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Abstract

Purpose—In this study, we propose a rapid acquisition for MR-based attenuation correction 

(MRAC) in PET/MR imaging, where an ultrashort echo time (UTE) image and an out-of-phase 

echo image are obtained within a single rapid scan (35sec) at high spatial resolution (1mm3), 

which allows accurate estimation of a pseudo CT image utilizing 4 class tissue classification 

(discrete bone, discrete air, and continuous fat and water).

Methods—In dual echo ramped hybrid encoding (dRHE), a UTE echo is directly followed by a 

second, out-of-phase echo where hybrid spatial encoding combining single-point imaging and 3D 

radial frequency encoding is utilized to improve the quality of both images. Two-point Dixon 

reconstruction is used to estimate fat and water separated images, and UTE images are used to 

estimate bone. Air and bone segmentation is improved by utilizing multiple UTE images with an 

advanced hybrid encoding scheme that allows reconstruction of multiple UTE images. To evaluate 

the proposed method, dRHE-MRAC, PET/MR brain imaging was performed in 10 subjects. Dice 

coefficients and PET reconstruction errors relative to CT-based attenuation correction were 

compared to existing system MRAC approaches.

Result—In dRHE-MRAC, the Dice coefficients for soft tissue, air, and bone were respectively 

0.95±0.01, 0.62±0.06, and 0.78±0.05, which was a significantly improved result compared to 

existing approaches. In most brain regions, dRHE-MRAC showed significantly reduced PET error 

(less than 1%) with p-values less than 0.05.

Conclusion—dRHE enables rapid and robust imaging for MRAC with a very rapid acquisition.
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INTRODUCTION

Simultaneous PET/MR systems have been developed to complement the features of each 

individual imaging modality, that is, providing highly sensitive molecular-specific contrast 
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with PET and rich soft tissue contrast and anatomical information with MRI. For example, 

PET/MR can be utilized to simultaneously acquire images of glucose metabolism (FDG 

PET) with anatomical information (T1-weighted, T2-weighted, or proton density-weighted 

imaging in MRI) or tissue micro-structure (diffusion weighted imaging in MRI) in a single 

simultaneous imaging session. Moreover, combining PET with functional imaging, such as 

functional MRI or cardiac/flow imaging in MRI, can provide orthogonal biomarkers for 

more accurate diagnosis. In spite of the promises and benefits of simultaneous PET/MR 

imaging, it remains challenging to obtain a reliable photon attenuation correction map 

necessary for accurate PET quantitation.

Many MR-based attenuation correction (MRAC) approaches have been proposed to 

overcome this limitation, such as atlas registration-based or image segmentation-based 

methods. Atlas registration-based methods perform indirect estimation of CT contrast using 

a template based on a database of attenuation maps of similar subjects (1–5). The atlas 

registration method does not directly consider the uniqueness of an individual’s anatomy, 

and hence it can mislead estimation of the attenuation map if anatomy deviates significantly 

from normal cases. Image segmentation-based methods can potentially allow more direct 

and precise estimation of CT contrast based upon MR images with specialized imaging 

schemes or parameters (e.g., images acquired at different TEs to obtain fat and water 

separated images) (6–13). However, it is still difficult to directly image bone due to MRI’s 

fundamental limitations in imaging short T2* species, which has high photon attenuation 

relative to soft tissues.

Recent reports in the literature have demonstrated that ultrashort echo time (UTE) or zero 

echo time (ZTE) imaging can be successfully utilized for MRAC owing to its capability to 

resolve objects with short T2* decay (i.e., bone)(14–19). Unfortunately, UTE/ZTE 

techniques can take several minutes of acquisition time, particularly for multi-echo 

approaches, and are thus likely to impede PET/MR workflow. This is especially true for 

whole body PET/MR where only 3–5 minutes may be available for MRI at each bed 

position. Using faster imaging schemes (<3 min) in ZTE/UTE based MRAC often 

compromises spatial resolution (18), which complicates pixel intensity based tissue 

segmentation due to exacerbated partial volume effect. Moreover, in ZTE/UTE imaging 

additional scan time is required to obtain information to segment fat and water tissues (e.g., 

images at different TEs), which further slows down MRAC acquisition.

In this study, we propose a new set of techniques for rapid MRAC acquisition in the brain 

based on dual echo ramped hybrid encoding (20), termed dRHE-MRAC. In dRHE-MRAC, 

UTE and out-of-phase echo images with high spatial resolution (1 mm3) are obtained within 

a single 35-second acquisition. Hybrid single point imaging is utilized to improve 

reconstruction quality and enable acquisition of multiple UTE images to improve air and 

bone detection. Selective excitation using Shinnar-La Roux (SLR) RF pulses is utilized to 

improve imaging performance relative to non-selective excitation techniques (which are 

challenged in UTE techniques due to undesirable detection of plastic components in RF 

coils and other system components) (21). With multiple UTE images and an out-of-phase 

image, a fully-automated, histogram-based tissue segmentation is performed to estimate 

bone, air, water, fat components, and the resultant pseudo CT image. To evaluate the 
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proposed dRHE-MRAC, phantom and in vivo head imaging was performed using an 

integrated 3T PET/MR system. For in vivo brain imaging performed on 10 patients, dRHE-

MRAC showed significantly improved PET error (less than 1%) compared to existing 

MRAC approaches.

