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Jülicher, Max-Planck-Institute for

the Physics of Complex Systems,

Germany

Copyright Streichan et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Global morphogenetic flow is accurately
predicted by the spatial distribution of
myosin motors
Sebastian J Streichan1,2*, Matthew F Lefebvre3, Nicholas Noll2,
Eric F Wieschaus3,4, Boris I Shraiman1,2*

1Kavli Institute of Theoretical Physics, University of California, Santa Barbara, United
States; 2Department of Physics, University of California, Santa Barbara, United
States; 3Department of Molecular Biology, Princeton University, Princeton, United
States; 4Howard Hughes Medical Institute, Princeton University, Princeton, United
States

Abstract During embryogenesis tissue layers undergo morphogenetic flow rearranging and

folding into specific shapes. While developmental biology has identified key genes and local cellular

processes, global coordination of tissue remodeling at the organ scale remains unclear. Here, we

combine in toto light-sheet microscopy of the Drosophila embryo with quantitative analysis and

physical modeling to relate cellular flow with the patterns of force generation during the

gastrulation process. We find that the complex spatio-temporal flow pattern can be predicted from

the measured meso-scale myosin density and anisotropy using a simple, effective viscous model of

the tissue, achieving close to 90% accuracy with one time dependent and two constant parameters.

Our analysis uncovers the importance of a) spatial modulation of myosin distribution on the scale of

the embryo and b) the non-locality of its effect due to mechanical interaction of cells,

demonstrating the need for the global perspective in the study of morphogenetic flow.

DOI: https://doi.org/10.7554/eLife.27454.001

Introduction
Animal development is characterized by highly dynamic rearrangements of mechanically coupled

cells. Such rearrangements must be tightly coordinated across the embryo to achieve normal mor-

phology and organogenesis. During gastrulation of Drosophila, for example, the embryonic blasto-

derm – an epithelial monolayer of about 6000 cells on the surface of the embryo – undergoes a

dramatic deformation that changes tissue topology and gives rise to the three germ layers. These

processes involve a coherent flow of cells along the surface of the epithelial monolayer, which in turn

drives folding and defines future shape of the embryo. The most prominent aspects of gastrulation

are the formation of the ventral furrow which initiates the invagination and internalization of the

mesoderm (Martin et al., 2009), and germ-band extension which involves convergent extension of

the lateral ectoderm and the flow of the ventral germ-band onto the dorsal side of the embryo (Lep-

tin, 1995). Both of these processes have been extensively studied, leading to the identification of

developmental patterning genes specifically required for each process (Irvine and Wieschaus,

1994). Live imaging has also uncovered process-specific cell behaviors such as apical constriction of

presumptive mesoderm cells during ventral furrow formation (Martin et al., 2009) and intercalation

of neighboring cells in the lateral ectoderm during convergent extension (Zallen and Wieschaus,

2004; Bertet et al., 2004). These behaviors are associated with localized activity of the force gener-

ating non-muscle myosin II (Martin et al., 2009; Irvine and Wieschaus, 1994; Zallen and Wie-

schaus, 2004; Bertet et al., 2004). However, despite considerable understanding of the local
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processes involved in such cellular rearrangements, a coherent picture of global morphogenetic

flows has remained elusive (Butler et al., 2009; Lye et al., 2015; Blanchard et al., 2009).

Understanding how cell flows are coordinated across different cell populations requires distin-

guishing the roles of local cell behavior and long-range intercellular interactions. To what extent is

the transformation of tissue driven locally by the processes associated with cells at that position?

How important is the long-range interaction between different regions? In the context of the fly

embryo, VF formation seems well explained locally by the apical area contraction of ventral meso-

derm cells (Martin et al., 2009). On the other hand, the non-local interactions between the VF con-

striction (or posterior midgut invagination [Collinet et al., 2015]) and the convergent extension of

lateral ectoderm remain a subject of active study (Collinet et al., 2015; Rauzi et al., 2015;

Rickoll and Counce, 1980) which requires quantitative multi-scale analysis.

There are two complementary approaches towards quantitative analysis of tissue flow. One

approach focuses on cell-scale behavior aiming to decompose tissue flow into specific cellular pro-

cesses such as cell-shape change and intercalation (Etournay et al., 2015; Bosveld et al., 2012)

Alternatively one can ‘zoom out’, taking a continuum mechanics approach that aims to describe tis-

sue flow on the whole organ scale (Landau et al., 2012; Prost et al., 2015; Marchetti et al., 2013).

This coarse-grained mesoscopic perspective captures correlations in cell behavior which stem from

intercellular interactions and the supra-cellular organization (Martin et al., 2009; Blankenship et al.,

2006) of the cytoskeleton in epithelial tissues. In biophysics, the continuum mechanics approach has

been developed to understand the behavior of active gels (Prost et al., 2015; Marchetti et al.,

2013) during myosin driven viscoelastic flow (Mayer et al., 2010; Behrndt et al., 2012) and has

been successfully used to model cortical flows in C. elegans zygotes at the first-cleavage state

(Naganathan et al., 2014). Recent theoretical work (Noll et al., 2017) provides a bridge between

cell-based and meso-scale continuum descriptions, focusing on the non-trivial consequences of

stress-dependent active cytoskeletal processes. Here, we shall use continuum mechanics approach

to set up a framework for predicting global tissue flow at the whole organ level.

The main advantage of the continuum mechanics approach is its ability to capture key aspects of

force balance associated with local deformation and flow. It allows to describe quantitatively, with

only a few parameters, how the effect of local forcing spreads across a tissue. The tendency of cells

to stick together and resist deformation results in a non-local relation between the myosin activity

that drives the flow and actual flow velocities. The continuum mechanics approach therefore enables

one to test different hypotheses helping to identify key contributing processes. For example, the

question of local versus non-local response in the continuum mechanics approach translates into spe-

cific hypotheses regarded force balance: are the myosin-generated forces balanced locally by trac-

tion relative to a substrate or do they propagate within the epithelium layer through cell

deformation and viscous coupling? Quantitative analysis can then be used to build, starting from the

simplest model, a sequence of approximations that capture biological reality in increasing detail.

We shall describe below a novel image analysis-based approach that will use continuum mechan-

ics to quantitatively relate different observables and will show that myosin distribution and anisot-

ropy on mesoscopic scale is a fully adequate proxy of physical stress, thereby enabling a surprisingly

predictive description of global flow. Specifically, we shall show that embryo-scale tissue transforma-

tions during Drosophila gastrulation are represented by a temporal sequence of three topologically

distinct flow field configurations. Each phase is accompanied by a characteristic spatial distribution

of myosin molecular motors both on the basal as well as apical cell surface, which we quantify in

terms of a coarse-grained ‘myosin tensor’ that captures both myosin concentration and anisotropy.

