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Summary

Doubly truncated data arise when event times are observed only if they fall within subject-specific, 

possibly random, intervals. While non-parametric methods for survivor function estimation using 

doubly truncated data have been intensively studied, only a few methods for fitting regression 

models have been suggested, and only for a limited number of covariates. In this paper, we present 

a method to fit the Cox regression model to doubly truncated data with multiple discrete and 

continuous covariates, and describe how to implement it using existing software. The approach is 

used to study the association between candidate single nucleotide polymorphisms and age of onset 

of Parkinson’s disease.
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1. Introduction

Truncated data are often encountered in survival problems. Left or right truncation occurs 

when lifetimes are observed only if they are larger or smaller than a random truncation 

variable, respectively. Familiar examples from the literature are the left-truncated Channing 

House data (Hyde, 1977) and the right-truncated HIV incubation data (Kalbfleisch and 

Lawless, 1989). Here we study random variables that are both left and right truncated to a 

random interval; these are termed doubly truncated data. Our motivating example is a study 

of the association of candidate single nucleotide polymorphisms (SNP’s) and age of onset of 

Parkinson’s disease (Clark et al, 2011, Austin, Simon and Betensky 2014). To limit selection 
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biases related to survival, the patients were required to have had their DNA sample taken 

within eight years of their onset of Parkinson’s disease, and additionally, their onset age was 

required to be prior to their DNA sample. Thus, the age of onset is right truncated by the age 

at blood sampling for genetic analysis and left truncated by age at sampling minus eight 

years.

Let hT(t) ≔ limΔ↘0 P(t ≤ T ≤ t + Δ | T ≥ t) be the hazard function of the time variable T. The 

data are left truncated when T is observed only if T ≥ L, for some random variable L. Since 

{T ≥ L} ⊃ {T ≥ t} on t ≥ L, the hazard for a left truncated lifetime satisfies hT|L(t | l) ≔ 
limΔ↘0 P(t ≤ T ≤ t + Δ | T ≥ t, T ≥ L, L = l) = hT (t)I(t ≥ l), where I(·) is the indicator 

function. This unique relation shows that the standard risk-set approaches, applied by the 

non-parametric product-limit estimator and the Cox’s regression maximum partial likelihood 

estimator, can be readily modified to left truncated data by including a subject in risk sets 

only from his truncation time on. However, this equivalence relation between the conditional 

hazard and the marginal hazard does not hold for right or doubly truncated observations for 

which sampling is restricted to observations satisfying T ≤ U or L ≤ T ≤ U, where U is the 

right truncation random variable. Therefore, specialized methods are required for analysis of 

such data.

Non-parametric approaches for estimating the survivor function of doubly truncated data use 

the self-consistency algorithm of Turnbull (1976) or similar iterative algorithms (see Efron 

and Petrosian 1999, Shen 2010). These methods are implemented in the R package DTDA 

(Moreira, de Uña-Álvarez and Crujeiras 2010). Austin et al. (2014) study doubly truncated 

data under independence of the left and right truncation variables and under parametric 

models for the truncation distribution (see also Moreira and de Uña-Álvarez 2010).

To date, only few papers deal with regression methods for doubly truncated data. Alioum 

and Commenges (1996) extend Turnbull’s (1976) non-parametric approach to the 

proportional hazards model. They jointly maximize the regression coefficients and the 

baseline survival curve using an EM or a Newton-Raphson type algorithm. As the number of 

parameters grows with sample size (for the non-parametric part of the baseline survival 

function), maximization is quite challenging and problems with inverting the second-

derivative may occur. Shen (2013) studies a family of regression models for doubly 

truncated and doubly censored data, which includes as a special case the proportional 

hazards model. His method requires consistent non-parametric estimators for the survivor 

function for each covariate value, and therefore is applicable only for discrete covariates 

having few categories. Moreira, de Uña-Álvarez and Meira-Machado (2016) study non-

parametric regression in the framework of doubly truncated data. They observe that the 

density of sampled lifetimes is weighted by the bivariate distribution of the truncation 

variables, which motivates their use of inverse probability weights. The latter probabilities 

are estimated non-parametrically using the approach of Shen (2010). Being non-parametric, 

their method is best suited to one continuous covariate. Shen (2016) and Shen and Liu 