METHODS

Dual echo RHE

Dual echo RHE (dRHE) is based on ramped hybrid encoding (RHE) as previously described 

(20). In RHE, pure phase encoding, or single point imaging (SPI) (22), is used to acquire the 

central region of k-space, while radial frequency encoding is used to acquire data in outer k-

space. In dRHE-MRAC, the following strategies are used to achieve fast, multi-echo image 

acquisition. First, ramp sampling is performed with the fastest possible encoding gradient 

(i.e., at the maximum slewrate and gradient amplitude). Second, dual echo imaging is 

performed using two gradients with opposite polarity to minimize a per-TR scan time, where 

UTE and out-of-phase images are acquired in each gradient blip. Third, radial spokes are 

undersampled to minimize the total scan time.

Figure 1-a shows the pulse sequence diagram (PSD) of dRHE, which utilizes RHE to 

minimize the per-excitation encoding time and minimize blurriness in short T2* components 

(i.e., bone). For the UTE acquisition in dRHE, frequency encoding is performed in a center-

out direction with the fast and large encoding gradient turned on before RF coil deadtime 

(solid line in Figure 1-a) to rapidly encode k-space (blue lines in Figure 1-b). Cartesian SPI 

(dotted lines in Figure 1-a) is used to encode the central k-space region missing from 

frequency encoding as a result of RF coil deadtime (red lines in Figure 1-b). The UTE 

encoding (in-phase, TE<0.1ms) is immediately followed by encoding an out-of-phase echo 

(TE = ~1.1ms at 3T), and is used to perform fat and water separation based on a two-point 

Dixon reconstruction (23). Note that data acquired during the fly-back to the center of k-

space is used to reconstruct an out-of-phase image instead of prescribing another center-out 

readout gradient as in conventional fly-back gradient echo imaging to reduce scan time. The 

out-of-phase image is also reconstructed using SPI data for the central k-space region and 

radial frequency encoded data in outer k-space to benefit from reduced eddy current effects 

in SPI and a subsequent reduction in reconstruction errors such as ringing artifacts. Note that 

in SPI encoding, the sampling positions spread out in the first encoding gradient, and come 

back to central k-space in the end of the second encoding gradient, as in frequency encoding. 

To attain a proton density weighted (PDW) image, a small flip angle is applied (≤1 degree).

We improve upon the original RHE by incorporating an SLR pulse with minimum phase 

(24) to selectively excite a 3D slab and suppress streaking and aliasing artifact due to 

undersampling and fast encoding, which can be exacerbated by signals originating in the RF 

coil or non-imaged region in body (e.g., shoulder in head/neck imaging or legs in pelvis 

imaging). In conventional implementations of hybrid encoding (20,25), SPI encoding is 

performed to acquire just a single point in k-space (at TE) within a TR, while radial 

frequency encoding acquires multiple samples in center-out or out-in radial direction. In this 

work, we show feasibility of incorporating “dynamic” SPI (26) in hybrid encoding to secure 

data at multiple TEs in a TR. To achieve this, SPI is slightly oversampled to allow 
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acquisition of multiple UTE images as in (27), which can later be used to improve air and 

bone detection. Figure 1-c illustrates the time-spreading k-space sampling pattern in SPI 

over multiple TEs. If SPI is oversampled at the first TE after RF coil deadtime, multiple SPI 

data without aliasing can be acquired at subsequent TEs until the k-space sampling density 

violates the Nyquist limit (Δk=1/FOVD, where FOVD is a desired FOV). Figure 1-d shows a 

2D example of the acquisition of multiple k-spaces and images using oversampled, dynamic 

SPI. An example for combining SPI and radial spokes us shown in Supporting Figure S1.

Dual echo RHE allows fast encoding by performing ramp sampling with fast and high 

amplitude readout gradients; however, strong eddy currents are generated by such rapidly 

changing gradients. The eddy current distorts gradient the shape and deviates the k-space 

trajectory from the nominal trajectory, which results in imaging artifacts such as blurring, 

ringing, scaling, and phase errors (leading to inaccurate water and fat separation). Therefore, 

it is crucial to estimate the gradient distortion when calculating k-space trajectory for 

artifact-free image reconstruction. In this study, a dynamic SPI-based gradient measurement 

technique was used to estimate the actual k-space trajectory and utilize it for reconstruction 

(28). Note that measurements of the gradient trajectory can be performed in a phantom scan 

on a separate day from the in vivo imaging experiment and appear to stable over many 

months, thus requiring no additional time for the in vivo experiment.

