA), that have been demonstrated to photo-
crosslink in the presence of UV light (127).

Ultrasound-sensitive liposomes
Ultrasound offers an easy and non-invasive 

method for precise drug delivery because 
its energy can disrupt nanostructures that 
stably encapsulated cargoes before triggering. 
Furthermore, enhancement of drug transport 
across cell membranes and a synergistic effect 
between the pharmacological activity of some 
drugs and ultrasound effects were observed. In 
ultrasound-mediated triggered drug carriers, 
acoustic parameters should be carefully tuned 
to be energetic enough to actuate drug release 
while avoiding harmful damage to cells and 
tissues (137, 138). Compared to high-frequency 
ultrasound (1–3 MHz), low frequency ultrasound 
(20–100 kHz) can be a more effective trigger 
for drug release and penetrate deeper into 
tissues. However, it does not allow for sharp 
focusing (139). In this part, non-thermal effects 
of ultrasound to enhance drug release from 
liposomal carrier are discussed and examples of 
recent studies are presented in Table 4.

Liposomes are rather transparent to 

ultrasound; however, need to contain a gas phase 
for being sensitive to ultrasound. Therefore, 
acoustically active liposomes (echogenic 
liposomes and bubble liposomes) that contain 
a gas phase are designed in order to respond to 
ultrasound. To prepare acoustically triggered 
liposomes, different strategies including an 
internal gas bubble, a liquid phase changeable to 
a gas bubble upon insonation, bubbles attached 
to the vesicle exterior parts, and bubbles reside in 
the close proximity of liposomes have been used. 
Two main mechanisms have been proposed for 
shear stress and cavitation of ultrasound to trigger 
vesicle content release: i) producing small pores 
for enhanced permeability or ii) destabilization 
and disruption of the entire liposome. 

In the first strategy to prepare ultrasound-
responsive liposomes, gas bubbles (generally 
micron-sized) are nested inside liposomal 
vesicles. These delivery systems can be prepared 
by either mixing and sonication of gas bubbles 
with phospholipid mixture (140), or sonication 
of liposomes in the presence of perfluorocarbon 
gas (141), or gas generation inside the liposomes 
by a chemical reaction (e.g. bicarbonate solution) 
(142).

Suzuki et al. reported effective gene delivery 
system by using the bubble liposome and 
sonoporation for IL-12 corded plasmid DNA 
delivery (143). This approach dramatically 
suppressed tumor growth and the therapeutic 
effect was T-cell dependent (143). One advantage 
of bubble liposomes over echogenic liposomes 
is that the bubble liposomes are smaller in size 
with average diameter generally less than 500 
nm, compared to micron sizes for echogenic 
liposomes (143, 144).

To achieve nanosized vesicles for 
extravasation or endocytosis, another strategy 
has been invented that the gas bubbles are not 
pre-existing, but rather form upon the ultrasound 
triggering event. This approach allows vesicles 
with diameter less than 500 nm. Pitt and his 
coworkers developed an emulsion-containing 
liposome (eLiposome). The ultrasound 
application can cause changing the emulsion 
droplet to gas, thus increasing the volume inside 
the liposomes and leading to vesicle rupture 
and the cargo release (145-147). Two methods 
were proposed for eLiposome preparation. In 
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the first method, emulsion droplets were made 
of perfluorohexane or perfluoropentane and 
stabilized with phospholipids. A thin layer of 
phospholipids was dried in a round-bottomed 
flask. The emulsion was added to the flask and 
hydrated the phospholipids forming liposomes 
around the emulsions (one-step preparation, 
Figure 6). In the second method, liposomes and 
emulsions were made separately, and then mixed 
using ultrasound (145).

The third category of ultrasound-sensitive 
liposomes is designed by small liposomes 
that are attached to larger gas bubbles. The 

liposomes are usually around 100 nm and loaded 
with the therapeutic agents while the bubbles 
are ~1–3 μm and contain a perfluorocarbon 
gas (148, 149). When exposed to ultrasound 
the bubble cavitates violently, and the resulting 
shock waves and shear forces disrupt the nearby 
vesicle bilayer and release its content. As an 
example of these studies, Cool et al. prepared 
microbubbles with drug containing liposomes 
at their surface in one single step. Liposomes 
prepared from DPPC, cholesterol, and DSPE-
PEG and loaded with indocyanine green (ICG) 
as a model drug. Mirobubbles were composed 

Table 4. Examples of recent studies on ultrasound-sensitive liposomes.

Stage of study Cargo In-vivo tumor 
model Components Gas type Ultrasound 

frequency Reference

In-vitro DOX, 
Marker _ DSPC, Chol, DSPE-

PEG, DOPE _ 40 kHz (153, 154)

In-vitro Marker _ DSPC, Chol, DSPE-
PEG, DOPE _ 1.13 MHz (155)

In-vitro DOX _ DPPC, Chol, DSPE-
PEG-SPDP Decafluorobutane 1 MHz (156)

In-vitro Marker _ POPC, Lipopeptide _ 3 MHz (157)

In-vitro Thrombin, 
Marker _

PC, Chol, PEG150 
stearate, Biotin-
PEG3400-PC

Decafluorobutane 1 MHz (149)

In-vitro _ _ DPPC Perfluorohexane 20 kHz (146)

In-vitro/In-vivo Marker _ DPPC, Chol, DSPE-
PEG, PDP Decafluorobutane 1 MHz (148)