(2017) suggest methods that can handle continuous and discrete covariates; the first is based 

on estimating equations similar to those used by Shen (2013) and the second is based on the 

EM algorithm.
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In this paper, we propose a new approach for Cox regression analysis of doubly truncated 

data. As in Moreira et al. (2016), we view the truncated lifetimes as having a weighted or 

biased distribution, and modify the approach of Qin and Shen (2010) for length biased 

observations to handle data with more general biased sampling mechanisms. Unlike the 

length-bias case that assumes a uniform distribution for the truncation variable, the weight 

function here depends on the unknown bivariate distribution of the truncation variables, 

which we propose to estimate non-parametrically.

Section 2 describes the new estimation approach and discusses its large sample properties, 

with technical details deferred to the Web Appendix. Section 3 examines the estimator’s 

performance using simulations, and Section 4 applies it to Parkinson’s disease data. A brief 

discussion completes the paper.

2. Estimation

2.1 Estimation of Regression Parameters

Consider a lifetime variable T and a covariate vector Z satisfying, in the general population, 

the Cox model

h(t | z; β) = h0(t) exp(βtz), (1)

where h(· | z; β) is the hazard function of T conditional on the covariate realization z, h0(·) is 

a baseline hazard function, and β is the vector of coefficients. For simplicity of presentation, 

we consider only a single covariate, but the extension to multiple covariates is 

straightforward.

In the context of double truncation, the sample is not randomly selected from the population, 

but instead is truncated to the region L ≤ T ≤ U, where (L, U) is a random truncation interval 

that follows a bivariate law G. In many examples, (L, U) is independent of (T, Z), which 

greatly simplifies estimation and inference. We assume such an independence throughout the 

paper, and consider inference based on independent realizations (T1, Z1, L1, U1), …, (Tn, Zn, 
Ln, Un) of (T, Z, L, U) conditionally on the double-truncation event D = {L ≤ T ≤ U}. 

Denote by W(t) = P(L ≤ t ≤ U) the probability of observing a lifetime of length t, and 

assume that W(t) > 0 on the support of T. The joint density of sampled observations is

f L, U, T , Z |D(l, u, t, z) =
W(t)h(t | z; β) exp( − ∫ 0

t h(y | z; β)dy) f Z(z)
E{W(T)} × G(dl, du)I(l < t < u)

W(t) , (2)

where fV denotes the density of a random variable V. The right-hand side of (2) involves 

multiplication by W (t) in the first factor, followed by division by W(t) in the second factor, 

to facilitate representation of the joint density as the product of the marginal density of (T, Z) 

| D (first term) and the conditional density of (L, U) | {(T = t, Z = z), D}. The rightmost term 

in (2) does not involve β, so estimation of β can be carried out based on the first term
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f T , Z |D(t, z) =
W(t)h(t | z; β) exp( − ∫ 0

t h(y | z; β)dy) f Z(z)
E{W(T)} , (3)

which is the joint density of the lifetime and the covariates weighted by W(t). The weighted 

density of lifetimes conditional on the covariate is therefore

f T |Z, D(t | z) =
W(t)h(t | z; β) exp( − ∫ 0

t h(y | z; β)dy)
E{W(T) | z} . (4)

Note that E{W(T) | z} = P(L ≤ T ≤ U | z) depends on β, and thus this biased sampling must 

be accounted for in the estimation of β.

In the framework of length-biased data, Qin and Shen (2010) consider inference on 

proportional hazards models with likelihood terms similar to (4) and W(t) = t. Here W(t) is 

more general, and moreover, it is unknown. We propose estimation of W, which is a 

functional of the bivariate distribution G, using the triplets (T, L, U) sampled under the 

double truncation rule, followed by use of (4) for estimation of β. This approach is closely 

related to that taken by Qin and Shen (2010) to deal with censoring.