SPI data acquired at a desired TE and frequency encoding data acquired from the TE to the 

end of readout are combined and input to a gridding process, which was implemented based 

on (29,30), to yield a 3D Cartesian k-space matrix. The resultant 3D image at each TE is 

reconstructed by performing inverse discrete Fourier transform.

Modeling tissue distributions

Once dRHE images have been acquired, images are passed through a series of post-

processing steps to segment them into individual tissue components to generate a pseudo CT 

suitable for use in PET image reconstruction. First, signal bias in UTE images is corrected in 

the inverse log domain similar to (19), where a mean intensity of soft tissue of neighboring 

pixels is used to determine the DC bias. Knowledge of the expected tissue distribution is 

prerequisite to automatically determine thresholds to detect air and bone. In a PDW-UTE 

image, it is expected that the pixel intensity for air (or noise) is darkest, and that of soft 

tissue is brightest, while bone shows an intermediate intensity. After bias correction, the 

tissue distribution is determined empirically based on the histogram of pixel intensities 

within the object region (i.e., head). The distribution of air is approximated to a Gaussian 

distribution, which is a valid assumption when the SNR is sufficiently high (e.g., larger than 

2) (31). The distribution of soft tissue is more difficult to model with a Gaussian distribution 

since it is composed of different types of tissue with contrasts dependent upon the imaging 

scheme. In a PDW-UTE brain image, gray matter exhibits higher pixel intensity than white 

matter. To simplify soft tissue modeling, only the gray matter distribution is considered, and 

thus the right side of the soft tissue peak (gray matter only) is mirrored to the left side, and 

the soft tissue distribution is estimated as following equation.
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(1)

, where h(x) is an intensity histogram corresponding to a pixel intensity, x, u(x) is a unit step 

function (returning 1 when x is positive, and 0 otherwise), xp is the pixel intensity of the 

peak value in the histogram, and s is a stretching factor to deal with the case that left half of 

soft tissue distribution is skewed due to imperfect bias-correction. The stretching factor, s, is 

determined by minimizing error between f(x) and h(x). The Nelder-Mead simplex algorithm 

with l2-norm as error function was used to automatically find the stretching factor in this 

study. The bone distribution is indirectly estimated by subtracting the estimated air and soft 

tissue distribution from the total histogram. Figure 2-a and b show an example of the 

histogram before and after bias correction and estimated tissue distributions.

Threshold setup for bone/air detection

Tissue segmentation is performed based on relative scaling of the histogram of pixel 

intensity between air (inside subject), bone, and soft tissue in the bias-corrected, unscaled 

(not log scaled) image. The threshold for air detection, xair, is computed utilizing the 

following equation.

(2)

, where hair and hbone are the estimated air and bone distribution, respectively. Pixels with 

intensity below xair are classified as air. The lower and upper threshold for bone detection, 

respectively xboneL and xboneU, are determined as follows.

(3)

, where hsoft is the estimated soft tissue distribution. k1, k2, and k3 are system dependent 

parameters that need to be adjusted with respect to different imaging parameters (e.g., flip 

angle, field strength). In this study, k1, k2, and k3 were empirically determined as 5, 1, and 

0.5, and fixed for all in vivo experiments. Figure 2-c shows an example of threshold setup. 

Pixels with intensity between xboneL and xboneU are classified as bone. Note that pixels in the 

gray zone with intensity between xair and xboneL remain unresolved to remove the risk of 

overestimating air or bone. Note futher that xboneU is loosely set to comprehensively detect 

bone in the gray zone between bone and soft tissue distributions by which darker soft tissues 

(e.g., white matter) can also be classified as bone, which is refined using the edge 

information.
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Air and bone detection with multiple UTE images

For air and bone detection, multiple UTE images obtained as previously described are 

utilized. Pixelwise air/bone segmentation is performed across all UTE images (14 as utilized 

herein), and the detected air/bone maps are combined by logical summation (OR operation). 

This improves air/bone detection since different UTE images exhibit a time-varying noise 

pattern in the air/bone region, and some pixels in this gray zone that are not detected for a 

single UTE image can be detected in other UTE images. Additionally, the background 

region is added to the air map.

Edge-based bone refinement

After initial segmentation of bone, misclassified bone pixels in gray zone between bone and 

soft tissue can be removed using edge information of a UTE image owing to the PDW 

contrast where no strong edge appears in soft tissue. First, an edge image is obtained using 

Canny edge detection on a UTE image, where 2D edge detection is performed in each of the 

three slice directions and combined by logical summation. A refinement map for bone 

detection is obtained by applying dilation process with a spherical structuring element with 

radius of 4 pixels, with the assumption that bone resides near strong edges. Next, the initial 

bone segmentation is refined by logical multiplication (AND operation) with the obtained 

refinement map.