To relate the observed global flow fields to myosin apical and basal distributions we assume that tis-

sue flow is driven by stress proportional to the myosin tensor, and is effectively viscous with two

parameters: effective shear and bulk viscosities, the latter controlling the compressible component

of the flow. With a total of just three global parameters (only one of them time dependent), this sim-

ple model achieves remarkable agreement between predicted and measured spatio-temporal pat-

tern of the flow. The analysis uncovers the importance of a) spatial modulation of myosin distribution

and b) the long-range spreading of its effect due to mechanical interaction of cells. In particular, we

find that transition to the germband extension phase of the flow is associated with the onset of

effective areal incompressibility of the epithelium, which makes the relation of the flow and myosin

forcing strongly non-local. Our quantitative analysis also reveals a new function for basal myosin in

generating a dorsally directed flow and, combined with mutant analysis, points to an unconventional
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control mechanism of this function through twist -dependent reduction of basal myosin levels on the

ventral side. Finally, we shall argue that the ability to quantitatively describe the relation between

the flow and its myosin-generated forcing provides a new approach to the study of the processes

that control morphogenetic transformations, which can be used to disentangle novel control mecha-

nisms such as mechanical feedback from the effects of gene expression patterning.

Results
To enable our study, we generated a pipeline that combines in toto light sheet microscopy

(Krzic et al., 2012; Tomer et al., 2012) (Figure 1a), tissue cartography (Heemskerk and Streichan,

2015) (Figure 1b), and segmentation-free anisotropy detection to quantify global tissue flows, and

myosin activation patterns (Figure 1—figure supplements 1–4). Using optical flow velocimetry

applied to cylinder projections of the Surface of Interest (SOI) passing through cells below the apical

cell surface (see SI for details Figure 1—figure supplement 5c), we find that tissue remodeling dur-

ing Drosophila gastrulation is characterized by three simple flow field configurations (Figure 1c–e).

The earliest flows start well before the ventral furrow (VF) forms, and are characterized by a dorsal

sink and ventral source (Figure 1c). In contrast to the VF, no cells are internalized during this flow,

but rather cells reduce cross section on the dorsal side (Figure 1—figure supplement 1c). As the VF

forms, source and sink swap sides and a large group of cells internalize on the ventral side, as meso-

derm precursors leave the surface of the blastoderm (Figure 1d). During germband extension

(GBE), the flow pattern exhibits two saddles arranged on the dorsal and ventral sides as well as four

vortices, two in the posterior and two in the anterior end (Figure 1e). Each of the three flow fields is

accompanied by a typical spatial myosin configuration. The pre-VF flow associates with basal myosin

that exhibits a pronounced Dorso Ventral (DV) asymmetry (Warn et al., 1980; Sokac and Wie-

schaus, 2008; Polyakov et al., 2014), with high levels of myosin on the dorsal and low levels on the

ventral side (Figure 1f), while the apical pool appears uniform across the surface (Figure 1i, Fig-

ure 1—figure supplement 5d–g). The basal pool remains asymmetric during VF flow (Figure 1g),

but the apical pool now also develops DV asymmetry in reversed orientation (Figure 1j). The asym-

metry on the apical surface becomes further pronounced in the GBE-phase (Figure 1h,k, Figure 1—

figure supplements 6 and 7).

Global changes in myosin pools are a hallmark for transitions in flow field configuration

(Figure 2a, Figure 1—figure supplements 1, 2, 3 and 4). Myosin is initially enriched in the basal

pool, and as sink and source swap position, it begins to accumulate on the apical side. While the

basal pool is isotropic (Figure 2—figure supplement 4a), cortical myosin on the apical cell surface is

known to polarize during convergent extension (Zallen and Wieschaus, 2004; Bertet et al., 2004).

To quantify this effect at the tissue level, we developed an automated segmentation-free anisotropy

detection algorithm (Figure 2b, Figure 2—figure supplement 3a,b). Available methods for anisot-

ropy detection mostly operate at the single cell level and construct a nematic tensor by integrating

signal intensities along cell outlines (Aigouy et al., 2010). At the organismal scale membrane seg-

mentation is costly, and often fails to define closed outlines of cells using only a polarized membrane

marker. We overcome the need for fiduciary markers that increase experimental complexity by shift-

ing the perspective to cell edges and using the Radon transform to implement a robust and rapid

segmentation-free algorithm for detecting course-grained anisotropy (Figure 2b) (Radon, 1917).

Radon transforms integrate signal along lines of given orientation and normal distance from the ori-

gin. In this way, edges are mapped to peaks that reflect the total intensity along the length of an

edge (Figure 2b) (see Appendix 1 for detail). Edge orientation and average myosin intensity are

described by a 2 � 2 symmetric matrix (of rank one) defining the local ‘myosin tensor’ (Figure 2b).

By averaging the resulting tensors in a given region, we obtain a quantitative description of local tis-

sue anisotropy and overall levels that reflects the intensity-weighted average of cell edges. The

resulting course-grained tensor has a non-zero trace, and thus can be separated into an isotropic

and a traceless anisotropic part (Figure 3a, Figure 2—figure supplement 3b), from which we con-

struct a measure for anisotropy (which is low in the basal pool Figure 2—figure supplement 4a).

The anisotropic signal in the apical pool starts out low, but increases from about 8 min correspond-

ing to late stage 6 (Figure 2a, Figure 2—figure supplement 4b,c). The anisotropy axis, readily com-

puted by the eigenvectors of the myosin tensor, aligns well with local tangent to pair rule gene

expression boundaries (Figure 2a,d, Figure 2—figure supplement 4d). This is the expected result
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Figure 1. Tissue deformations of Drosophila melanogaster embryos during gastrulation, captured by three simple flow fields. (a) Stage 7 embryo

labeled with His2Av:mRFP. Anterior is to the left, dorsal up. Time is chosen such that 0 min coincides with the first occurrence of the cephalic furrow

(CF). All scale bars indicate 100 mm. (b) Thin (midplane,Figure 1—figure supplement 1) layer through embryo shown in (a), with prospective head,

germband and amnioserosa color-coded. Anterior is to the left, posterior to the right, dorsal is in the center and ventral is on top and bottom. Inset

Figure 1 continued on next page
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given that anisotropies are thought to be driven by the patterned juxtaposition of pair-rule gene

expression (Zallen and Wieschaus, 2004).

We have examined and quantified tissue flow and myosin distribution in multiple (N = 22) wild-

type embryos and found it highly reproducible (Figure 1—figure supplement 5). For the purpose of

quantitative analysis presented below, we shall use the (suitably aligned) ‘ensemble’-averaged flow

and myosin distribution (see SI).

To relate myosin to stress, we assume signal intensity is proportional to myosin motor concentra-

tion and its local activity. The latter – pulling on cytoskeletal actin filaments – generates local force

dipoles, which can be explicitly described in terms of local stress tensor (see Appendix for details)

(Prost et al., 2015; Marchetti et al., 2013). On the coarse grained level, resulting stress would be

defined by the activity weighted average over filament orientations and hence proportional to the

myosin tensor as we define it. The resulting force per unit area of the epithelial layer is then propor-

tional to the divergence of the myosin tensor (Landau et al., 2012). Note that the isotropic compo-

nent of the myosin distribution (observed both in the apical and the basal pool) also generates a

force that is proportional to the gradient of the measured concentration intensity profile (Figure 1f–

k).