Since the weight in (3) is a function of t alone, it follows that fZ|T,D = fZ|T, and we can 

therefore use the following standard probabilistic result for the Cox model:

E(Z |T = t, D) = E(Z |T = t) =
E{ZeβZFT |Z(t |Z)}

E{eβZFT |Z(t |Z)}
,

where F̄ = 1−F denotes a survivor function. Letting fZ|D(z) = E{W(T) | z}fZ(z)/E{W(T)} 

denote the marginal weighted density of the covariate, we have

E(Z |T = t, D) =
E[ZeβZFT |Z(t |Z)/E{W(T) |Z} |D]
E[eβZFT |Z(t |Z)/E{W(T) |Z} |D]

, (5)

which represents the expectation in terms of the observable truncated variables. However, 

(5) contains the term F̄
T|Z(t | Z)/E{W(T) | Z}, which involves functionals of the variables Z 

and T unconditionally on D. To represent the expectation as a function of observed variables, 

we see from (4) and the assumption that W(t) > 0 on the support of T that

E[{W(T)}−1I{T ≥ t} |Z = z, D] = FT |Z(t | z)/E{W(T) |Z = z}, (6)

and after plugging (6) into (5) we obtain
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E(Z |T = t, D) = E[ZeβZ{W(T)}−1I{T ≥ t} |D]
E[eβZ{W(T)}−1I{T ≥ t} |D]

. (7)

Thus, if (Z1, T1) and (Z2, T2) are independent pairs in the sample, then

E(Z1 |D) = EE(Z1 |T1, D) = E
E[Z2e

βZ2{W(T2)}−1I{T2 ≥ T1} |T1, D]

E[e
βZ2{W(T2)}−1I{T2 ≥ T1} |T1, D]

D .

The last identity suggests the estimating equation

U(β) = ∑
i = 1

n
Zi

∑ j = 1
n Z je

βZ j{W(T j)}
−1I{T j ≥ T i}

∑ j = 1
n e

βZ j{W(T j)}
−1I{T j ≥ T i}

= 0 . (8)

As W is unknown, we propose the following estimation algorithm:

1. Calculate the non-parametric maximum likelihood estimate of G and then 

calculate W(Ti) = P(L ≤ T ≤ U | T = Ti) = G(Ti, ∞) − G(Ti, Ti−) for i = 1, …, n. 

Estimation of G is discussed in Section 2.2.

2. Plug W into (8) and solve for β. This can be accomplished by calling the 

function coxph in the survival package of R (Therneau 2015), introducing − 

log{W(Tj)} as an offset with coefficient 1 (e.g., coxph(srv.object ~ covariates + 

offset(−log(W))).

The method can easily handle multiple discrete or continuous covariates and is 

implementable using existing R functions. However, the standard errors produced by R are 

not valid as they do not account for the additional variability induced by estimation of the 

weights. For estimation of standard errors and construction of confidence intervals, we 

suggest use of the bootstrap.

2.2 Estimation of G

Joint non-parametric estimation of the lifetime distribution, F, of T and the bivariate 

distribution, G, of (L, U) are discussed by Shen (2010) and are implemented in the function 

shen in the DTDA package of R (Moreira et al. 2010). Here we suggest a faster way to 

calculate Shen’s estimator of G using its relation to the estimate of F suggested by Efron and 

Petrosian (1999), which is based on the likelihood of T conditional on the event {T ∈ [L, 
U]}.