In-vitro/In-vivo Marker Prostate tumor 
(22Rv1 cells)

DSPC, Chol, DSPE-
PEG, DOPE _ 1.1 MHz (158)

In-vitro/In-vivo DOX, 
Marker

Metastatic 
murine 

melanoma 
(B16F10 

luciferase cells)

HSPC, Chol, DSPE, 
DSPE-PEG

Sulphur 
hexafluoride 0.5 MHz (159)

In-vitro/In-vivo IL-12 corded 
pDNA

Murine ovarian 
carcinoma 

(OV-HM cells)
DSPC, DSPE-PEG Perfluoropropane 1 MHz (143)

In-vitro/In-vivo Marker _
DPPC, DSPC, DMPC, 

DSPE-PEG, DLPA, 
DPPA

Perfluorohexane, 
Perfluoropentane 20 kHz (145)1

1 Folate decorated nanocarrier for targeted delivery.
Abbreviations: Chol: Cholesterol; DLPA: 1,2-Didodecanoyl-snglycero-3-phosphate (sodium salt); DMPC: 1,2-Dimyristoyl-sn-glycero-
3-phosphocholine; DOPE: 1,2-Dioleoylsn-glycero-3-phosphoethanolamine; DOX: Doxorubicin; DPPA: 1,2-Dipalmitoyl-sn-glycero-
3-phosphate; DPPC: 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine; DSPC: 1,2-Distearoyl-sn-glycero-3-phosphocholine; DSPE: 
1,2-Distearoyl-sn-glycero-3-phosphoethanolamine; DSPE-PEG: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-(polyethylene 
glycol)-2000; DSPE-PEG-SPDP: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-[N-PDP(polyethylene glycol)-2000]; HSPC: 
Hydrogenated soy phosphocholine; PC: Phosphatidylcholine; pDNA: Plasmid DNA; PDP: 3-(2-Pyridyldithio)-Propionate; POPC: 
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.
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of the perfluorobutane gas. This strategy led to 
enhanced liposome extravasation (148). 

Some studies have described ligand targeted 
ultrasound-responsive liposomes by using 
antibodies (150), folate (151), and CPPs (152).

Internal stimuli-responsive liposomes  
pH-sensitive liposomes
pH-sensitive liposomes have been designed 

to trigger and promote efficient release of 
entrapped cargoes in response to an acidic 
environment. The pH of blood and extracellular 
fluid of normal tissues is approximately 7.4 
whereas in extracellular microenvironment of 
tumor, pH is between 6.0 and 7.0 (160, 161). 
The acidosis in tumor tissue can be explained 
by the poor organization and dysfunctional 
vasculature, heterogeneous blood flow, and 
insufficient nutrient delivery. This condition 
ultimately forces cells to generate energy from 
anaerobic glycolytic metabolism of glucose 
to lactic acid. Limited clearance and increased 
accumulation of lactic acid due to reduced 
blood flow lead to a pH reduction in the tumor 
microenvironment, as mentioned above (162). 
However, the pH value of the tumor interstitial 
fluid rarely declines below 6.5, thus designing 
liposomal carrier to disrupt in response to such 
a narrow pH change is technically challenging 
(161). On the other hand, following binding to 
cancer cells, the vesicles can be up-taken and 
internalized through endocytosis and retained 

in endosomal and lysosomal compartments. The 
promising potential of pH-sensitive liposomes 
lies in their ability in fusion or destabilization 
after cell internalization at the endosomal 
stage with pH values in range of 4.5 – 5.5 
(mainly due to the activity of vacuolar-type 
proton ATPase) (163), thereby preventing their 
contents degradation at the lysosomal level and 
promoting cargo release into the cytoplasm. This 
process known as ‘endosomal escape’ results 
in releasing drug payload into the cytosol and 
also far from the transmembrane efflux pumps, 
thereby at least partly preventing lysosomal 
degradation and circumventing drug resistance 
development in tumor cells (164, 165). To date, 
various liposomal carriers have been designed to 
respond to either low extracellular pH in tumors 
or endosomal pH compartments (Table 5).

Dioleoylphosphatidylethanolamine (DOPE) 
is the most commonly used pH-sensitive 
lipid. DOPE has a cone shape due to small 
and minimally hydrated polar head group that 
occupies a lower volume compared with its acyl 
chains. The inverted cone shape of DOPE lipid 
has a tendency to form an inverted hexagonal 
HII shape at physiological pH because of strong 
interactions between the phosphate and amine 
groups of the polar head groups. DOPE by itself 
with these structural aspects cannot form lipid 
bilayers at neutral pH. DOPE combined with 
amphiphilic molecules containing a protonatable 
acidic group, such as cholesteryl hemisuccinate 

Figure 6. One-step process of eLiposomes production. Phospholipid is deposited on the flask and an emulsion is added. eLiposomes 
form while the flask is rotated. Reprinted with minor modification from reference (145), with permission from American Chemical 
Society, Copyright 2012.
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of the perfluorobutane gas. This strategy led to enhanced liposome extravasation (148).  

Some studies have described ligand targeted ultrasound-responsive liposomes by using 

antibodies (150), folate (151), and CPPs (152). 