To relate myosin generated stress to morphogenetic flow, we assume that on the mesoscopic

scale tissue flow is governed by effective viscoelasticity which arises from the mechanical properties

of the underlying cytoskeletal network within the two dimensional epithelial layer of cells. This model

assumes that on short time scales tissues respond elastically to mechanical perturbations

(Bambardekar et al., 2015), yet on longer time scales elastic stress is relaxed through active rear-

rangement of the cytoskeleton as cells adapt to the imposed deformation. On the longer time scale

tissue dynamics can be described by a two-dimensional effective viscous flow equation with two

effective viscosity parameters that (see Appendix 2) are directly related to the two elastic constants:

shear modulus (controlling ‘sliding’ of cells relative to each other) and the planar bulk modulus (con-

trolling areal compression or dilation) (Prost et al., 2015; Marchetti et al., 2013; Martin et al.,

1972) (Figure 3a, Figure 3—figure supplement 1b). We note that effective viscosity spreads the

impact of local forcing, generating a non-local response so the flow at any given point integrates the

influence of forces acting all over the embryo. Inverting the equation using the finite element

method, we obtain a quantitative prediction for the flow field generated by measured myosin locali-

zation patterns (see SI for details). Our model has only three global parameters: the ratio of effective

viscosities, and the conversion factors relating normalized apical and basal myosin intensity to stress

Figure 1 continued

shows zoom into anterior germband region. (c–e) Flow field on 2D projections for representative time points of the pre-Ventral Furrow (pre-VF) phase

(c), Ventral Furrow (VF) phase (d), and germband phase (GBE) (e). Cyan arrows indicate tissue flow field. Bold arrows indicate flow field topology: sinks

(yellow), sources (white), saddles (red) and vortices (dashed white). Insets show flow field on corresponding 3D surface. (f–h) Normalized myosin

distribution on basal cell surface corresponding to times shown in (c–e). Color code from lowest 0 to highest 1. (i–k) As (f–h) except for isotropic pool

on apical cell surface.

DOI: https://doi.org/10.7554/eLife.27454.002

The following figure supplements are available for figure 1:

Figure supplement 1. Definition of embryo shape and relevant surfaces of interest.

DOI: https://doi.org/10.7554/eLife.27454.003

Figure supplement 2. Myosin timecourse on the apical surface.

DOI: https://doi.org/10.7554/eLife.27454.004

Figure supplement 3. Time course of Myosin on basal surface, as described in Figure 1—figure supplement 1g.

DOI: https://doi.org/10.7554/eLife.27454.005

Figure supplement 4. Magnified view of time course of Myosin on basal surface, as described in Figure 1—figure supplement 1e,g.

DOI: https://doi.org/10.7554/eLife.27454.006

Figure supplement 5. Quantitative analysis of ensemble flow field.

DOI: https://doi.org/10.7554/eLife.27454.007

Figure supplement 6. Isotropic basal myosin, (as main text Figure 1g).

DOI: https://doi.org/10.7554/eLife.27454.008

Figure supplement 7. Basal myosin quantification light sheet versus confocal.

DOI: https://doi.org/10.7554/eLife.27454.009
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Figure 2. Quantitative analysis of myosin distribution and anisotropy reveals transition across pools. (a)

Normalized signal strength of basal, apical, and polarized pools over time in the lateral ectoderm (outlined as

dashed box in c). First gray shaded box at t < 0 min indicates times before CF formation (pre-CF), second shaded

indicates GBE. (b) Automated extraction of polarization based on images, and quantitative summary as nematic

tensor. Top left box shows cell outlines in part of a tissue, and a region of interest (ROI), that moves across the

tissue. Bottom left box shows zoom on spatial signal in ROI. Colors indicate potentially different intensities of lines

labeled i,j,k. Average intensity and length of lines in images are denoted I and L respectively. Radon transforms

integrate signal along lines (cyan) of orientation a at normal-distance d from the origin (purple). Bottom right inset

shows sketch of resulting Radon-transformed signal. Note that lines are peaks at angle a, and distance d, of height

L*I after transformation. Top right inset shows definition of unit vector with orientation of edge i. Definition of local

myosin tensor (only computed on apical surface, see Figure 2—figure supplement 4) for edge i is obtained by

contracting unit edge vector with itself and weighted by line average intensity. (c) Magnitude of myosin anisotropy

on pullback (see SI for definition). Dashed box indicates region of interest used to compute time traces in a. (d)

Axis of myosin anisotropy (in cyan) overlayed on embryo labeled with his2Av-RFP in red, and eve-YFP in yellow.

For simplicity of comparison, the field is only shown along even skipped stripes. For more detailed analysis see

Figure 2—figure supplement 3f.

DOI: https://doi.org/10.7554/eLife.27454.010

The following figure supplements are available for figure 2:

Figure supplement 1. Illustration of how to construct a Radon transform for an image with constant background

I ¼ 0, shown in black and foreground I ¼ 1, shown in white (top), and resulting radon transform (bottom).

DOI: https://doi.org/10.7554/eLife.27454.011

Figure supplement 2. Example of edges identified with our anisotropy detection algorithm, and a magnification

in a region of interest showing result in comparison with underlying raw data (left).

DOI: https://doi.org/10.7554/eLife.27454.012

Figure supplement 3. Continuous representation of myosin tensor on the mesoscale.

DOI: https://doi.org/10.7554/eLife.27454.013

Figure supplement 4. Myosin tensor on the mesoscale.

DOI: https://doi.org/10.7554/eLife.27454.014
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(Figure 3—figure supplement 1c). To keep the model as simple as possible, we do not allow spatial

dependence of these parameters and keep conversion factors constant, leaving the ratio of viscosi-

ties as the only time-dependent global fitting parameter (Figure 3—figure supplement 1b).

Even without spatial modulation of the parameters, the model achieves about 90% accurate

description of the flow pattern before and after VF invagination (see Figure 3b). The main

Figure 3. Biophysical model quantitatively predicts tissue flow based on quantitative measurements of myosin

distribution. (a) Proposed mathematical description of the flow parameterizes complex mechanics of cytoskeleton

in terms of the shear n1 and n2 bulk effective viscosities. The flow is driven by the force proportional to the

divergence of the myosin tensor (see SI) on the right-hand-side of Equation 3a. Because effective viscosity tends to

suppress velocity differences of neighboring cells, the response to local forcing is felt globally, e.g. effect of a local

myosin perturbation results in local as well as non-local changes of the flow field. (b) Fit residual, comparing

predicted flow field with measured flow field (see SI Finite Element implementation for a detailed definition of the

residual) as a function of time. Both fields are normalized for average magnitude. The average magnitude of

predicted velocity field defines one of our fitting parameters. Images of the single embryo are shown in

Figure 1—figure supplements 2–3 (c–e) Representative time points of morphogenetic flow: pre-CF (c), GBE (d)

and VF (e). From top to bottom: spatial distribution of predicted (blue), measured (red) flow field, and residual

(blue best agreement, red worst, on a scale from 0 to 1). For the case of VF flow, predictive model is modified to

allow for a ‘cut’ in ventral region (see SI text, and Figure 3—figure supplement 1 for detail).

