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Abstract

Purpose—The Cramér-Rao lower bound (CRLB) is widely used in the design of magnetic 

resonance experiments for parameter estimation. Previous work has considered only Gaussian or 

Rician noise distributions in this calculation. However, the noise distribution for multiple-coil 

acquisitions, such as in parallel imaging, obeys the noncentral χ-distribution under many 

circumstances. The purpose of this paper is to present the CRLB calculation for parameter 

estimation from multiple-coil acquisitions.

Theory and Methods—We perform explicit calculations of Fisher matrix elements and the 

associated CRLB for noise distributions following the noncentral χ-distribution. The special case 

of diffusion kurtosis is examined as an important example. For comparison with analytic results, 

Monte Carlo (MC) simulations were conducted to evaluate experimental minimum standard 

deviations (SDs) in the estimation of diffusion kurtosis model parameters. Results were obtained 

for a range of signal-to-noise ratios (SNRs), and for both the conventional case of Gaussian noise 

distribution and noncentral χ-distribution with different numbers of coils, m.

Results—At low-to-moderate SNR, the noncentral χ-distribution deviates substantially from the 

Gaussian distribution. Our results indicate that this departure is more pronounced for larger values 

of m. As expected, the minimum SDs (i.e. CRLB) in derived diffusion kurtosis model parameters 

assuming a noncentral χ-distribution provided a closer match to the MC simulations as compared 

to the Gaussian results.

Conclusion—Estimates of minimum variance for parameter estimation and experimental design 

provided by the CRLB must account for the noncentral χ-distribution of noise in multi-coil 

acquisitions, especially in the low-to-moderate SNR regime.
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INTRODUCTION

Parameter estimation plays a fundamental role in quantitative magnetic resonance imaging 

(MRI) for the characterization of biological tissues. Accurate and precise determination of 

MR parameters, such as relaxation times and diffusion, from noisy datasets requires carful 

designs of the MR experiments. The Cramér-Rao lower bound (CRLB) is a standard tool 

that is widely used in the design of MR experiments for parameter estimation (1–16). CRLB 

defines the best achievable precision of any unbiased estimator for a deterministic parameter, 

given a data model (17, 18). Calculation of the CRLB requires inversion of the Fisher matrix 

and an estimate of the standard deviation (SD) of the noise, often considered as Gaussian 

distributed (1–5, 7–9, 12–16, 19).

While the noise in spectroscopic acquisitions can accurately be modeled as Gaussian, the 

noise distribution in magnitude MR images obtained with single coil acquisition is Rician; 

this approaches the Gaussian distribution only for high signal-to-noise ratio (SNR) (11, 20–

22). Therefore, incorporation of Rician noise into CRLB analysis is especially important in 

settings of limited SNR, as is often the case in clinical imaging (11, 23–26).

Karlsen et al. (27) provided an analytic derivation of Fisher matrix elements for the case of 

Rician distributed noise, as appropriate for single coil acquisition. However, parallel imaging 

using multiple coils has become a standard technique in clinical MR research to enhance 

SNR or acquisition speed (28–30); in this setting, the noise in the reconstructed magnitude 

image fellows a generalized Rician distribution, known also as the noncentral χ-distribution 

(31–33).

Building on Karlsen’s work (27), we provide here a general analytic derivation of the Fisher 

matrix elements for the case of noncentral χ-distribution. Numerical analyses are then 

presented that demonstrate the importance of considering the noncentral χ-distribution in 

the CRLB calculation in multi-coil acquisitions, especially at low-to-moderate SNR regime. 

Finally, a diffusion kurtosis model is analyzed within this framework.

THEORY

Noncentral χ-distribution

If the variance of the noise at each coil in a parallel imaging configuration is the same, and 

not correlated between the coils, the probability density function (PDF) for signal intensity 

within a given voxel of the resulting magnitude image, reconstructed using for example the 

root of the sum of squares (SoS) method (32), follows a noncentral χ-distribution given by 

(31, 33, 34):

[1]
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where A is the magnitude of the underlying noise-free signal, M is the magnitude of the 

observed signal, m is the number of coils, σ2 is the noise variance, and Im is the modified 

mth order Bessel function of the first kind.