 

Internal stimuli-responsive liposomes   

pH-sensitive liposomes 

pH-sensitive liposomes have been designed to trigger and promote efficient release of 

entrapped cargoes in response to an acidic environment. The pH of blood and extracellular 

fluid of normal tissues is approximately 7.4 whereas in extracellular microenvironment of 

tumor, pH is between 6.0 and 7.0 (160, 161). The acidosis in tumor tissue can be explained 

by the poor organization and dysfunctional vasculature, heterogeneous blood flow, and 

insufficient nutrient delivery. This condition ultimately forces cells to generate energy from 
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Table 5. Examples of recent studies on pH-sensitive liposomes.

Stage of 
study Cargo In-vivo tumor model Components Targeting 

ligand Reference

In-vitro Docetaxel _ PE, Chol, Oleic acid, Linoleic 
acid, CHEMS _ (191)

In-vitro DOX, Marker _ SPC, Chol, DSPE-PEG, 
PEtOz-CHEMS _ (192)

In-vitro DOX, Marker _ HSPC, DOPC, Chol, PEGm-
PDPAn-PEGm _ (193)

In-vitro Paclitaxel _ DOPE, DSPE-PEG, CHEMS _ (194)

In-vitro/In-
vivo DOX, Marker Colorectal cancer 

(HCT116 cells)
DPPC, mPEG-P

(HPMA-g-His)-Col _ (195)

In-vitro/In-
vivo Temsirolimus

Murine renal 
carcinoma (A498 

cells)

SPC, Chol, a synthetic smart 
lipid (HHG2C18) _ (196)

In-vitro/In-
vivo Paclitaxel _ SPC, DSPE-PEG, CHEMS-

PEG, CHEMS-Hz-PEG _ (179)

In-vitro/In-
vivo miRNA, Marker _ Chol, DMG-PEG, a pH-

sensitive lipid _ (197)

In-vitro/In-
vivo

Ovalbumin, 
Marker

Mouse lymphoma 
(E.G7-OVA cells)

EPC, 
3,5-Didodecyloxybenzamidine

f = 20 kHz, 
H = 100 A/m (105)

In-vitro hydrochloride, 
MGlu-HPG _ (174) f = 20 kHz, 

H = 60 A/m (106)

In-vitro siRNA, Marker _ DOPC, DODAP, N-dod-DOPE Anti-CXCR4 
antibodies (182)

In-vitro/In-
vivo DOX, Marker _ 2IPC, DSPA, DSPE-PEG Folate (198)

In-vitro/In-
vivo

Paclitaxel, 
Marker

Murine mammary 
carcinoma (4T1 cells)

SPC, Chol, DSPE-PEG, 
PEG5000-Hz-PE R8 peptide (178)

In-vitro/In-
vivo

Paclitaxel, 
Marker

Murine melanoma 
tumor (B16F1 cells)

SPC, Chol, DSPE-PEG, 
DSPE-SS-PEG5000 TAT peptide (199)

In-vitro/In-
vivo DOX

Breast 
adenocarcinoma 

(MDA-MB-231 cells)

DOPE, DSPE-PEG3400, 
CHEMS Alendronate (200)

In-vitro/In-
vivo

Paclitaxel, 
Marker

Murine hepatocellular 
carcinoma (HepG2 

cells)
SPC, Chol

CPP, 
Hyaluronic 

acid
(201)

In-vitro/In-
vivo DOX, Marker

Colon 
adenocarcinoma 

(HT29 cells)
SPC, Chol, DSPE-PEG STP peptide (202)

In-vitro/In-
vivo

Paclitaxel, 
Marker

Murine melanoma 
(B16F10 cells) SPC, Chol, DSPE-PEG

pH-
responsive 
CPP and 
cRGD 
peptide

(203)
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(CHEMS) and oleic acid have been used to 
prepare pH-sensitive liposomes. The electrostatic 
repulsion between deprotonated carboxylate 
and phosphate groups allows the formation of 
bilayer structures at neutral pH. At acidic pH, 
destabilization of liposomes is mediated by the 
protonation of carboxylate groups, suppressing 
charge repulsion in the bilayer, and consequently 
resulting in the reversion of DOPE molecules 
into their inverted hexagonal phase (161, 166 
and 167).

Besides a considerable number of researches 
on pH-sensitive liposomes prepared from 
DOPE derivatives, a few studies have recently 
described incorporation of novel pH-sensitive 
lipids. Szoka and his coworkers synthetized 

a novel acid-labile lipid containing a linear 
ortho ester linker between cholesterol-derived 
lipid tail and its dimethylethanolamine-type 
cationic head group. Liposomes, composed 
of this acid-labile lipid and DOPE, were used 
for gene delivery. Compared to the acid-stable 
control, pH-sensitive lipoplexes increased the 
luciferase gene expression by 5- to 10-fold both 
in CV-1 cells (a monkey fibroblast cell line) 
and following intratracheal administration in 
CD-1 mice (168). Harashima group introduced 
another cationic pH-sensitive lipid, YSK05 (a 
tertiary amine containing lipid with structure 
similar to DOTAP) for improving the delivery of 
liposomal siRNA and gene silencing (169, 170).

The other approach to prepare pH-sensitive 

Table 5. Continued.