As in many non-parametric problems, the estimators assign mass only to observed points, 

that is, F̂ assigns positive mass only to observed lifetimes, t1, …, tn, and Ĝ assigns positive 

mass only to the observed truncation pairs, (l1, u1), …, (ln, un). For simplicity we assume no 

ties, and denote by fi the mass assigned to the value ti, and by gi the mass assigned to the 

Mandel et al. Page 5

Biometrics. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pair (li, ui). Let Pi = P(li ≤ T ≤ ui) = ∑ j = 1
n f jI(li ≤ t j ≤ ui) be the probability that a lifetime, 

not subject to truncation, falls in the interval [li, ui]. The likelihood of the doubly truncated 

data, (ti, li, ui) i = 1, …, n, is given by (see Equation (2) of Moreira et al. 2010):

∏
i = 1

n f i
Pi

× ∏
i = 1

n Pigi

∑ j = 1
n P jg j

. (9)

While Shen (2010) maximizes (9) for { f i}1
n and {g j}1

n simultaneously, Efron and Petrosian 

(1999) maximize the first term in (9) with respect only to { f j}1
n. Inspecting the likelihood, it 

is seen that the second term is a weighted density of G, with gi weighted by Pi. This term is 

maximized by assigning mass proportional to 1/Pi to the ith observation (e.g., Vardi 1985). 

Thus, profiling out gi by replacing it with 1/Pi in the likelihood above, clarifies that the 

conditional approach of Efron and Petrosian (1999) yields the NPMLE of F also for the 

problem of maximizing F and G simultaneously.

The discussion above reveals that ĝi ∝ 1/P̂
i is the maximum likelihood estimate of gi, where 

P̂i is the Efron and Petrosian’s estimate of Pi. The latter is implemented by the 

efron.petrosian function in the DTDA package of R (Moreira et al. 2010).

Our proposed estimator is based on the unconstrained model for G, which is also the 

estimator for the setting L = U −d0 for some constant d0 used for the Parkinson’s disease 

data analyzed in Section 4. See Austin et al. (2014) for estimation of G under the 

independence assumption between L and U, and Moreira and de Uña-Álvarez (2010) for 

estimation of a parametric model for G.

2.3 Large Sample Properties

The estimating equation (8) involves the weight function W, which is known only in very 

special circumstances. In practice, the estimator β̂ is the solution of (8) with Ŵ substituted 

for W. This complicates the analysis considerably as the estimator Ŵ in the most general 

double truncation case does not have a closed form, see Section 2.2. We conjecture that the 

following two conditions hold for Ŵ under the assumptions and regularity conditions listed 

in Web Appendix A:

Conjecture 1 (Uniform convergence): max1≤i≤n{Ŵ(Ti) − W(Ti)} → 0 in probability.

Conjecture 2 (IID representation): n W(t) − W(t) = n−1/2∑i = 1
n ζn(𝒟i, t) + op(1)

uniformly on t ∈ [tmin, tmax], where i = (Ti, Li, Ui) is the data for subject i, and ζn(

i, t) are independent and identically distributed zero mean random variables having 

finite variance.

It is shown in the Web Appendix that if these two strong conditions hold, then under certain 

standard regularity conditions the solution of (8) with Ŵ plugged-in is consistent and 

asymptotically normal. In fact, the result in the Web Appendix is not limited to the double 
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truncation model and applies to observations (Ti, Zi) that follow model (3) with a certain 

weighting function W and with h(t|z) given by model (1).

Uniform consistency and asymptotic normality of the estimator of W are established by 

Woodroofe (1985) for the right and left truncation models, which are special cases of the 

double truncation model with L ≡ −∞ and U ≡ ∞, respectively. Many authors have studies 

the double truncation model, see Section 2.2 for several references, but large sample 

properties have not been established. The main difficulty is that Ŵ is obtained in an iterative 

algorithm and lacking a representation as a functional of an empirical process, so standard 

techniques do not apply. Recently, Shen (2016) gives conditions under which Conjectures 1 

and 2 are claimed to hold, but the technical proofs are incomplete, and more investigation is 

needed. This is beyond to scope of the current paper.