Morphological image processing

Small islands of bone or air are removed from the segmented image using morphological 

processing. The detected air map is subdivided into smaller segments, where 8-connected 

pixels are grouped together in a 2D slice. Segments with a number of elements less than 10 

are removed in the slice. This process is repeated in each slice direction (axial, sagittal, 

coronal) and the refined maps are combined by logical summation. To remove falsely 

detected bone inside the sinus (which is a particularly difficult region due to partial volume 

effects) bone pixels detected in-between air pixels are removed. To accomplish this, the air 

map is processed with a closing operation utilizing a spherical structuring element with a 

radius of 10 pixels. Finally, any bone pixels present inside the closed air map are removed.

Pseudo CT generation

Pseudo CT maps are generated using the detected bone map, air map, and fat/water 

separated images. First, a CT image for soft tissue is generated based on fat fraction as 

follows:

(4)

, where ffat is a fat fraction (in the range [0, 1]) image obtained by two point Dixon, and 

HUwater and HUfat are Hounsfield unit values (HU) for water and fat, respectively. To add air 

and bone regions as computed above, a 4-class pseudo CT image is composed as follows:

(5)
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, where BWbone is a binary map of the detected bone, HUbone is a representative value for 

HU of bone, BWair is a binary map of the detected air, and HUair is HU of air in CT. The 

generated CT image is then smoothed by spatial Gaussian filter with standard deviation of 2 

pixel (2-mm).

Experimental setup

To evaluate the proposed method, phantom and in vivo experiments were performed using a 

head and neck coil (HNU) on a 3T PET/MR system (GE Healthcare, Waukesha, WI, USA). 

Imaging parameters are as follows: Gmax=33mT/m, slew rate=118mT/m/ms, desired 

FOV=350mm3, nominal voxel size=1mm3, TR=4.2ms TE=52, 54, 56, 58, 60, 62, 64, 66, 68, 

70, 72, 74, 76, and 78 µs for UTE images, TE=1172 µs for an out-of-phase image, readout 

duration for each echo=0.56ms, scan time=35sec, sampling bandwidth=250Hz, FA=1degree, 

# of radial spokes=7442, and # of SPI encoding=925.

In the phantom experiment, data acquisition and image reconstruction for dRHE were tested 

using manufacturer-provided phantoms. Four phantoms were placed on the MR table as 

shown in Figure 3-a to mimic a human subject in size to evaluate streaking artifacts utilizing 

different slab selection strategies. Four different cases were tested: no slab selection (using a 

non-selective 8µs hard pulse), slab selection (using a 628µs SLR pulse with minimum phase) 

with slab size of 460 mm, 346 mm, and 269 mm. In addition to dRHE, conventional 

frequency encoding based UTE (FE-UTE) was obtained for comparison.

In vivo brain imaging was performed with 10 subjects in an IRB-compliant study. Patients 

undergoing clinical 18F-FDG PET/CT imaging were recruited to undergo additional 

simultaneous PET/MR imaging on a 3T PET/MR scanner (Signa PET/MR, GE Healthcare, 

Waukesha, WI). MR imaging consisted of the system-default MRAC scan and the proposed 

35-second dRHE-MRAC acquisition during a 10-minute PET acquisition. In dRHE-MRAC 

acquisition, the slab size in S-I direction was adapted to individual patients to cover the 

whole skull of a patient (around 280–300mm), avoiding the shoulders. The CT image (from 

either a Discovery 710 or Discovery VCT PET/CT scanner [GE Healthcare]) was used as a 

ground truth comparison to quantitatively evaluate the accuracy of the proposed MRAC 

technique.

Data processing and analysis

To reconstruct MR images, convolution gridding (29) using kernel size=5, oversampling 

ratio=1.5 was applied, and phase-arrayed coil images were combined (32). Images were 

reconstructed with matrix size of 301×301×301, FOV=300mm, and nominal voxel size of 1 

mm3. After image reconstruction, fat and water separated images were obtained using a 2-

point Dixon reconstruction (Flex) from within the GE Healthcare Orchestra SDK. For bias 

correction, a 3D block of size 21×21×21 was used. For generation of the pseudo CT, 

assigned HU values were −1000, −42, 42, and 939 for air, fat, water, and bone, respectively, 

which is consistent with values used in other studies (5,33–35).