DOI: https://doi.org/10.7554/eLife.27454.015

The following figure supplement is available for figure 3:

Figure supplement 1. Finite element realization of model and parameter values.

DOI: https://doi.org/10.7554/eLife.27454.016
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discrepancy of model predictions for pre-VF flow (see Figure 3c) is a displacement of sink and

source positions along the AP axis by less than 30 mm. Prediction of GBE flow essentially agrees with

measurements across the entire embryo, with the exception of a domain close to the vortices on the

posterior end, due to a mismatch of fixed-point location (Figure 3d). Remarkably, our model is even

able to correctly predict subtle differences between anterior and posterior fixed points along the DV

axis (Figure 3d). Measured flow is first dominated by sources and sinks that disappear later during

GBE, suggesting that before and during VF invagination cells are less resistant to surface area com-

pression than during GBE. Indeed, quantitative comparison with an independently measured flow

field (Figure 1c–e) shows that the n20 /n27 ratio increases dramatically at the start of GBE phase (cor-

responding to the relative increase of the underlying 2D bulk modulus, see Appendix 2, Figure 3—

figure supplement 1b) resulting in effective incompressibility of apical surface of cells. The temporal

coincidence between completion of cellularization and increase of the bulk modulus provides an

intriguing possible explanation of how the continuous transition in our time dependent variable

might be realized. Poor agreement during VF invagination is due to a significant fraction of cells

internalizing and thus leaving the surface. To account for this effect, we extend the model to allow a

‘cut’ in the lattice along ventral midline with an imposed in-plane boundary force (perpendicular to

the cut) representing the pulling effect of the VF (see SI for detail, Figure 3—figure supplement

1a). This relatively simple extension allows to recover ~90% accuracy (Figure 3be), illustrating how

regional inhomogeneity associated with particular morphogenetic events could be quantitatively

captured by suitable generalizations.

To evaluate the fit obtained in wild type embryos, we examined flows in mutant embryos in which

the distribution of myosin is altered. Analysis based on tissue tectonics (Blanchard et al., 2009) has

shown that strain rates in twist (twi) embryos, which lack the VF, exhibit slower kinetics compared to

WT (Butler et al., 2009), however, the cause of this remains a subject of debate (Butler et al., 2009;

Lye et al., 2015; Collinet et al., 2015). We have quantified the flow field and myosin activity pat-

terns in twi mutants (Figure 4—figure supplement 1), and find that our model is able to accurately

predict the flow profiles (Figure 4a). During early flow phases – corresponding to times of pre-VF

flow in WT – DV asymmetry of the basal myosin pool is strongly reduced in comparison to WT, as is

tissue movement towards the dorsal pole (Figure 4b, Figure 1—figure supplement 1, Figure 4—

figure supplement 1a,d). Moreover, anisotropy of the apical myosin pool increases at a slower rate

as compared to WT. As previously reported for strain rates (Butler et al., 2009), this is most pro-

nounced for the first 20 min (Figure 4c, compare Figure 4 – fig. supplement = 0 with Figure 2—fig-

ure supplement 3e,f). In bcd nos tsl (bnt) embryos lacking all AP patterning, the early basal DV

asymmetry is similar to WT, with only slightly reduced myosin asymmetries and dorsal movement

(Figure 4b, Figure 2—figure supplement 1). At later stages, however, anisotropy of the apical myo-

sin pool remains low and comparable to pre-VF WT levels. This result is expected given the uniform

expression of pair-rule genes in a bnt genetic background (Blankenship et al., 2006) (Figure 4c).

Consistent with these myosin distributions, we see the early dorsal flow associated with basal myosin

asymmetry but a failure to produce the more complex later flow patterns with their characteristic

saddles and vortices. On a quantitative level our model’s predictive power for AP patterning defi-

cient bnt mutant embryos is comparable to WT and twi mutants (Figure 4a).

Discussion
In summary, we have presented a simple biophysical model of morphogenetic flow that quantita-

tively describes complex tissue motion in terms of a hydrodynamic equation parameterized by two

effective viscosities. The flow is driven by the stress defined by a linear superposition of two myosin

tensors describing the apical and basal myosin pools. We propose that the basal myosin pool forms

an isotropic and contiguous network (He et al., 2016), contracting in a similar fashion as purified

actomyosin gels in vitro (Bendix et al., 2008; Alvarado et al., 2013). Imbalance within this network,

caused by the twi dependent depletion of myosin on the ventral side, drives global dorsal-ward flow

in the pre-VF phase, which continues to contribute until early GBE (Figure 4d). Interestingly, in silico

perturbations indicate the local depletion (on the ventral side) has a global effect, most evidently

manifested by a ‘sink’ on the dorsal side, which is lost in a simulation using the same parameters as

WT, but no DV modulation of the basal myosin pool (Figure 4d, left panels). The apical pool decom-

poses into isotropic and anisotropic components. In addition to previously described accumulation
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of isotropic myosin in ventral regions (Martin et al., 2009), we observe a striking gradient of aniso-

tropic apical myosin along the DV axis, reaching highest levels in lateral ectoderm and lowest levels

in amnioserosa tissue at the dorsal pole. Because the force driving the flow arises from the non-uni-

formity of the stress, this modulation of myosin distribution is critical for the dynamics. While local

rate of cell intercalation is often interpreted in terms of local myosin distribution on cellular and sub-

cellular scales, our model shows that the local rate of strain is a result of the tissue-wide distribution

of forces generated by the spatial non-uniformity of myosin (mathematically described by the diver-

gence of the myosin tensor) (Figure 4d, right panels). The importance of spatial modulation

(Figure 4d) suggests a novel role of the dorsal signaling pathway in generation of GBE flow. Surpris-

ingly, in twi mutants both the rate of increase as well as the peak myosin anisotropy are significantly

reduced in the first 20 min of GBE flow (Figure 4c, Figure 4—figure supplement 1). The reduced

intercalation and strain rates observed in these mutants has been previously reported (Butler et al.,

2009), and interpreted in terms of possible generation of AP forces by the internalized VF (absent in

twi mutants). Our model accounts for the reduced rate of strain in terms of the changes in spatial

distribution and the reduced level of myosin anisotropy. This however brings up the question of how

Figure 4. Mutant analysis reveals global modifications of myosin dynamics. (a) Fit residual as in Figure 3b, for twi,

and bcd nos tsl mutants (7, and 7 embryos in ensemble). WT is shown as reference. (b) Amplitude of basal myosin

pool along DV axis for WT and mutants in (a). (c) Polarized apical myosin in mutants shown in (a) as function of

time. (d) Theoretical comparison of DV constant basal pool (i.e. no gradient in DV direction) (left column), or DV

constant anisotropic apical pool (i.e. no gradient in DV direction) (right column) with predicted flow based on full

myosin tensor (compare to Figure 3c,d respectively). Black arrows indicate flow field topology, and red dots the

fixed point from prediction based off of full myosin tensor. Model parameters are the same as previously

determined for the WT (Figure 3—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.27454.017

The following figure supplement is available for figure 4:

Figure supplement 1. Twist mutant flow field and myosin analysis.