The variance of the estimator is quite complicated and we consider instead a simple 

bootstrap approach that generates samples of n observations with replacement from the data 

and estimates W and then β in each. This approach is recommended by Shen (2016) and 

Shen and Liu (2017) who use the variance of the bootstrap estimates to generate normal 

based confidence intervals. As we could not formally prove asymptotic normality for the 

truncation mechanism of our data, L = U − 8, we explore in the simulation study also the 

performance of qunatile bootstrap intervals having the form (2β − β1 − α/2
∗ , 2β − βα/2

∗ ), where 

βα
∗ is the α percentile of the bootstrap sample (Davison and Hinkley 1997).

3. Simulations

Truncation may affect the sample size and the Fisher information carried by the observed 

data (Iyengar, Kvam, and Singh 1999), and our first set of simulations explores the effect of 

double truncation on inference. We generated T from the linear baseline hazard model h0(t) 
= 2t. The explanatory variable Z was either a continuous covariate having a standard normal 

distribution or a binary covariate with probability P(Z = 1) ≈ 0.38; for both, we set β = 1. 

The truncation limits L and U were generated independently from the Gamma(1,2) and 

Gamma(2,1) distributions. We first sampled 1000 covariate realizations, Z1, …, Z1000, and 

conditional on the Z’s, we generated 1000 triplets (L, U, T); these comprise the complete 

unbiased sample. We then generated the truncated sample by retaining only those 

observations that satisfied L ≤ T ≤ U (about 500–550 on average). Finally, we estimated β 
using the following three approaches:

I. Standard Cox model, using the complete data (1000 observations) before 

truncation.

II. Standard Cox model, using the truncated data but not accounting for truncation.

III. Weighted Cox model, using the truncated data and accounting for truncation.

Although we generated (L, U) as independent random variables, we did not exploit that in 

our estimation of the weights for approach III. Table 1 presents the average bias of β̂, the 

standard deviation of the estimates and the average of the naive analytical standard errors 

provided by the R coxph function, based on 1000 simulations.
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Clearly, accounting for truncation is important and ignoring it (approach II) may lead to a 

substantial bias. The magnitude of the bias depends on the nature of the truncation, and in 

this simulation is worse for a continuous covariate than for the binary covariate. It is also 

seen that our approach for estimation of β is quite efficient, with empirical standard 

deviations that are 37% and 63% larger than those from the complete sample, which is in the 

range of what would be expected for a 50–55% decrease in sample size due to truncation. 

Finally, while our weighting approach provides valid estimates for β, it underestimates the 

variances, as seen by comparing the average analytical standard errors with the empirical 

standard deviations of the estimates. Thus, an alternative procedure, such as the bootstrap, 

should be used for variance estimation and confidence interval construction.

The second set of simulations compares the inverse weighting approach to the EM method 

recently suggested by Shen and Liu (2017). Data were sampled from the following model: 

h(t | z1, z2; β) = exp(t − 2z1 − 3z2), z1 a binary covariate with probability 0.5, and z2 

uniformly distributed on {1,2,3,4}. The left limit of the truncation interval, L, was generated 

independently of lifetimes and covariates from the Exponential distribution with mean 4, and 

U = L + d0 for d0 = 6,9,12, which corresponded to P(L ≤ T ≤ U) ≈ 0.42, 0.62 and 0.75, 

respectively. The parameters β1, β2 were estimated using our proposed inverse weighting 

method and were compared to the results of Shen and Liu (2017). Each of the settings was 

repeated 400 times with 1000 bootstrap samples. As in Shen and Liu (2017), bootstrap 

confidence intervals were calculated using the normal approximation β̂±z1−α/2SEboot, where 

zα is the α normal quantile and SEboot is the bootstrap estimate of the standard error.