Cramér-Rao lower bound (CRLB) for the noncentral χ-distribution

Calculation of the CRLB requires inversion of the Fisher matrix defined as follows. For N 
measured data values fit to a parameterized signal model defined by a parameter vector β, 

and with the assumption of equal σ at each data point, the elements of the Fisher matrix for 

the noncentral χ-distribution are given by:

[2]

where E stands for the expectation value, and log (Lχ(M. A. σ, m)) is the log-likelihood 

function of noncentral χ-distribution:

[3]

The index n indicates, for example, different image weightings or multiple acquisitions with 

the same weightings.

Then, the CRLB for the standard deviation (SD) of an unbiased parameter estimate, βî, of 

the parameter βi is given by:

[4]

The calculation of the Fisher’s matrix elements requires the calculation of the partial 

derivatives of the log-likelihood function, as seen from Eq. 2. Writing zn = MnAn/σ2, and 

with the following equality (27, 35):

[5]

the first partial derivative, , in Eq. 2 is given by
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[6]

Hence, Eq. 2 can be rewritten as follow

[7]

Using the following equality (36):

[8]

the expectation value of the first term in Eq. 7 is given by:

[9]

Hence, Eq. 7 becomes:
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[10]

In addition (35),

[11]

so that Eq. 10 is now given by:

[12]

Using  for the noncentral χ-distribution and again using Eq. 8, we 

find

[13]

Finally, Eq. 12 is reduced to

[14]

where the factor R is given by
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[15]

The integral in Eq. 15 cannot be solved analytically, so that Rn must be calculated by 

numerical integration for different values of SNR (i.e. An/σ).

METHODS

PDF and correction factor as a function of SNR and number of coils

The PDF of voxel intensity, given by Eq. 1, was calculated for different numbers of coils, m 
= 1, 2, 4, 8, 16, 32, 64 and 128, as a function of M/σ and for different values of A = 1, 40 

and 80, corresponding to low, moderate, and high SNR, respectively. Results were also 

obtained using a Gaussian PDF for comparison. For all cases, σ was fixed to 1. In addition, 

the correction factor given by Eq. 15 was calculated as a function of SNR = A0/σ over the 

above range of m.

CRLB of diffusion kurtosis signal model

We consider a model, A(β.b), describing diffusion kurtosis as a function of b-value and 

parameter set β = (A0,Dapp,Kapp)

[16]

where Dapp and Kapp are the apparent diffusion coefficient and kurtosis along a certain 

diffusion direction, and  is the non-diffusion weighted signal obtained at b = 0 

s/mm2, with ρ proportional to proton density and a function of relaxation times and machine 

factors, and where  is the signal amplification factor due to multi-coil acquisition and 

SoS reconstruction.

The first analysis consisted of evaluating the minimum SD (i.e. CRLB) in the estimation of 

Dapp and Kapp as a function of SNR = A0/σ. Analysis was performed for SNR varying from 

10 to 60 in steps of 1, and for different numbers of coils, m, as above. Results for the special 

case of a Gaussian distribution, that is, Rn = 1 (Eqs. 14–15), were also calculated. Four b-

values of 0, 1000, 2000, and 3000 s/mm2 were considered.

The second analysis consisted of evaluating the minimum SD (i.e. CRLB) in the estimation 

of Dapp and Kapp as a function of the number of b-values. Analysis was performed for b-

values varying linearly from 500 to 3000 s/mm2, with b = 0 s/mm2 systematically included, 
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and for different numbers of coils, m. Results for the special case of the Gaussian 

distribution were also obtained. Here, the SNR was fixed to 20.

For both analyses, input values for Dapp and Kapp were fixed to 1 μm2/ms and 1, 

respectively, corresponding to values obtained for human brain (37). The partial derivatives 

required for the CRLB calculation (Eq. 14) are given by:

[17]

Monte Carlo simulation

Monte Carlo (MC) simulations were used to assess the SDs in the estimation of Dapp and 

Kapp as a function of SNR and the number of b-values. Input parameters were similar to 

those used above, with analysis restricted to m = 32. For each SNR or number of b-values, 

10000 noisy signals were created and reconstructed using the SoS method and fit to the 

expectation value of the noncentral χ-distribution given by (38–40):

[18]

where 1F1 is a confluent hypergeometric function. The SDs of Dapp and Kapp, were 

calculated over the 10000 noise realizations after removal of outliers using Tukey’s method 

(20, 41), and compared to the minimal SDs obtained using the CRLB analysis outlined 

above.