Stage of 
study Cargo In-vivo tumor model Components Targeting 

ligand Reference

In-vitro/In-
vivo

Paclitaxel, 
Marker

Colon 
adenocarcinoma 

(C26 cells)

SPC, Chol, DSPE-PEG, [D]-
H6L9 peptide

cRGD 
peptide (204)

In-vitro/In-
vivo DOX, Marker Rat glioma (C6 cells) Chol, DSPE-PEG, DOPE

pH-
responsive 

CPP
(185)

In-vitro/In-
vivo DOX, Marker

Epidermoid 
carcinoma 
(KB cells)

PC, Chol, DSPE-PEG, 
DOTAP, Malachite green 

carbinol base
Folate (205)

In-vitro/In-
vivo DOX Breast carcinoma 

(MCF7 cells) HSPC, DOPE, CHEMS, DSPE Estrone (189)

Abbreviations: CHEMS: Cholesteryl hemisuccinate; CHEMS-Hz-PEG: Cholesteryl hemisuccinate-Hidrazone activated-(polyethylene 
glycol)-2000 (An acid cleavable PEG-lipid derivative); CHEMS-PEG: Cholesteryl hemisuccinste-(polyethylene glycol)-2000; Chol: 
Cholesterol; CPP: Cell-penetrating peptide; cRGD peptide: Cyclic Arg-Gly-Asp peptide; CXCR4: C-X-C chemokine receptor type 
4; [D]-H6L9 peptide: A pH-responsive anti-microbial peptide; DMG-PEG: 1,2-Dimyristoyl-sn-glycerol-methoxy(polyethylene 
glycol)-2000; DODAP: 1,2-Dioleoyl-3-dimethylammonium-propane; DOPC: 1,2-Dioleoyl-sn-glycero-3-phosphocholine; DOPE: 
1,2-Dioleoylsn-glycero-3-phosphoethanolamine; DOTAP: 1,2-Dioleoyl-3-trimethylammoniumpropane; DOX: Doxorubicin; DPPC: 
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine; DSPE: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine; DSPE-PEG: 1,2-Distearoyl-
sn-glycero-3-phosphoethanolamine-(polyethylene glycol)-2000; DSPE-SS-PEG: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine 
thiolytic cleavable-(polyethylene glycol)-2000; DSPA: 1,2-Distearoyl-sn-glycero-3-phosphate; EPC: Egg phosphatidylcholine; 
HHG2C18-L: (1,5-Dioctadecyl-l-glutamyl2-histidyl-hexahydrobenzoic acid-liposome) (A zwitterionic oligopeptide liposomes; HSPC: 
Hydrogenated soy phosphocholine; 2IPC: 1,2-diheneicosanoyl-sn-glycero-3-phosphocholine; MGlu-HPG: 3-Methylglutarylated 
hyperbranched poly(glycidol); miRNA: MicroRNA; mPEG-P(HPMA-g-His)-Chol: Methoxy-(polyethylene glycol)-b-poly(N-2-
hydroxypropyl methacrylamide-co-histidine)-cholesterol; N-dod-PE: 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-dodecanoyl; 
PEG5000-Hz-PE: (Polyethylene glycol)-5000-Hidrazone activated-Polyethylene; PC: Phosphatidylcholine; PE: Polyethylene; PEGm-
PDPAn-PEGm: Di-block copolymer PEG8-PDPA15; PEtOz-CHEMS: Poly(2-ethyl-2-oxazoline)-cholesteryl hemisuccinate; R8 peptide: 
Octaarginine peptide; siRNA: Small (or short) interfering RNA; SPC: Soybean phosphatidylcholine; STP peptide: Dual-recognition 
(SKDEEWHKNNFPLSP) peptide; TAT peptide: (GRKKRRQRRRPQ) peptide.
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liposomes is by incorporation of pH-sensitive 
fusogenic peptides either derived from viruses 
(like haemagglutinin, gp41, and diINF-7), 
bacteria (such as listeriolysin O and diphtheria 
toxin), and plants (e.g. ricin, saporin, and 
gelonin) or synthetic materials (e.g. GALA, 
KALA, and surfactants) (for review see (171)).

Liposomes enriching with pH-sensitive 
polymers such as N-isopropylacrylamide 
(NIPAM) (172, 173), poly(glycidol)s (174, 175), 
and poly(alkyl acrylic acid)s (176, 177) have also 
proposed for acid-responsive delivery. Simplicity 
of preparation and lower immunogenicity are 
probably two main advantages of these carriers 
to peptidic pH sensitizers. As an example of 
these studies, Yuba et al. (175) investigated 
the relationship between backbone structure 
of pH-sensitive poly(glycidol) derivatives and 
their interaction with the membrane. A stronger 
interaction with the membrane was observed 
with hyperbranched poly(glycidol) derivatives 
than the linear polymers. Increasing degree of 
polymerization of hyperbranched poly(glycidol) 
derivatives enhanced their bilayer interaction as 
well. Liposomes modified with these polymers 
effectively delivered their contents into the 

cytosol of dendritic cells (175).
In spite of the success of ‘stealth’ nanosystems 

(PEGylated pH-sensitive liposomes) in 
achieving stability and long-circulation, DSPE-
PEG containing pH-sensitive liposomes showed 
reduced pH-sensitivity and cellular uptake. The 
reduced ability of PEGylated shell to come into 
close proximity of cancer cells and endosomal 
membranes is one of main explanations for 
reduced internalization and pH-responsiveness. 
Aiming to overcome the instability of non-
PEGylated liposomes in addition to maintain 
adequate pH sensitivity, some studies have been 
focused on designing pH-sensitive liposomes 
with a cleavable PEG chain (178-181). 