To evaluate the accuracy of pseudo CT generation, Dice coefficients for soft tissue, air, and 

bone were calculated using system available MRAC methods (soft tissue only [MRAC-1], 

atlas-based [MRAC-2]), the proposed dRHE-MRAC, and CT-based attenuation correction 
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(CTAC) (a CT image spatially co-registered to the in-phase LAVA-Flex image [a two-point 

Dixon sequence] used for MRAC-1 and MRAC-2 using Elastix (36)) as the gold standard. 

To evaluate the efficacy of using multiple UTE images in dRHE for improved air/bone 

detection, two pseudo CT images were generated without and with multiple UTEs, and the 

Dice coefficient was calculated in each case. The reference CT images, which are 

continuously-valued, were thresholded to obtain tissue labels to calculate the Dice 

coefficient as follows: HU > 400 for bone, HU < −300 for air, otherwise soft tissue.

To evaluate PET quantitative accuracy, an offline PET reconstruction (PET Toolbox, GE 

Healthcare) was performed using MRAC-1, MRAC-2, dRHE-MRAC, and CTAC. PET 

reconstruction parameters were: 256×256 matrix, 300×300 mm2 field of view, TOF-OSEM 

reconstruction algorithm, 28 subsets, 4 iterations, SharpIR, and 4 mm post filter.

PET images reconstructed from MRAC-1, MRAC-2, and dRHE-MRAC were compared to 

those reconstructed using CTAC. Pixelwise error maps were obtained by calculating the 

percentage error in image intensity relative to CTAC. Region-of-interest (ROI) analysis was 

performed using the IBASPM parcellation software (37). Repeated-measures one-way 

ANOVA were first used to compare absolute errors within each ROI for MRAC-1, MRAC-2 

and dRHE-MRAC. Paired-sample t-tests were used for pairwise comparison between dRHE-

MRAC and MRAC-1 and between dRHE-MRAC and MRAC-2. Statistical analysis was 

performed with statistical significance defined as a p < 0.05 after Holm-Bonferroni 

correction for minimizing type-I error(38). All image reconstructions and data analysis were 

performed in Matlab (2013a, MathWorks, Natick, MA, USA) using a computer equipped 

with an Opteron 6134 CPU.

RESULTS

Phantom experiment

Figure 3-b shows that the aliasing/streaking artifact in the S-I direction at UTE echo times is 

suppressed by utilizing selective excitation with an SLR pulse. The images using a non-

selective 8µs hard pulse or larger slab selection exhibit objectionable streaking artifact due to 

the strong readout gradients utilized and the undersampled number of radial spokes 

necessary for fast imaging. Therefore, it is beneficial to use a selective SLR pulse with a slab 

matched to the S-I coverage of the PET detector (~25 cm). Figure 3-c shows the efficacy of 

hybrid encoding (with SPI) in reducing the ringing artifact in the fly-back echo (out-of-

phase) image, owing to the SPI encoded central k-space that is more robust to errors in k-

space trajectory relative to FE-UTE. As shown in the 1D profile (white dotted line), images 

with SPI encoding (magenta, green, and red) better suppress ringing artifact at object 

boundaries compared to FE-UTE without SPI encoding (blue).

In vivo - air and bone detection

Figure 4-a shows 14 UTE images from the single 35 second dRHE scan, and Figure b shows 

a zoomed in view of the detected air (green) and bone (yellow) with one UTE image at 52µs 

or UTE images from 52µs to 78µs. As seen, an improved air map is detected using 14 UTE 

images. Bone detection also shows improvement by using multiple UTE images. Individual 
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air and bone maps for each TE are shown in Supporting Figure S2. Figure 4-c shows the 

initially detected bone map before refinement, refinement map based on edge detection, and 

the resultant refined bone map. An edge map obtained by Canny edge detection was dilated 

to yield the refinement map, which was used to remove falsely detected bone within soft 

tissue (mostly white matter showing darker contrast) as indicated by the red arrows.

In vivo - pseudo CT

Figure 5 shows 3 different slices from a single subject of a UTE image at TE=52µs before 

and after bias correction (Figure 5-a,b), an out-of-phase echo image at TE=1172µs (Figure 

5-c), a water and fat image (Figure 5-d,e), a segmented bone and air (Figure 5-f,g) and the 

resultant pseudo CT image (Figure 5-h). dRHE-MRAC exhibits more accurate pseudo CT 

estimation relative to the real CT image (Figure 5-k) compared to MRAC-1 (Figure 5-i) and 

MRAC-2 (Figure 5-j). More 2D slices of the pseudo CT image are shown in Supporting 

Figure S3. Dice coefficients calculated in total 10 subjects for soft tissue, air, and bone in 