DOI: https://doi.org/10.7554/eLife.27454.018
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elimination of twi expression in the ventral mesoderm affects myosin anisotropy in the lateral ecto-

derm. We suggest that this effect may be due to mechanical feedback on myosin recruitment, which

relates the later to local rate of strain. Through this ‘dynamic recruitment’ effect (Noll et al., 2017;

Fernandez-Gonzalez et al., 2009), changes in the ventral region that modify global flow patterns

can affect myosin distribution and anisotropy in the lateral region. In this way, local modification of

the myosin pattern can produce not only a non-local perturbation of the flow, but also a non-local

perturbation of myosin distribution. The global nature of the flow is reinforced by the observed tran-

sition towards areal incompressibility at the onset of GBE-flow, which together with reduced polari-

zation kinetics and reduced strain rates observed in twi mutants, indicates that non-local

consequences of stress generated largely in lateral ectoderm can account for the dorsal movement

of the posterior midgut.

Taken together, our observations show that morphogenetic flow is a global response to local

forcing which arises from the spatial modulation of myosin density and anisotropy. The latter is

derived from the spatial patterns of developmental transcription factors, but we suggest may also

involve mechanical feedback affecting recruitment of myosin. Our quantitative approach provides a

framework for integrating the effect of local factors in the description of the global flow.

Materials and methods

Fly lines used
His2Av-mCherry (Krzic et al., 2012), bcde1nosbntsl4/TM3, halo twiID96/Cyo (twiID96 is also known as

twi [Martin et al., 2009]), sqh-GFP klar (Martin et al., 2009), OregonR. Embryos where dechorio-

nated following standard procedures, and mounted in agarose gels as previously described

(Krzic et al., 2012).

Light sheet microscopy
Fluorescence-based live imaging was carried out on a MuVI SPIM (Krzic et al., 2012). Briefly, the

optics consisted of two detection and illumination arms. Each detection arm forms a water-dipping

epifluorescence microscope, consisting of an objective (Apo LWD 25x, NA 1.1, Nikon Instruments

Inc.), a filter wheel (HS-1032, Finger Lakes Instrumentation LLC), with emission filters (BLP01-488R-

25, BLP02-561R-25, Semrock Inc.), tube lens (200 mm, Nikon Instruments Inc.), and an sCMOS cam-

era (Zyla 4.2, Andor Technology plc.), with an effective pixel size of 0.26 mm. Each illumination arm

consisted of a water-dipping objective (CFI Plan Fluor 10x, NA 0.3), a tube lens (200 mm, both Nikon

Instruments Inc.), a scan lens (S4LFT0061/065, Sill optics GmbH and Co. KG), and a galvanometric

scanner (6215 hr, Cambridge Technology Inc.), fed by lasers (06-MLD 488 nm, Cobolt AB, and 561LS

OBIS 561 nm, Coherent Inc.). Optical sectioning is achieved by translating the sample using a linear

piezo stage (P-629.1cd with E-753 controller) sample rotation is performed with a rotational piezo

stage (U-628.03 with C-867 controller) and a linear actuator (M-231.17 with C-863 controller, all

Physik Instrumente GmbH and Co. KG).

Experiment control and data fusion
Stages and cameras are controlled using Micro Manager (Edelstein et al., 2014), to coordinate

time-lapse experiments, running on a Super Micro 7047GR-TF Server, with 12 Core Intel Xeon 2.5

GHz, 64 GB PC3 RAM, and hardware Raid 0 with 7 2.0 TB SATA hard drives. Samples were recorded

from two, by 900 rotated views, at a typical optical sectioning of 1 mm, and temporal resolution of

75 s. As previously described (Krzic et al., 2012), MuVI SPIM optical stability allows a fusion strategy

based on a diagnostic specimen. Recorded once per experiment, the diagnostic specimen is used to

determine an initial guess for an affine transformation, which we feed into a rigid image registration

algorithm (Klein et al., 2010), to fuse individual views, resulting in an isotropic resolution of. 26 mm

in the registered image.

Surface of Interest extraction
We used tissue cartography to extract surfaces of interest (SOI) from embryos (Heemskerk and

Streichan, 2015). Briefly, we identify the outline of the sample using the Ilastik detector to deter-

mine a point cloud for SOI construction. In a fitting step (implemented in the sphere-like fitter), we

Streichan et al. eLife 2018;7:e27454. DOI: https://doi.org/10.7554/eLife.27454 10 of 21

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.27454


create a smooth description of the SOI in terms of cylinder coordinates defined by AP axis and azi-

muth (Heemskerk and Streichan, 2015). Image intensity data are then projected onto a nested

group of 5 layers (two normally evolved layers above and below the SOI), each three pixels apart,

defining a 3–4 mm thick ’curved image stack’. For analysis the maximum intensity projection of

nested layers was used. Although the shape of embryos of the same genotype is highly reproduc-

ible, small differences in the underlying point cloud can result in small differences of the SOI passing

through the apical cell surface. To simplify comparison between embryos, we create a standard pro-

jection on a cylinder grid of fixed size, with the embryo surface oriented such that apical is left, pos-

terior right, dorsal in the center, and ventral on top and bottom (Figure 1). Systematic distortions of

measurements due to projecting the curved embryo surface to the plane are corrected using the

metric tensor (Heemskerk and Streichan, 2015).

The apical surface is static, while the dynamic basal cell surface moves with the cellularization

front. Projections of the latter could be created by reading signal on a surface obtained by evolving

the apical SOI along its normal basal wards. However, small differences in cell height (<10% of a typ-

ical cell height, and ~1% of the embryo diameter), could result in small but systematic bias of the

SOI around the cellularization front and impair projection quality. We avoid this problem by deter-

mining a new point cloud for each time point, for which we focus the ilastik detector on the interface

between basal myosin and yolk. Our model approximates the embryo as a thin shell (see below),

and hence as 2D surface. Therefore, we map the dynamic basal cell surface onto the cylinder grid of

the static apical SOI.

Particle image velocimetry
We measure the flow field using the particle image velocimetry (PIV) method, that identifies local

displacements between two time points (Adrian, 2005). Briefly, we implemented the phase correla-

tion method that leverages favorable execution times of fast fourier transforms, to estimate local

flow in a region of interest on the projections (Kuglin, 1975). To minimize effect from systematic dis-

tortions towards polar regions on cylinder projections, we adjust the size of the ROI according to

the local metric strain, which we define as the deflation of the metric from flat space

(Heemskerk and Streichan, 2015).