In a recent study, CPP decorated pH-sensitive 
cleavable liposomes were designed and loaded 
with paclitaxel. The CPP (R8 peptide) was 
conjugated to a short PEG group and long PEG 
chains were linked to liposomal surface by 
hydrazone bond. Before liposomes injection, free 
losartan was administered to deplete the collagen 
I and facilitated liposomes deep penetration into 
tumors. After taking the advantage of increasing 
plasma residence time and passive targeting by 
the long PEG, low extracellular pH in the cancer 

Figure 7. CPP decorated pH-sensitive cleavable liposomes are designed and loaded with paclitaxel. The CPP (R8 peptide) is conjugated 
to a short PEG and long PEG chains are linked to liposomal surface by acid-sensitive hydrazone bond. Before liposomes injection, free 
losartan is administered to deplete the collagen I and facilitate liposomes deep penetration into tumors. Low extracellular pH in the 
cancer cell proximity causes long PEG detachment and exposes CPP to the tumor cell. Reprinted from reference (178) Copyright 2015, 
with permission from American Chemical Society.
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Figure 7. CPP decorated pH-sensitive cleavable liposomes are designed and loaded with 

paclitaxel. The CPP (R8 peptide) is conjugated to a short PEG and long PEG chains are 

linked to liposomal surface by acid-sensitive hydrazone bond. Before liposomes injection, 

free losartan is administered to deplete the collagen I and facilitate liposomes deep 

penetration into tumors. Low extracellular pH in the cancer cell proximity causes long PEG 

detachment and exposes CPP to the tumor cell. Reprinted from reference (178) Copyright 

2015, with permission from American Chemical Society. 
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cell proximity caused long PEG detachment and 
exposed CPP to the tumor cell. This approach 
can overcome limited uptake of PEGylated 
liposomes as well as non-specificity of R8 
peptide (Figure 7) (178).

To overcome limited uptake and specificity 
of stealth liposomes, some studies have been 
designed targeted pH-sensitive liposomes by 
conjugating various ligands such as antibodies 
(182, 183), peptides (178, 184 and 185), 
hyaluronic acid (186), transferrin (187), and 
folate (188) to the vesicle surfaces. Estrone 
decorated pH-sensitive liposomes were also 
designed for intracellular delivery of DOX to 
estrogen receptor on breast cancer cells (189). The 
estrogen receptor expression amplifies in breast 
carcinomas (190). Liposomes were prepared 
from DOPE, HSPC, CHEMS, and cholesterol. 
The targeted pH triggered formulation showed 
enhanced nuclear drug delivery, improved 
therapeutic efficacy, and reduced cardiotoxicity 
compared with non-triggered formulation and 
free drug (189).

Enzyme-sensitive liposomes
In some pathological conditions, such 

as cancer, inflammation, and infection, the 
concentrations of different extracellular and 
intracellular enzymes are elevated. Enzyme-
responsive nanocarriers can be designed to 
undergo structural transformation and release 
the encapsulated cargoes by this biochemical 
abnormality (206, 207).

Enzyme-responsive liposomes have a 
number of advantages. The payload release 
is controlled by an enzyme at the target site 
without any external equipment for triggering. 
The amount of drug release in the targeted tissue 
is usually proportional to the concentration 
of the active enzyme and the severity of the 
pathological condition. Furthermore, some 
bioactive molecules are produced following 
enzyme digestion that may have synergistic 
therapeutic effects or facilitate the uptake of 
the drug. Secreted phospholipase A2, matrix 
metalloproteinases, urokinase plasminogen 
activator, elastase, and prostate-specific antigen 
are extracellular enzymes and cathepsin B is an 
intracellular enzyme used as triggers for drug 
release from liposomal carriers (206-208). Table 

6 represents recent studies on enzyme-responsive 
liposomes. 

Secreted phospholipase A2 level increases in 
cancers (especially in the prostate, pancreatic, 
colon, and breast tumors), inflammatory 
diseases, cardiovascular diseases, and immune 
disorders (209). Therefore, phospholipase A2-
responsive liposomes are attractive nanocarriers 
for the targeted release of anticancer agents at 
the tumor tissues.

Enzyme-mediated phospholipids hydrolysis 
disrupts the integrity of the lipid bilayer 
and triggers drug release. Involvement of 
phospholipase A2 receptor in the uptake of this 
responsive liposome has also been proposed. 
Another possible mechanism is cleavage of 
a lipophilic drug attached to the carrier by 
a phospholipase A2-sensitive bond (206, 
210 and 211). A number of factors influence 
phospholipase A2 hydrolytic activity including 
the enzyme isoforms, lipid assembly, lipid 
physical properties, liposomal composition, and 
presence of lipopolymer. Incorporation of short 
acyl chain lipids, anionic polar head groups, and 
PEG grafted lipids have shown to increase the 
hydrolytic activity of phospholipase A2 (212, 
213).

Matrix metalloproteinases (MMPs) are 
responsible for the proteolytic degradation 
of extracellular matrix. These enzymes 
(particularly, MMP-2 and MMP-9) are 
overexpressed in pancreatic, colorectal, breast, 
and lung tumors and play important roles in 
tumor growth, invasion, and metastasis (214). 
There are two main strategies to prepare MMP-
responsive liposomes (206). First, MMP-
sensitive peptides are synthetized and linked 
the shielding PEG groups to liposomal surface. 
At target site, the peptide is cleaved leading to 
the release of PEG and subsequently ligands 
promoting cellular uptake of nanocarriers are 
exposed to the target cancer cells. Torchilin and 
his coworkers designed a dual antinucleosome 
monoclonal antibody and TAT peptide targeted 
MMP-2-responsive multifunctional liposomal 
delivery system. Upon nanocarrier accumulation 
in tumors and specific targeting of cancer 
cells, in response to up-regulated extracellular 
MMP-2 in tumors, the hidden surface-attached 
TAT peptides exposed and enhanced cellular 
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Table 6. Examples of recent studies on enzyme-sensitive liposomes.