MRAC-1 were 0.89±0.01, 0.15±0.17, and 0±0, respectively. In MRAC-2, the Dice 

coefficients for soft tissue, air, and bone were 0.88±0.02, 0.31±0.11, and 0.59±0.05, 

respectively. In dRHE-MRAC, the Dice coefficients for soft tissue, air, and bone were 

respectively 0.95±0.01, 0.56±0.07, and 0.77±0.06 when only one UTE image (TE=52µs) 

was used for air/bone detection. Using multiple UTE images improved Dice coefficients for 

soft tissue, air, and bone to 0.95±0.01, 0.62±0.06, and 0.78±0.05, respectively, which shows 

the efficacy of using multiple UTE images (with no additional scan time) for air/bone 

detection. Compared with other approaches, dRHE-MRAC showed significantly improved 

detection rate in all tissue segments. Compared to the state-of-the-art MRACs reported in the 

literature, where the Dice coefficients for bone and air (inside subject) were reported as 

0.75~0.81 and 0.60, respectively (16,39–41), the proposed dRHE-MRAC approach showed 

comparably robust bone and air detection despite the short scan time.

In vivo - PET reconstruction

Figure 6 shows reconstructed PET images and the relative PET error in brain. MRAC-1 

shows errors larger than 5% in most brain regions. MRAC-2 shows errors below 5% in the 

parietal lobe where the template for the upper brain case is expected to match well to 

individual patients, but in the other brain regions that are more individually unique, such as 

cerebellum, nasal cavities, and facial bones, errors larger than 5% are observed. dRHE-

MRAC shows error rate less than 1% over most brain regions. In this study, there was a 

special case in which MRAC-2 (atlas-based method) failed due to incorrect registration, 

which is shown in Supporting Figure S4.

Table 1 provides average error and standard deviation from three approaches within different 

brain regions. There was a significant difference between the average error of MRAC-1, 

MRAC-2 and dRHE-MRAC in all brain ROIs with p ranging from 4.5e-9 to 0.038 except for 

brainstem (p=0.055), right thalamus (p=0.063), and right subthalamic nucleus (p=0.069). 

Within all brain ROIs, dRHE-MRAC provides significantly lower absolute errors than 

MRAC-1 with p ranging from 7.9e-8 to 0.04 except for brainstem (p=0.098) and right 

subthalamic nucleus (p=0.058). dRHE-MRAC provides significantly lower absolute errors 
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than MRAC-2 with p ranging from 5.3e-4 to 0.048 except for right frontal lobe (p=0.13) and 

right occipital lobe(p=0.068).

DISCUSSION

In this study, we proposed a new UTE-based MRAC approach that allows UTE and out-of-

phase images to be obtained with high spatial resolution (1 mm) and a clinically feasible 

scan time (35 sec), by utilizing a dual echo RHE acquisition with notable improvements 

from the hybrid encoding approach and selective excitation of the SLR pulse. We have 

shown the efficacy of dRHE-MRAC for in vivo head imaging in 10 subjects. Because this 

method does not rely on atlas registration and is fast, it is expected to be adaptable to whole-

body simultaneous PET/MR imaging where MRAC imaging must be performed at each bed 

position. Moreover, compared to approaches that utilize hybrid ZTE and Dixon approaches 

(18), dRHE-MRAC does not require additional fat/water imaging (Dixon or IDEAL) owing 

to the dual echo acquisition, which not only reduces scan time, but reduces the likelihood 

patient motion between UTE and fat/water imaging when acquired in multiple scans.

dRHE-MRAC reduces a total scan time in two ways: minimization of length of sequence 

and undersampling of radial spokes (to reduce the total number of TRs). To minimize length 

of sequence, a UTE echo (52 µs) is utilized as the in-phase echo with the following out-of-

phase echo (around 1.1 ms), which shortens the pulse sequence length by 60% compared 

with conventional bipolar gradient echo acquisitions where two echoes are acquired at 

approximately 1.1ms and 2.2ms for 3T. To further shorten the pulse sequence, fly-back 

(bipolar) echoes were utilized, which reduces length of sequence by 33% relative to 

monopolar gradient echo imaging. Moreover, dRHE benefits from operation at the system 

hardware maximum slewrate and gradient amplitude. To reduce the number of TRs, 5.2% of 

all radial spokes were acquired relative to fully-sampled 3D radial imaging. To reduce the 

streaking/aliasing artifact caused by undersampled radial spokes and fast readout (high 

readout bandwidth) with a large FOV, slab selection was applied using an SLR pulse with 

minimum phase and successfully reducing the effective FOV in the S-I direction. Note that 

while good performance was obtained in spite of a high degree of radial undersampling 

using a straightforward gridding approach, the application of parallel imaging and 

compressed sensing reconstruction (42) is likely to improve image quality for future 

applications.

Because SPI encoding (pure phase encoding) is more robust to eddy currents that distort the 

k-space trajectory, we were able to reconstruct an image acquired during fly-in with no 

imaging artifacts. Moreover, by slightly over-sampling the SPI region (Nyquist sampling 

requires approximately 300 SPI encodings, whereas 925 were utilized), which requires an 

additional scan time of only 2.5 seconds, it was possible to obtain multiple UTE images. 