Reproducibility of the morphogenetic flow
Although gastrulation in Drosophila is highly reproducible from embryo to embryo (Irvine and Wie-

schaus, 1994), in practical terms experiments are subject to a constant time shift, depending on the

developmental stage of the sample at the start of imaging. Thus, we developed an automated rou-

tine that allowed us to identify a common time frame that the 36 (WT: N = 22, twist:7, bcd nos tsl:7)

live-imaged embryos are registered to. Specifically, we introduced a constant time shift for a given

flow field that minimizes the squared difference with respect to a reference flow field averaged over

the embryo surface:

toff ;i
min

Z

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
!

ref tð Þ�~vi t� toff ;i
� �

� �2

r

>embryodt

where <>embryodenotes averaging across the embryo, v
!

ref is an arbitrary chosen reference from

the ensemble, and~vi, toff ;i denote the i-th flow field and offset time respectively. In this way, we align

samples to a chosen reference, in which we use the first occurrence of the cephalic furrow (CF) as a

landmark indicating our choice for t¼ 0 min. Within a given genotype, we could automatically deter-

mine the offset time. However, to align mutants to WT, we first aligned all mutant datasets, and

then used landmarks such as the CF (twist), or the VF (bcd nos tsl), to define a common time frame

as best as possible.

Time shifted accordingly, we created an ensemble average flow field for each genotype:

<~v>ensemble:¼
1

N

X

N

i

~vi t� toff ;i
� �

The magnitude of ensemble average is highly reproducible from embryo to embryo (note the

small standard deviation Figure 1—figure supplement 5a). Flow trajectories during cellularization
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point towards the dorsal side (Figure 1—figure supplement 5b), showing persistent movement

towards dorsal regions during pre-CF flow. This is accompanied by reduction of apical cell area in

these regions (Figure 1—figure supplement 5c), as measured using confocal microscopy. While the

length of pre-VF flow lines peaks on the anterior and posterior poles in WT, it is substantially

reduced near poles in twist, and only mildly reduced in bcd nos tsl (Figure 1—figure supplement

5d–f). Together with the loss of basal DV asymmetry, this suggests that twist mediated reduction of

basal myosin levels on the ventral side is responsible for dorsal-ward flow.

Myosin quantification
Intensity normalization
Using the imaging and pre-processing procedure as outlined above with samples expressing sqhGFP

(Royou et al., 2002), we created projections of the apical and basal cell surfaces, with the goal of

establishing a quantitative measurement of global myosin patterns (Figure 1—figure supplements

6 and 7). Ideally, quantification of signal intensities is carried out using identical conditions for each

sample in the pool used for statistics, to minimize variability across samples. However, when per-

forming in toto live-imaging, it is difficult to image more than one sample at a time and keep a high

recording frequency. To minimize variability in a sequential recording scheme, we keep imaging con-

ditions constant, but there are still possible variabilities in recorded signal intensity for biological but

also technical reasons.

To account for such variability between experiments, we normalize recorded data (Figure 1—fig-

ure supplement 6b,b’,c). Signal intensity of all time points in a given experiment are summarized by

normalizing the intensity distribution: upper and lower range are determined according to the ll ¼ 0

and ul ¼ 95-percentile; normalization is done by subtracting the ll and dividing by ul� llð Þ, yielding a

dimensionless normalized signal distribution (compare Figure 1—figure supplement 6b and b’).

This strategy should not only allow for comparison on the same microscope, but also across micro-

scopes, allowing for validation of in toto live-imaging from sequential experiments against fixed

batches imaged e.g. on a confocal.

Basal myosin pool analysis via light sheet microscopy
Here, we briefly outline the results for the DV asymmetry in the basal myosin pool that we reported

in the main text. First, we time align intensity normalized basal projections as described above. Next

we convolve each pullback with a Gaussian of width s ~ 3 cell diameters to obtain basal myosin at

the mesoscale (see discussion in model section below for definition). The results are then ensemble

averaged to obtain ensemble myosin distribution as shown in Figure 1—figure supplement 6. To

assess DV asymmetry, we focus on the region outlined by the black/white dashed line, where we first

take an average along the AP axis and then compute average signal on dorsal side, and subtract

from it the average signal on the ventral side. Repeating the outlined routine for all time points, we

obtain the plot show in main text Figure 4b.

Basal myosin pool via confocal microscopy
Figure 1—figure supplement 7c shows DV cross sections of fixed embryos stained for rb anti zipper

and mouse anti dorsal, cut along the AP axis, and imaged on a confocal microscope. DV orientation

of the samples is automatically determined based on the dorsal signal. To estimate the age of fixed

embryos in relation to live-imaging data, we constructed a calibration curve for cell apico-basal

height shown in Figure 1—figure supplement 7a. Using the known monotonic relation between cell

height and age (Merrill et al., 1988), which we find lasts until about 8 min after CF formation, we

obtain estimate for the age of a fixed embryo based on measuring cell height. By segmenting the

outline of basal myosin, we can then measure DV asymmetry in the same way as described for live-

imaging data above.

A direct comparison between live imaging-based DV asymmetry measurement, and based on

N ¼ 345 fixed DV cross sections from confocal shows that after applying normalization routine as

described above, we find similar estimates for the DV asymmetry using both light sheet and confocal

imaging (see Figure 1—figure supplement 7b). Note that uncertainties in the calibration curve

propagate to exact age determination in the embryo, and thus increased fluctuations in DV asymme-

try determined using confocal imaging.
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Finite element implementation
Inversion of the continuum equation of state relating the coarse-grained myosin tensor and cellular

flow-field was achieved using Finite Element Methods (FEM) in the weak formulation implemented

within the FELICITY toolbox for MATLAB (Walker, 2017). Equations were inverted on a static trian-

gular mesh representing the ’canonical’ embryo surface produced via a point cloud (described

above) subsequently turned into a smooth triangulation using MeshLab (Cignoni, 2008). As such, all

objects within the equation of state had to be parameterized within the 3D embedding space of the

mesh, which can be done by using the direction relation between projections and SOI

(Heemskerk and Streichan, 2015). The only dynamic input to this inversion algorithm is the diver-

gence of the myosin tensor. This was computed by interpolating the gradient of each Cartesian com-

ponent of the tensor onto triangular faces of our mesh, producing a 3 � 3 � 3 object on each face.

The partial trace of this object over directions within the tangent plane of the face result in the esti-

mated divergence. This operation was repeated for all myosin pools used. All equations within the

FEM software are projected onto the surface of our 3D mesh to manually ensure solutions only exist

within the tangent plane.

To benchmark the quality of our FEM solver, we implemented the equation of motion on a sphere

and tested results for known solutions, which confirmed our solver works within the expected numer-

ical accuracy. To test dependence on discretization used, we compared our results using different

meshes at varying mesh sizes, and found good agreement with all test cases.