Stage of 
study Cargo In-vivo tumor 

model Components Type of enzyme Targeting 
ligand Reference

In-vitro Marker _ DPPC, DMPC, DPPG, 
DMPG

Secretory 
phospholipase A2 _ (213)

In-vitro _ _ DSPG, thio-ester pro 
anticancer ether lipid

Secretory 
phospholipase A2 _ (223)

In-vitro DOX, 
Marker _ DPPC, Poloxamer 188 Secretory 

phospholipase A2 _ (224)

In-vitro Oxaliplatin Breast cancer 
(MT3-cells)

POPC, POPG, Chol, 
DSPE-PEG

Secretory 
phospholipase A2 _ (212)

In-vitro DOX, 
Marker

Prostate 
cancer (PC-3 

cells)

DSPC, DSPG, Chol, 
DSPE, DSPE-PEG

Secretory 
phospholipase A2 _ (225)

In-vitro Marker _
POPC, Stearic acid 

conjugated collagen-
mimetic peptides

MMP-9 _ (217)

In-vitro/In-
vivo Marker _

DOPC, DSPC, POPC, 
MMP-9-sensitive 

lipopeptide
MMP-9 _ (216)

In-vitro/In-
vivo Marker

EPC, Chol, DSPE-
PEG, DSPE-peptide-

PEG3400
MMP-2

2C5 
monoclonal 

antibody, TAT 
peptide

(215)

In-vitro/In-
vivo Marker _

DOPE, DODAP, 
DOPE conjugated 

to elastase-sensitive 
peptide

Protease (Elastase) _ (226)

In-vitro/In-
vivo pDNA _

DOPE, DOTAP, 
PEG lipid with 

an enzymatically-
cleavable linker

Cathepsin B _ (221)

In-vitro/In-
vivo

Paclitaxel 
conjugated 

to 
dendrimers 
by enzyme-

sensitive 
linker, 
Marker

Breast cancer 
(MDA-

MB-231 cells)

EPC, Chol, DSPE-
PEG Cathepsin B Folate (222)

In-vitro/In-
vivo

siRNA, 
Marker

Prostate 
cancer (22Rv1 

cells)

SPC, 3b[N-(N0 ,N0-
dimethylaminoethane)-

carbamoyl] chol, 
DSPE-PEG

PSA enzyme Folate, CPPs (219)

Abbreviations: Chol: Cholesterol; CPPs: Cell penetrating peptides; DMPC: 1,2-Dimyristoyl-sn-glycero-3-phosphocholine; DMPG: 
1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol; DODAP: 1,2-Dioleoyl-3-dimethylammonium-propane; DOPC: 1,2-Dioleoyl-sn-glycero-
3-phosphocholine; DOPE: 1,2-Dioleoylsn-glycero-3-phosphoethanolamine; DOTAP: 1,2-Dioleoyl-3-trimethylammoniumpropane; 
DOX: Doxorubicin; DPPC: 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine; DPPG: 1,2-Dipalmi-toyl-sn-glycero-3-phosphoglycerol; 
DSPC: 1,2-Distearoyl-sn-glycero-3-phosphocholine; DSPE: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine; DSPE-PEG: 
1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-(polyethylene glycol)-2000; DSPG: 1,2-Distearoyl-snglycero-3-phospho-(1’-rac-
glycerol); EPC: Egg phosphatidylcholine; MMP-2: Matrix mettaloprotease-2; MMP-9: Matrix mettaloprotease-9; pDNA: Plasmid 
DNA; POPC: 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPG: 1-Palmitoyl-2-oleoyl-sn- glycero-3-phospho-(1’-rac-
glycerol); PSA: Prostate-specific antigen; siRNA: Small (or short) interfering RNA; SPC: Soybean phosphatidylcholine; TAT peptide: 
(GRKKRRQRRRPQ) peptide.
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Figure 8. A dual antinucleosome monoclonal antibody and TAT peptide targeted MMP-2-responsive multifunctional liposomal delivery 
system is designed. Upon nanocarrier accumulation in tumors and specific targeting of cancer cells, in response to up-regulated 
extracellular MMP-2 in tumors, the hidden surface-attached TAT peptides expose and enhance cellular internalization of liposomes. 
Reprinted from reference (215) Copyright 2012, with permission from American Chemical Society.
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The urokinase plasminogen activator and prostate-specific antigen are serine proteases. 

Urokinase plasminogen activator elevated levels have been reported in a variety of cancers 

including colon, bladder, breast, and ovarian tumors (218). Therefore, liposomes containing 

urokinase plasminogen activator cleavable peptides can release the encapsulated payloads at 

internalization of liposomes (Figure 8) (215). 
Another strategy is the incorporation of MMP-
cleavable lipopeptides into the liposomal 
membrane. The lipopeptide cleavage in response 
to elevated enzyme concentration at the tumor 
tissues leads to liposomes destabilization and 
content release (216, 217).