RESULTS

Figure 1a shows the noncentral χ- (Eq. 1) and Gaussian- distributions as a function of M/σ 
and number of coils, m. Results are shown for values of A = 1, 30 and 80, corresponding to 

low, moderate, and high SNR, respectively. While at high SNR the noncentral χ-distribution 

approaches the Gaussian distribution, at low-to-moderate SNR the noncentral χ-distribution 

deviates substantially from the Gaussian distribution. Our results indicate that this departure 

from the Gaussian case is more pronounced for larger values of m. Figure 1b shows the 

correction factor, R, of the Fisher matrix, given by Eq. 15, as a function of SNR, for different 

numbers of coils, m. For A ≫ σ, that is, high SNR, the value of R approaches 1, in which 

case the Fisher matrix for the noncentral χ-distribution becomes identical to that of the 

Gaussian distribution for any m. At low-to-moderate SNR, we see that the deviation from R 
= 1 increases as the number of coils increases. It is clear from these results that at low-to-
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moderate SNR, the Fisher matrix for the noncentral χ-distribution cannot be approximated 

by the Gaussian distribution in the setting of parallel imaging, for which m ≥ 2.

Figure 2 shows the CRLB for the estimation of Kapp and Dapp as a function of SNR in the 

diffusion kurtosis model. Results are shown for different numbers of coils, m, as well as for 

the Gaussian distribution. For all m, the SDs in the estimation of Kapp and Dapp decrease 

roughly exponentially with increasing SNR, so that improvements in precision are only 

marginal for SNR > 30. Furthermore, for a given SNR, the SDs increase with increasing m, 

indicating that the Gaussian approximation in the CRLB calculation is overly optimistic, 

especially at low-to-moderate SNR (i.e. SNR ≤ 30). At high SNRs, SDs in derived 

parameter estimates from both Gaussian- and noncentral χ-distributions converge, as 

expected, to the same values.

Figure 3 shows the CRLB for the estimation of of Kapp and Dapp as a function of the number 

of b-values. Results are again shown for different numbers of coils, m, as well as for a 

Gaussian noise distribution. All results were obtained for SNR = 20. For all m, the SDs in 

the estimation of Kapp and Dapp decrease roughly exponentially with increasing number of 

b-values. Again, the SDs increase with increasing m, indicating that the Gaussian 

approximation in the CRLB calculation is overly optimistic, particularly for m > 2.

Figures 4 and 5 show the calculated SDs in the estimation of Kapp and Dapp obtained from 

the MC simulations, outlined above, as a function of SNR and the number of b-values, 

respectively. Further, the CRLB results of the SDs in the estimation of Kapp and Dapp for 

both the noncentral χ- and Gaussian-distributions are displayed. The results show that 

minimal theoretical SDs as defined by the CRLB can be achieved at moderate-to-high SNR 

or for relatively large number of b-values. Most importantly, the CRLB assuming a 

noncentral χ-distribution for noise provided a closer match to the MC simulations as 

compared to the Gaussian CRLB results, as expected.

DISCUSSION

We have presented a general expression for the Fisher matrix for the noncentral χ-

distribution and from this, defined the associated CRLB. This expression incorporates a 

correction factor that accounts for the departure from the Gaussian distribution for noise in 

composite MR images obtained with multi-coil acquisitions (Eqs. 14–15), such as in parallel 

imaging. Our results show that the Gaussian approximation for CRLB calculations, as often 

adopted in the literature (1–6, 8, 19), is not appropriate, especially at low-to-moderate SNR 

or for a large number of coils. Indeed, CRLB calculations of derived parameter estimates for 

the diffusion kurtosis signal model indicated that the Gaussian approximation was, as 

expected, appropriate only at high SNR (Figs. 1–3); in this limit, the noncentral χ-

distribution converges to a Gaussian distribution (Fig. 1a). MC simulations were in good 

agreement and support these conclusions (Figs. 4–5).