With the ability to obtain multiple UTE echoes, it may be possible to improve the 

reconstruction further, utilizing model-constrained approaches (43) or to directly estimate 

the T2* of bone by additional SPI oversampling to secure a wider range of TEs, which could 

be used to assign continuous HU values based on the T2* of bone (16) or contrast of PDW 

UTE image (19). In this study, we have shown the efficacy of utilizing multiple UTE images 

to improve air and bone detection. In addition, it has been reported that SPI can be utilized 
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for imaging near metal owing to its robustness to magnetic susceptibility (44). In future 

work, we will explore the efficacy of SPI in dRHE in relation to image artifacts to achieve 

more reliable pseudo CT estimation near metallic implants.

Another strategy to leverage multiple UTE images is by simple averaging. This approach 

was tried, but only resulted in a slight improvement in SNR (10%) as shown in Supporting 

Figure S5. Note that the improvement in the air region was more noticeable. However, there 

were some issues for this approach. First, there is no simple way to average raw SPI-

encoded k-space data between different TEs since they are sampled in different location in 

k-space (time-spreading sampling patterns). Alternatively, magnitude UTE images can be 

combined after gridding, but the Gaussian distribution of the histogram cannot be 

guaranteed. Averaging of the data in complex value domain (real and imaginary) is also 

challenging due to B0-related phase change with TE. For the data obtained herein, the use of 

individual UTE images for bone and air detection with combined labeling empirically 

provided the best results.

Compared with ZTE-based MRAC methods (18,19), dRHE-MRAC is expected to achieve 

better image quality with reduced chemical shift artifact and blurriness in bone owing to the 

faster encoding. The encoding speed in ZTE imaging is inherently limited due to selective 

excitation effects related to minimum RF pulse width limitations, where the readout gradient 

amplitude must be kept low to avoid unwanted slice selectivity artifacts (45). Utilization of 

gradients with low amplitude requires a longer readout (e.g., readout duration=1.36 ms to 

achieve 2 mm3 spatial resolution in (18)), which can result in chemical shift artifacts and 

blurriness within short T2* tissues (e.g., bone) (20). dRHE-MRAC operates at the maximum 

slewrate and readout gradient to minimize the readout duration (readout duration=0.56ms to 

achieve 1mm3 spatial resolution), where encoding is more than 4 times shorter than ZTE, 

which improves image quality for bone (which has an expected T2* of 300–400 

microseconds (46)).

dRHE-MRAC is based on reproducible image processing methods such as histogram-based 

thresholding, morphological processing, and edge detection. Therefore, processing time is 

very short compared with other methods such as atlas-based approaches where high 

computational complexity is imposed by registering template to image. In dRHE-MRAC, 

the processing time to generate a pseudo CT image was approximately 5 minutes using a 

MATLAB script, where the most computationally complex processes were bias correction 

(<100sec) and post processing (<90sec), which are both highly parallelizable tasks. 

However, various algorithm parameters required manual tuning such as thresholds for air/

bone detection and Canny edge detection. In future work, we expect to incorporate a deep 

learning based segmentation framework to dRHE-MRAC to realize more generalizable and 

reliable postprocessing workflow (47,48).

CONCLUSION

In this study, we have proposed a rapid dual echo RHE-based MRAC technique, dRHE-

MRAC, that benefits from dual echo acquisition and hybrid encoding to acquire UTE and 

out-of-phase images within a single scan (35 sec). The utilization of SPI encoding along 
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with slab selection improved image quality, while still allowing fast image acquisition. 

Moreover, slightly oversampled SPI encoding enabled acquisition of multiple UTE images 

which was used to improve air and bone detection. Compared to existing MRAC 

approaches, dRHE-MRAC enabled the generation pseudo CT images with improved air, 

bone, and soft tissue detection with significantly reduced relative error in reconstructed PET 

images.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dual echo RHE imaging using a fly-back echo to acquire a UTE echo and an out-of-phase 

image at approximately TE=1.1ms. By slightly oversampling the SPI region, multiple UTE 

images are obtained without aliasing artifact. (a) Pulse sequence diagram, (b) k-space 

trajectory, (c) oversampled SPI to obtain multiple UTE images, and (d) 2D examples of 

hybrid k-space trajectory and images.
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Figure 2. 
Bias correction and threshold setup. The air distribution is fitted with a Gaussian model, and 

the soft tissue distribution is empirically found based on the symmetry of a soft tissue (gray 

matter) peak. The bone distribution is found by subtracting the estimated air and soft tissue 

distribution from the total histogram. (a) Histogram before and after bias correction, (b) 

estimation of tissue distribution, and (c) threshold setup.
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Figure 3. 
Phantom experiment. (a) Experimental setup, (b) UTE and out-of-phase images with 

different slab selection, and (c) 1D profiles in out-of-phase images reconstructed with 

different sizes of SPI regions. Three different slab sizes were tested (S1=460mm, 