The urokinase plasminogen activator and 
prostate-specific antigen are serine proteases. 
Urokinase plasminogen activator elevated 
levels have been reported in a variety of cancers 
including colon, bladder, breast, and ovarian 
tumors (218). Therefore, liposomes containing 
urokinase plasminogen activator cleavable 
peptides can release the encapsulated payloads 
at target sites. Prostate-specific antigen-activated 
nanoparticles developed from the enzyme-
cleavable peptides can exhibit very selective 
antitumor activity against prostate cancer (219).

Cathepsin B is a lysosomal cysteine proteinase 
of the papain family enhanced extracellular 

matrix degradation and overexpressed in several 
malignancies, such as colon, prostate, brain, 
breast, and lung tumors (220). Cathepsin B 
has been reported to increase fusogenicity of 
liposomes at the target sites. Since cathepsin 
B is mainly found in lysosomes, dual pH and 
cathepsin B-responsive liposomes have been 
developed for targeted intracellular cargo 
delivery. In a recent article, PEG was attached 
to a lipid by an enzymatically-cleavable linker 
(glycine-phenylalanine-leucine-glycine). In 
the endosome, the detachment of PEG shell 
following the degradation of the peptide linker 
by cathepsin B caused vesicle destabilization, 
endosomal disruption, and triggering the 
controlled plasmid DNA release into cytoplasm 
(221). In another study, Satsangi et al. designed 
paclitaxel conjugated poly(amidoamine) 
dendrimers by cathepsin B-cleavable tetrapeptide 
and encapsulated this conjugate within folate 
receptor targeting liposomes (222).
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Redox-sensitive liposomes
Redox-responsive delivery systems are one 

of the most efficient stimulus-responsive carriers 
for cancer drug and gene therapy. Glutathione 
(GSH) is a cysteine-containing tripeptide and the 
key intracellular reducing agent which plays an 
important role in cell growth and function as well 
as maintaining cellular redox homeostasis (227, 
228). Much higher concentration of GSH (~100-
1000 fold) in the intracellular compartments, 
especially in cytosol, mitochondria, and cell 
nucleus, compared to its levels in blood and 
extracellular matrix along with high redox 
potential difference existing between normal and 
tumor tissue provide a good rationale for redox-
responsive nanocarriers as an intracellular drug 
delivery and tumor specific strategy. Typically, 
redox-sensitive nanostructures contain the 
cleavable/reversible disulfide bonds in their 
structures to render redox-responsive character 
(229-231). Redox-responsive liposomes have 
been often destabilized either by changes in 
hydrophilicity and/or charge of the amphiphile 
with reducing agents, or by cross-linker removal 
to cause lipid phase transitions (232). Table 7 
summarizes recent studies on redox-responsive 
liposomes.

A reduction-sensitive fusogenic liposome 
was prepared by vesicle surface-coating with 
chotooligosaccharides, hydrolytic products 
of chitosan, via a disulfide linker (233). 
The hydrophilic backbone, low degree of 
polymerization, high water-solubility, cationic 
nature, cell adhesion properties, and wider 
biological activities such as anti-angiogenesis 
and radical scavenging efficacy make them as 
candidates for modification of tumor-targeted 
liposomes (233). Modified liposomes were 
stable under physiological conditions but 
destabilized in the presence of the cytosolic level 
of reducing agents most likely due to disulfide 
bond breakage. Chotooligosaccharide coated 
liposomes exhibited a prolonged half-life of 
DOX by 4-5.5 fold and strong inhibitory effect 
on tumor growth in osteosarcomas animal model 
compared to free drug (233). 

The survivin overexpression is an important 
factor involved in paclitaxel resistance of 
breast cancer cells. In a recent study, Chen 
et al. proposed redox-sensitive oligopeptide 

liposomes for co-delivery of paclitaxel and anti-
survivin siRNA for the synergistic treatment and 
efficient anti-metastasis strategy against breast 
cancer (234). The nanosystem was composed 
of soybean phosphatidylcholine, cholesterol, 
and a redox-sensitive cationic oligopeptide 
lipid with a proton sponge effect. The vesicles 
disassembled in the presence of 10 mM GSH 
as confirmed by monitoring size, zeta potential, 
and morphology changes. The system offered 
several advantages including improved cellular 
uptake, reduced survivin expression, efficient 
endolysosomal escape, higher cell cytotoxicity, 
synergistic in-vivo inhibitory effect on tumor 
growth, and reduced pulmonary metastasis 
of breast cancer (234). Another co-delivery 
approach has been reported for combination of 
DOX and P-glycoprotein, verapamil, by a redox-
responsive liposome to overcome multidrug 
resistance (235).

In contrast to studies utilized disulfide 
bonds in lipid components of vesicles, Ren 
et al. prepared a redox-responsive prodrug of 
docetaxel prodrug by conjugation of the drug 
molecule to vitamin E via a disulfide linker and 
incorporated it in liposomes (236).

A few studies have focused on designing 
targeted redox-responsive liposomal carriers by 
employing antibody (237), hyaluronic acid (238), 
and CPPs (199, 239). Cationic redox-sensitive 
liposomes were prepared with a novel detachable 
PEG conjugated with cholesterol through a 
disulfide linker and hyaluronic acid, a ligand 
for CD44, was non-covalently coated on the 
cationic vesicles. This nanosystem destabilized 
in reducing conditions and released higher cargo 
levels compared to redox insensitive liposomes. 
The proposed nanostructure was an excellent 
CD44-mediated intracellular delivery system for 
osteosarcoma treatment in animal models (238).