Table 2 compares the performance of the inverse weighting estimator to the EM approach 

suggested by Shen and Liu (2017). Both the bias (Bias) and empirical standard error (ESE) 

decrease with sample size, with the bias becomes 3–6 times smaller than the standard error 

for the settings with n = 400. The average of the bootstrap estimates of the standard error 

(ASEboot) is quite close to the empirical standard error. The confidence intervals look 

somewhat conservative, though still perform quite well. We explore also the performance of 

95% quantile based bootstrap intervals (cover2) described at the end of Section 2.3. These 

intervals perform well, though for two settings they were anti-conservative. Comparing the 

inverse weighting method to that recently suggested by Shen and Liu (2017), it is seen that 

the inverse weighting estimators have smaller variances (and smaller MSEs) and the 

bootstrap estimator of the standard errors performs better. The method of Shen and Liu 

(2017) has smaller bias (but larger variance) when the probability of truncation is small (d0 = 

12, P(L ≤ T ≤ U) ≈ 0.75).

A third simulation study was conducted in order to compare the performance of the inverse 

weighting estimator to that of the standard delayed entry approach for left truncated data. 

We use the settings of Shen and Liu (2017) described above, but set U = ∞. The delayed 

entry approach maximizes the partial likelihood Πi exp(βZi)/Σj∈Ri exp(βZj), where Ri = {j | 
Lj ≤ Ti ≤ Tj}. Table 1 in the Web Appendix compares the bias and the mean squared errors 

(MSEs) of the two approaches based on 400 replications. Both the bias and the MSE of the 

two approaches are comparable, showing no advantage of either method. It will be 

interesting to further explore the differences of the two approaches in other settings and 

under right censoring. This is beyond the scope of the current paper.
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4. Parkinson’s Age of Onset Study

Several studies have implicated mitochondrial dysfunction and oxidative stress in the 

pathogenesis of Parkinsons disease (PD)(e.g., Shapira, 2008, Sherer et al, 2002, Thomas and 

Beal, 2007). Deficiency of PGC-1a, which regulates mitochondrial biogenesis and 

antioxidant defenses, also has been implicated in PD (Clark and Simon, 2009, Shin et al, 

2011). A previous study (Clark et al, 2011) hypothesized that the rs8192678 PGC-1a single 

nucleotide polymorphism (SNP) and the A10398G mitochondrial SNP may influence risk or 

age of onset of PD. To test these hypotheses, genomic DNA samples from human blood 

samples were obtained from the National Institute of Neurological Disorders and Stroke 

(NINDS) Human Genetics DNA and Cell Line Repository at the Coriell Institute for 

Medical Research (Camden, New Jersey). The samples consisted of DNA from 199 

Caucasian PD patients with either earlier onset PD (age 35–55 years) or later onset PD (age 

63–87 years). The separate samples of early and late onset cases were undertaken in 

recognition of the possibility that there may be different genetic mechanisms that vary by 

age. Thus, the regression model fitted to the data assumes

h(t | z, T ≤ 55) = h0(t) exp(βEarly
t z)

h(t | z, T ≥ 63) = h
∼

0(t) exp(βLate
t z) . (10)

As described in Section 1, the sampling mechanism translates into double truncation for age 

of onset by the interval [L, U], where U =age at sampling and L=age at sampling-8 years. 

Note, by (10), that the right truncation time for the early onset group is min(U, 55) and the 

left truncation time for the late onset group is max(L, 63). However, these additional 

truncations have no effect on the non-parametric estimate of W. The ages of onset and 

associated truncation regions are shown in Figure 1.

The earlier publication on these data (Clark et al, 2011) treated only the right truncation of 

age of onset by age at DNA sampling. Several modeling approaches undertaken in that 

paper, which all adjusted in some way for the right truncation, did not find a significant 

association between either the rs8192678 PGC-1a SNP or the A10398G SNP and risk of PD 

or age of onset of PD. Here we fit separate Cox models to the early and late onset groups as 

described in (10). The SNP frequencies are given in Table 3. Two patients from the early-

onset group have missing data on A10398G SNP and on age of sampling and therefore are 

excluded from the analysis.