S2=346mm, S3=269mm) as in (a), where the smallest slab size (S3) showed the best image 

quality with minimal aliasing/streaking artifact in the S-I direction as shown in (b). (c) 

shows efficacy of SPI in reducing ringing artifacts in the out-of-phase echo image as shown 

in 1D profiles.
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Figure 4. 
Air and bone detection. Utilization of multiple UTE echoes (requiring only 2.5 seconds of 

additional scan time) improves the estimation of air and bone. (a) 14 UTE images, (b) air 

and bone detected with one UTE image or 14 UTE images, (c) refinement of the bone map 

using edge information.
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Figure 5. 
Input images to dRHE-MRAC and resulting pseudo CT images. Relative to MRAC-1 and 

MRAC-2, dRHE-MRAC shows improved pseudo CT estimation. Three 2D slices of (a) a 

UTE image without bias correction, (b) a UTE image with bias correction, (c) an out-of-

phase image, (d) a water image, (e) a fat image, (f) a segmented air image, (g) a segmented 

bone image, (h) a dRHE-MRAC pseudo CT image, (i) a MRAC-1 pseudo CT image, (j) a 

MRAC-2 pseudo CT image, and (k) a CTAC image used as ground truth.
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Figure 6. 
PET reconstruction quality where dRHE-MRAC shows accurate PET reconstruction with 

percent error less than 1% in most brain areas. Reconstructed PET images and relative PET 

error maps with (a) MRAC-1, (b) MRAC-2, (c) dRHE-MRAC, and (d) CTAC.
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Table 1

Image error (mean ± standard deviation) relative to CTAC for PET images reconstructed utilizing dRHE-

MRAC, MRAC-1, and MRAC-2 in various brain regions of ten subjects.

Brain Regions MRAC-1
error [%]

MRAC-2
error [%]

dRHE-
MRAC

error [%]

Frontal Lobe Left −9.1 ± 3.8 −0.1 ± 5.2 −1.2 ± 1.3

Frontal Lobe Right −10.7 ± 4.0 2.0 ± 6.2 −1.4 ± 1.4

Temporal Lobe Left −2.3 ± 4.1 −5.6 ± 2.6 0.6 ± 1.2

Temporal Lobe Right −5.7 ± 4.6 −4.2 ± 3.3 0.3 ± 1.3

Parietal Lobe Left −9.1 ± 5.4 2.2 ± 4.5 −0.5 ± 1.3

Parietal Lobe Right −9.8 ± 5.9 3.6 ± 5.1 −0.5 ± 1.5

Occipital Lobe Left −10.1 ± 1.8 −2.7 ± 3.5 −1.0 ± 1.0

Occipital Lobe Right −12.3 ± 2.0 −1.0 ± 4.2 −1.1 ± 1.0

Cerebellum Left −4.5 ± 6.0 −7.0 ± 2.1 −1.9 ± 1.9

Cerebellum Right −4.4 ± 6.3 −6.6 ± 1.8 −1.6 ± 2.1

Brainstem −1.1 ± 5.4 −4.6 ± 2.8 0.5 ± 1.8

Caudate Nucleus Left −2.7 ± 2.3 −1.2 ± 2.7 0.2 ± 1.0

Caudate Nucleus Right −2.7 ± 2.0 −0.9 ± 3.0 0.1 ± 1.1

Putamen Left −2.3 ± 3.0 −2.0 ± 2.6 0.2 ± 1.0

Putamen Right −1.8 ± 2.9 −1.7 ± 2.7 0.3 ± 0.9

Thalamus Left −2.3 ± 2.6 −1.3 ± 2.7 1.0 ± 1.1

Thalamus Right −2.1 ± 2.3 −1.1 ± 2.9 0.9 ± 1.0

Subthalamic Nucleus Left −2.2 ± 3.5 −1.8 ± 2.8 1.1 ± 1.2

Subthalamic Nucleus Right −1.6 ± 3.3 −2.3 ± 2.3 0.9 ± 0.9

Globus Pallidus Left −2.9 ± 3.6 −2.0 ± 2.8 0.3 ± 1.1

Globus Pallidus Right −2.2 ± 3.1 −2.2 ± 2.5 0.2 ± 1.0

Cingulate Region Left −4.5 ± 1.6 −0.3 ± 3.7 −0.6 ± 1.2

Cingulate Region Right −4.5 ± 1.4 −0.1 ± 3.8 −0.7 ± 1.2

All −4.8 ± 3.5 −1.8 ± 2.6 −0.2 ± 1.5
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