In order to model internalization of the VF, we introduced the ability to add a ’cut’ within the tri-

angular mesh. Contraction of the tissue was modeled by manually introducing local force dipoles on

edges within the mesh pointing along the bond. All vertices along the cut were given zero bulk mod-

ulus to allow for local tissue compression needed to simulate invagination. The location of the cut

was estimated from the PIV flow fields. Specifically the ratio of the divergence of the velocity field to

the velocity field’s magnitude was used to estimate the spatial extent of the cut over times during

ventral furrow formation.

Predictions for the flow field obtained via inversion are subject to an overall scale factor, that

can’t be determined by the model. To compare ensemble averaged flow field measurement~v tð Þ to

model predictions ~u tð Þ in a quantitative fashion, we define a global measure for the spatial residual

that is insensitive to such a scale factor. With the short hand notation <~u>: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<~u xð Þ2>embryo

q

to

define overall magnitude of the field u across the surface of the embryo (<~u xð Þ2>embryo denotes aver-

aging the space dependent field ~u xð Þ2 across the embryo surface, so is not space dependent.), the

residual is defined as

R¼
<~u>2~v xð Þ2þ~u xð Þ2<~v>2

� �

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~u>2<~v>2
p

~v xð Þ~u xð Þ
2<~u>2<~v>2

provides a spatial discrepancy map, indicating the prediction quality as a function of location on

the embryo, that is in-sensitive to noise dominated fluctuations in domains of no flow (i.e. fixed

points), as opposed to e.g. inner product.

Acknowledgements
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Segmentation free anisotropy detection using Radon
transforms
When viewed in cross-section, the cell cortex in epithelia forms a polygon tiling, where the

outline of each cell is well approximated by a closed sequence of edges. Anisotropic

distribution of proteins is often characterized by homogeneously increased accumulation to

cell edges of particular orientation, while it remains homogeneously low and comparable to

background on other edges (Zallen and Wieschaus, 2004; Bertet et al., 2004;

Blankenship et al., 2006). Note that typically the number of edges at low and high signal

accumulation is of the same order of magnitude. Available methods to quantify cortical

anisotropy mostly operate at the single cell level and construct a nematic tensor by integrating

signal intensities along cell outlines (Aigouy et al., 2010). At the organismal scale membrane

segmentation is costly, and for polarized markers low signal to noise on a significant number

of edges often results in difficulties to close the cell circumference. We overcome the need for

fiduciary markers that increase experiment complexity, by shifting perspective to cell edges

and designing a robust and rapid segmentation free anisotropy detection algorithm.

Let’s consider an image on a rectangular domain 
, showing an edge of possibly non-

uniform intensity, assigning each pixel at coordinates x; yð Þ 2 R2 some intensity I x; yð Þ 2 R - as

shown e.g. in Figure 2—figure supplement 1. Lets call this edge a linear signal or just signal.

For simplicity, and without loss of generality, we assume the average intensity along the linear

signal is <Ils> ¼ 1;and average background intensity is <Ibg> ¼ 0. While under favorable

conditions with high signal to noise ratio, it may be possible to identify the linear signal using

conventional methods such as edge detection using a typical threshold, this task will be

substantially more error prone at low signal to noise ratio.

Therefore, we decided to reformulate the problem using Radon transforms (Radon, 1917),

that integrate signal along lines of a given angle and signed distance from the origin. Consider

a line L with normal~nL ¼ cosa; sinað Þ, a signed normal distance d 2 �¥;¥f g away from the

origin (e.g. shown in pink Figure 2—figure supplement 1, top left), which may be

parameterized as follows

x tð Þ
y tð Þ

� �

¼ t sinaþ dcosa

�tcosaþ dsina

� �

where t 2{0,1} is the parameter that marks position along the line L (Figure 2—figure

supplement 1). It is clear that all possible pairs of normal orientation and signed distance

a; dð Þ, describes all possible lines covering the plane. The Radon transform of the image I -

denoted RI - establishes a map from the rectangular domain 
, on which the image is defined

into the space spanned by line orientation and signed distance, where each line L

characterized by the pair a; dð Þ is assigned the integrated(summed) intensity projection along

the line - or in mathematical terms:

RI Lð Þ ¼
Z

L

I x;yð Þd


RI a;dð Þ ¼
Z

1

0

I t sinaþ dcosa;�tcosaþ d sinað Þd


where the latter equation uses the explicit parametrization of the line L in terms of a; d; t

defined above. (The following is a verbal example for the equation above, and may be

skipped): Figure 2—figure supplement 1 illustrates the algorithm that constructs the radon

transform for the linear signal shown in white, one that has a normal orientation of 450 and

constant intensity Ils ¼ 1 over a background of intensity Ibg ¼ 1. The magenta dashed line
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indicates a line L with normal orientation a and a distance d ¼ 0 away from the origin shown in

red. Integrating image intensity along such a line, for any orientation a 6¼ 45
0, we theoretically

obtain only a contribution from the intersection with the linear signal, thus RI a 6¼ 45
0; 0ð Þ ¼ 1.

In contrast for a ¼ 45
0, i.e. when the line is parallel and on top of the linear signal, the radon

transform integrates the intensity along the entire line, returning the length l of the linear

signal: RI a ¼ 45
0; 0ð Þ ¼ l. In our example, for d 6¼ 0 we will either have a single intersection of

the line L with the signal, again returning with the same outcome as above, or no intersection,

where the radon transform returns 0, indicated by the dark blue regions in Figure 2—figure

supplement 1.

Since the radon transform is linear, it follows that for any image that is the linear

superposition of linear signals, the radon transform is the linear superposition of the radon

transform of each linear signal. For example, if an image consisted of 2 linear signals (for

example a four fold vertex), the resulting radon transform is the sum of the radon transform of

each linear signal, with peak levels at orientation and signed distance of each linear signal. In

this way, linear signals are mapped to peaks in the radon transform that reflect the total

intensity along the length of the linear signal. Knowing the location of peaks in the radon-

transformed space allows us to reconstruct the position and orientation of each linear signal in

the image. This simplifies the task of identifying the linear signal, as detection of peaks due to

their compact structure is simpler than detection of edges, and the radon transformed signal

will be less susceptible to fluctuations in the underlying data, and therefore enhance

robustness.

To obtain average image intensity from the radon transform we use the fact that the height

of the peak reflects the total intensity Itot along the linear signal to construct the average

signal as <I> ¼ Itot=l, where l denotes the length of the linear signal. To determine the length

of the linear signal, we need to determine the position where the linear signal begins and/or

ends in the image. This is done by interpolating the signal along the orientation and position

corresponding to the identified peak in the radon transform, and identifying discontinuities in

the interpolated signal, which mark the boundaries of the linear signal. With beginning and

end determined, we obtain the length as the magnitude of the vector connecting the two

points. If beginning and end don’t fall onto the boundary of the image, we perform an

integration of a line restricted between these two endpoints, to obtain a more accurate

estimate of the total line intensity.