We note that the CRLB results showed lower SD values as compared to those obtained from 

the MC simulations, especially at low SNR (Figs. 4–5). This is due to the fact that the CRLB 

provides a lower bound, while MC simulates an actual experiment. Further, the kurtosis 
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parameter, Kapp, is less precisely estimated than is the apparent diffusion coefficient, Dapp. 

An eigenvalue analysis of the Hessian matrix for the kurtosis signal model shows that the 

structure of the kurtosis model itself dictates that Kapp will be less reliably defined than 

Dapp, that is, a wider range of Kapp values will provide a good fit to the data as compared to 

Dapp, which is more tightly controlled (23, 42–44).

While the factor describing the departure of the Fisher matrix from the Gaussian case, as 

given by the Eq. 15, is straightforward to implement, we have provided a lookup table 

(Supporting Table S1), with calculated values as a function of SNR and for different 

numbers of coils, m. Our analysis (data not shown) showed that spline interpolation can be 

used, based on those values, to accurately recover similar results to those obtained using 

direct numerical integration in the Eq. 15. This allows rapid computation and, therefore, may 

help in experimental designs requiring extensive CRLB calculations, such as selection of an 

optimal set of b-values as a function of underlying values of Kapp and Dapp for the kurtosis 

model studied in this work.

It must be noted that the assumption of noncentral χ-distributed noise in the composite 

magnitude image is valid only under certain circumstances, including equal variance of 

noise for all coils, and absence of noise correlation between them (31, 33). It is well known 

that in phased array systems noise correlations do exist (31, 33, 45); however, other studies 

showed that this effect is minimal so that the noncentral χ-distribution remains a good 

approximation (46). Even if correlations do exist between different coils, the noncentral χ-

distribution can still be assumed, using pre-calculated effective values for the number of 

coils and noise SD, as described in (31).

In conclusion, we have provided a general expression for the Fisher matrix, as used in the 

CRLB calculation, for imaging data described by noncentral χ-distributions, and 

demonstrated that the Gaussian assumption in the CRLB calculations may not hold in the 

setting of low-to-moderate SNR regime.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Figure 1a. The noncentral χ- (Eq. 1) and Gaussian- probability density functions (PDF) as a 

function of M/σ for different numbers of coils, m. Results are shown for three different 

values of A of 1, 30 and 80, corresponding to low, moderate, and high SNR, respectively. 

Figure 1b: Correction factor, R, of the Fisher matrix given by Eq. 15, calculated as a 

function of SNR, and for different numbers of coils (i.e. m).
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Figure 2. 
The CRLB for the estimation of Kapp and Dapp as a function of SNR in a diffusion kurtosis 

model. Results are obtained for different numbers of coils, m, and for the case of a Gaussian 

distribution. Analysis was performed assuming four b-values of 0, 1000, 2000, and 3000 

s/mm2. The input parameter values for Dapp and Kapp were fixed to 1 μm2/ms and 1, 

respectively.
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Figure 3. 
The CRLB for the estimation of Kapp and Dapp as a function of the number of b-value in a 

diffusion kurtosis model. Results are obtained for different numbers of coils, m, and for the 

case of Gaussian distribution. Analysis was performed for SNR = 20. The input parameter 

values for Dapp and Kapp were fixed to 1 μm2/ms and 1, respectively.
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Figure 4. 
Simulation results showing dispersion, that is, the standard deviation (SD) in the estimation 

of Kapp and Dapp as a function of SNR. The CRLB results for both the noncentral χ- and 

Gaussian-distributions are presented. Results are obtained for m = 32. The input parameter 

values for Dapp and Kapp were fixed to 1 μm2/ms and 1, respectively.
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Figure 5. 
Simulation results showing Monte Carlo calculations of dispersion, that is, the standard 

deviation (SD), in the estimation of Kapp and Dapp as a function of the number of b-values. 

The CRLB for both the noncentral χ- and Gaussian-distributions are presented for 

comparison. Results are shown for m = 32. The input parameter values for Dapp and Kapp 

were fixed to 1 μm2/ms and 1, respectively.
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