In order to estimate the effect of the SNPs on the age of onset, proportional hazards models 

were fit, one to each gene separately (univariate model) and one with the two genes 

assuming additive effects. Interaction terms are not included due to small samples (see Table 

3). The main results are presented in Table 4; data and R code for the multivariate analysis 

are provided in the Web Appendix. Confidence intervals were calculated based on 2000 

bootstrap samples using the quantile approach described in Section 3.
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The univariate and multivariate analyses agree well; neither detects any association between 

the two SNPs and PD age of onset among those with early onset. The effect of the SNPs on 

age of onset among those with later onset is less clear, as the confidence intervals for SNP 

PGC-1a barely include 0. We also note that blood sampling was conducted very close to 

onset for subjects who had onset between ages 63–75 (see Figure 1), which suggests that 

there may have been an additional formal or informal selection mechanism for this group, 

about which we are unaware. Fitting the Cox model only to patients with age of onset 75+ (n 
= 65), the coefficients of the PGC-1a SNP become marginally significant (not shown). 

However, this latter analysis is data driven and therefore more data must be collected for this 

group in order to evaluate the association between the PGC-1a SNP and age of onset. Our 

null findings are consistent with those of Clark et al (2011), although our results account for 

both the left and right truncation of age of onset in these data rather than solely for right 

truncation.

Table 4 also compares the estimates based on inverse weighting to the naive approach that 

does not account for double truncation. The differences are substantial, emphasizing the 

importance of correcting for selection bias. Figure 1 in the Web Appendix presents box-plots 

of the weights for the different genotype groups; the difference in the distributions of 

weights, especially between the PCG-1a genotypes, may explain the difference in the 

results.

5. Discussion

The popularity of the semi-parametric proportional hazards regression model is attributed to 

the fact that likelihood-based estimation and inference can be conducted based on the 

parametric portion of the model via the partial likelihood. Left truncated data are easily 

accommodated through redefintion of the risk sets. However, when data are subject to right 

or double truncation, the risk-sets cannot be easily corrected and the partial likelihood 

approach breaks down. A solution developed in this article is to view truncation as a 

selection mechanism that produces biased or weighted data. This suggests inference using 

inverse weighting of the standard estimating equations, where the weights may be estimated 

using the data at hand. This idea, that was demonstrated here for double truncation, can be 

applied to many other problems; one of special interest is right truncated data.

Moreover, several authors have studied various semi-parametric models for length-bias or 

more general selection bias. See, for example, Tsai (2009), Shen (2009), Shen, Ning, and 

Qin (2009), Huang, Qin, and Follmann (2012), and Kim et al. (2013). The inverse weighting 

approach suggested here for the proportional hazards model may be adopted also to other 

models. This is a topic for further research.

The method studied here assumes that the lifetime variables, (Z, T), are independent of the 

truncation variables, (L, U). Austin et al. (2014) develop a test for quasi-independence of 

truncated data when the left truncation variable functionally depends on the right truncation 

variable (e.g., L = U−d0, for some constant d0). They applied the test to Parkinson data and 

found that independence is indeed plausible (p value = 0.186). In case of dependence 

between (Z, T) and (L, U), the weight function becomes W(t, z) = P(L ≤ t ≤ U | T = t, Z = z) 
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and it is no longer a function of G alone. A possible direction, not studied here, is to model 

W as a function of t and z and to implement the inverse weighting approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The truncation region (grey) and the survival data. Patients were sampled independently in 

the early and late onset groups.
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Table 1

Bias and variance of β̂ (β = 1) using the complete data (I), the truncated data with no adjustment for truncation 

(II) and the truncated data using the proposed weighted method (III).

Estimation approach

Z I II III

binary mean bias −0.003 0.050 −0.003

simulation SD 0.073 0.095 0.100

mean estimated SE 0.070 0.095 0.095

continuous mean bias −0.001 0.113 0.001

simulation SD 0.043 0.059 0.070

mean estimated SE 0.042 0.061 0.059
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