Validation of segmentation free anisotropy detection
Pullbacks created with ImSAnE based on light sheet microscopy data of developing D.

melanogaster embryos show the cortex of roughly 6000 cells, which would yield a complex

radon transform pattern, effectively impeding peak detection. To simplify peak detection, we

decided to carry out analysis in small blocks, where we focus on a local region of interest (ROI)

that we sweep across the entire image. The size of the local region is chosen such that it can

accommodate between 1–3 typical edge lengths ledge. In this way, we typically obtain a small

number (<10) of edges in the ROI, such that we could use the extended-maxima transform

(Soille, 2013) to identify the typically well separated peaks. To avoid double counting of

edges - as they may appear from sweeping the ROI - we average detected lines of locally

similar angles with a small angular difference dak k< � and distance d< ledge.

Following the general prescription given above, we obtain local estimates for position,

orientation, and average intensities of cell edges, demonstrated in Figure 2—figure

supplement 2. A zoom on a local region indicated by the white box shows that this routine -

fully automatically, and without need of fine tuning parameters - faithfully detects the

orientation of cell edges, including dim edges with only minimally stronger signal compared to

background. To further benchmark the quality of intensity estimates, we turned to known

anisotropy of myosin during germband extension (Blankenship et al., 2006). Figure 2—figure

supplement 1 shows on the right, that the presented algorithm finds the normalized intensity

on AP edges (900) is systematically higher than on DV edges (00), reaching is maximum
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approximately 20 min after cephallic furrow formation, in good agreement with previous

manual measurements (Blankenship et al., 2006).
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Mathematical model of tissue flow
Mechanics of epithelial tissue is largely defined by the properties of intracellular cytoskeletal

cortexes, linked by cadherin mediated adherens junctions into a global trans-cellular

mechanical network. This mechanical network is ‘active’ in the sense that it involves myosin

motors that generate internal forces and can do work by contracting actin-myosin filaments

under tension. A cytoskeletal network is also ‘adaptive’ in the sense that it can relax

mechanical stress by reorganizing internally, on sub-cellular scale by recruiting (or releasing)

myosin and other key molecular components, and on tissue scale, by allowing cells to

rearrange locally (by T1 processes). The latter process allows cells to change neighbors and

‘flow’ relative to each other, while preserving the integrity of the epithelium and its

cytoskeletal network. The detailed description of these complex cellular processes is not

necessary for our present goals, which call merely for an approximate mesoscale description of

tissue mechanics. By mesoscale we mean the scale of >3 cell diameters, still much smaller than

the macroscopic scale of the embryo tissue flow. Microscopic complexity notwithstanding, on

mesoscale we will think of tissue as a continuous medium and it will suffice for us to capture

the facts that i) on short time scales tissue responds elastically to mechanical perturbations

(Bambardekar et al., 2015) and ii) on the longer time scales elastic stress is relaxed through

active rearrangement of the cytoskeleton as cells adapt to the imposed deformation. This is

enough to define flow velocity in response to external and internal stress: on the timescale

comparable to internal stress relaxation, tissue dynamics can be described by a generic

viscoelasticity equation with two effective viscosity parameters which we shall now derive.

Short-term elastic response means that incremental increase of strain causes an increase in

stress, which can subsequently relax with the relaxation time tR. To simplify the derivation we

will present now, lets assume a flat two-dimensional surface. Elastic stress is then governed by

the Maxwell viscoelasticity and in the mesoscopic continuum approximation we have:

s
:
ab ¼ � qau

:
b þ qbu

:
að Þþldabqcu

:
c � t�1

R sab (1)

where x
: ¼ d

dt
x, so that u

:
a is the rate of local displacement in the direction of spatial

component a. Spatial derivatives of the u
:
a vector define local rate of strain qau

:
b þ qbu

:
a. In

addition, dab is the Kronecker delta matrix and we have adopted the Einstein convention of

summing over repeated indices (e.g. qcuc ¼
P

c qcuc). The first two terms on the right hand side

describe generation of stress in proportion to the rate of strain (�; l are the Lame coefficients

parameterizing an elastic stress-strain relation) and the last term parameterizes relaxation of

stress.

On the other hand, in the continuum approximation, tissue flow velocity va ¼ u
_

a can be

described by the (compressible) Stokes equation

�v
:
a ¼ �0q

2

bva þ qbsabþFa (2)

where Fa is external force (per unit area), � is the density and �0-dynamic viscosity.

Now suppose that stress relaxation is sufficiently rapid to achieve quasi-equilibrium

t�1

R sab »� qavbþ qbvað Þþldabqcvc (3)

substituting sab into Equation 2 we have

�v
:
a ¼ �0 þ tR�ð Þq2bva þ tR �þlð Þqaqbvb þFa (4)

Note that transient elasticity, parameterized by tR, � and l, generates ‘effective viscosity’

tR�, which can dominate the microscopic viscosity �0 of the ‘fluid’ itself. This effective viscosity

is in general anisotropic with tR� contributing to the shear viscosity which resists shear, acting
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to make flow more uniform, and the bulk viscosity tR �þ lð Þ which acts specifically on the on

the compressible component of the flow.

If the effective viscosity is sufficiently high and flow changes sufficiently slowly, the inertial

term can be neglected (�v
:
a ��q2bva) and the quasi-stationary flow is defined by the balance of

the external forcing and effective viscosity

�1q
2

bva þ�2qaqbvb ¼�Fa (5)

where �1 ¼ �0 þ tR�ð Þ and �2 ¼ tR �þ lð Þ. Since external force is related to external stress

via Fa ¼ qbs
ext
ab and we have argued that relevant ‘external stress’ that drives tissue flow in the

embryo is proportional to the myosin tensor s
ext
ab ~mab we have arrived at the equation we

have used in the main text to relate tissue flow velocity with myosin distribution. (Note that

the relation of s
ext
ab and mab is due to the fact that myosin generates contractile forces, so that

a local maximum of an isotropic myosin distribution mab rð Þ ¼ dabm rð Þ would act just like a low

pressure region, generating inward directed flow.)

�1q
2

bva þ �2qaqbvb ¼� qbmab (6)

Passive versus active mechanics
In the section above we put forward a simple effect model based on conventional Maxwell

viscoelasticity. Epithelial tissues however are clearly not ordinary passive viscoelastic materials.

Myosin-driven rearrangement of the cytoskeleton is an active and adaptive process, which can

be regulated on cellular and subcellular scales. We argue, however, that average flow on the

mesoscopic scale can be usefully approximated by the passive viscoelastic model with suitable

effective parameters. The ability of this simple model to capture highly non-trivial spatial flow

patterns without the need for introducing spatial dependence of model parameters proves the

validity of the approximation. Still, we do not expect this ‘passive viscoelasticity’ model to be

complete. We anticipate that a more detailed description of myosin activity and myosin

recruitment dynamics would be required in order to describe both the fast cellular scale

fluctuations and the long-term myosin dynamics on the scale of the embryo. Other molecular/

genetic factors will come into play as well: e.g. cadherin and other cytoskeletal components

on small scale and transcription factors that guide morphogenesis on large scales. We plan to

address these issues in the future.
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