Conclusion

Liposomes are a viable carrier to improve 
both the safety and efficacy of antineoplastic 
therapeutics which have already resulted in 
marketed anticancer products (i.e., Doxil®, 
DaunoXome®, and Depocyt®) (247). To improve 
their efficacy and overcome the limitations of 
conventional liposomes, modified formulations 
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Table 7. Examples of recent studies on redox-sensitive liposomes.

Stage of study Cargo In-vivo tumor model Components Targeting 
ligand Reference

In-vitro Marker _ DOPE, Q-DOPE, DOPE-PEG _ (240)

In-vitro DOX, Marker _

DSPC, DSPG, Ferrocene 
modified phospholipid prepared 
from DSPE and ferroceneacetic 

acid

_ (241)

In-vitro
Redox-responsive 
docetaxel prodrug, 

Marker
_ SPC, Chol, DSPE-PEG _ (242)

In-vitro Marker _
POPC, POPE, Gallate 

derivative with three propargyl 
groups

_ (243)

In-vitro/In-vivo DOX _ Cerasome forming lipid with 
disulfide bond _ (244)

In-vitro/In-vivo pDNA, Marker _ DOPE, Redox-sensitive gemini 
cationic Chol lipids _ (245)

In-vitro/In-vivo Paclitaxel, siRNA, 
Marker

Breast cancer 
(4T1 cells)

SPC, Chol, redox-sensitive 
cationic lipid _ (234)

In-vitro/In-vivo DOX Murine osteosarcoma 
(MG63 cells)

SPC, Chol-SS-COOH, 
Chitooligosaccharides _ (233)

In-vitro/In-vivo Redox-responsive 
docetaxel prodrug

Lung carcinoma 
(A549 cells) SPC, Chol, DSPE-PEG _ (236)

In-vitro DOX, Marker _
EPC, DOPE, lipid like 

conjugate with disulfide bond 
and a biotin moiety

anti-HER2 
antibody (237)

In-vitro Marker _ DPPC, DOPE, CHEMS, DOPE-
S-S-PEG R8 peptide (246)

In-vitro/In-vivo DOX Murine osteosarcoma 
(MG63 cells)

SPC, DOPE, DOTAP, Chol-SS-
mPEG

Hyaluronic 
acid (238)

In-vitro/In-vivo Paclitaxel, Marker Murine melanoma 
(B16F1)

SPC, Chol, DSPE-PEG, DSPE-
SS- R8 peptide (178)

In-vitro/In-vivo PEG5000 TAT peptide (199) TAT peptide (199)

In-vitro/In-vivo Marker Colon carcinoma 
(C26 cells) EPC, Chol, Chol-S-S-PEG5000 R8 peptide (239)

In-vitro/In-vivo DOX, Verapamil, 
Marker

Breast cancer 
(MCF7 cells)

EPC, Chol, Chol-PEG2000, 
Chol-S-S-PEG5000 R8 peptide (235)

In-vitro/In-vivo Paclitaxel, Marker Murine melanoma 
(B16F10 cells) SPC, Chol, DSPE-PEG

pH-responsive 
CPP and 

cRGD peptide
(203)

Abbreviations: CHEMS: Cholesteryl hemisuccinate; Chol: Cholesterol; Chol-PEG: Cholesterol anchored modified-(polyethylene 
glycol)-2000; Chol-SS-COOH: Cholesterol anchored reduction-sensitive COOH; Chol-SS-PEG: Cholesterol anchored reduction-
sensitive-(polyethylene glycol)-2000; DOPE: 1,2-Dioleoylsn-glycero-3-phosphoethanolamine; DOPE-PEG: 1,2-Dioleoylsn-
glycero-3-phosphoethanolamine (polyethylene glycol)-2000; DOPE-SS-PEG: 1,2-Dioleoylsn-glycero-3-phosphoethanolamine 
anchored modified (polyethylene glycol)-2000; DOTAP: 1,2-Dioleoyl-3-trimethylammonium-propan; DOX: Doxorubicin; DPPC: 
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine; DSPC: 1,2-Distearoyl-sn-glycero-3-phosphocholine; DSPE: 1,2-Distearoyl-sn-
glycero-3-phosphoethanolamine; DSPE-PEG: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-(polyethylene glycol)-2000; DSPG: 
1,2-Distearoyl-snglycero-3-phospho-(1’-rac-glycerol); EPC: Egg phosphatidylcholine; HER2: Human epidermal growth factor receptor 
2; pDNA: Plasmid DNA; POPC: 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPE: Palmitoyl-oleoyl-phosphoethanolamine; 
Q-DOPE: Quinone-dioleoyl phosphatidylethanolamine; R8 peptide: Octaarginine peptide; siRNA: Small (or short) interfering RNA; 
SPC: Soybean phosphatidylcholine; TAT peptide: (GRKKRRQRRRPQ) peptide.
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have been investigated including stimuli-
sensitive liposomes. This review evidences that 
numerous research efforts have been recently 
devoted to the optimization of liposomal carriers 
that allow delivering chemotherapeutics locally 
upon external as well as internal stimulation. 
Herein we have summarized the latest researches 
on stimuli-responsive liposomes. We also try to 
mention researches on combination of active 
targeting and active triggering for cancer therapy. 
Further attempts on industrialization are in great 
demand to bring these developments closer to 
oncology clinics.
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