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Abstract

Purpose—Estimation of brain metabolite concentrations by MR spectroscopic imaging (MRSI) 

is complicated by partial volume contributions from different tissues. This study evaluates a 

method for increasing tissue specificity that incorporates prior knowledge of tissue distributions.

Methods—A spectral decomposition technique was evaluated for separation of spectra from 

white-matter and gray-matter and for measurements in small brain regions using whole-brain 

MRSI. Simulation and in vivo studies compare results of metabolite quantifications obtained using 

the spectral decomposition technique to those obtained by spectral fitting of individual voxels, 

using mean values and linear regression against tissue fractions, and spectral fitting of regionally 

integrated spectra.

Results—Simulation studies showed that for gray-matter and the putamen, the spectral 

decomposition method offers <2% and 3.5% error, respectively, in metabolite estimates. These 

errors are considerably reduced in comparison to methods that do not account for partial volume 

effects or use regressions against tissue fractions. In an analysis of data from 197 studies, 

significant differences in mean metabolite values, and changes with age were found. Spectral 

decomposition resulted in significantly better linewidth, SNR and spectral fitting quality as 

compared to individual spectral analysis. Moreover, significant partial volume effects were seen on 

correlations of neurometabolite estimates with age.

Conclusion—The spectral decomposition analysis approach is of considerable value in studies 

of pathologies that may preferentially affect white or gray-matter, and smaller brain regions 

significantly affected by partial volume effects.
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INTRODUCTION

Proton Magnetic Resonance Spectroscopic Imaging (MRSI) enables non-invasive 

measurement of tissue metabolite distributions, which is of considerable value for studying 

neurological disease or injury (1,2). Clinical studies commonly rely on measurements of the 

relative metabolite concentrations and comparisons with normative values at the 

corresponding brain region or tissue. For this purpose, a previous study estimated regional 

distributions of brain metabolites in normal subjects at 3T using a data analysis approach 

that used spatial averaging of multiple MRSI voxels to obtain high-quality spectra from 

multiple atlas-registered anatomic regions of interest (ROIs) (3). However, regional 

estimation of brain metabolites is complicated by partial volume effects due to variations in 

tissue composition within an ROI and the relatively broad spatial response function of the 

MRSI acquisition. These partial volume effects can be particularly notable for measurements 

from gray-matter or smaller brain regions.

Tissue-specific metabolite concentrations for gray-matter (GM) and white-matter (WM) can 

be determined by regressing MRS measurements at multiple locations against MRI-derived 

tissue fractions for each location. Hetherington et al. demonstrated the application of this 

method to MRSI data to estimate metabolite concentrations in pure GM and WM by 

regressing against tissue fractions derived from segmentation of T1-weighted MRI (4). An 

alternative approach described by Tal et al. is to describe the signal at each voxel as the sum 

of two tissue compartments, leading to an over-determined system of equations that can be 

solved with least-squares optimization (5). Similarly, Spectral localization by imaging 

(SLIM) has been shown to be valuable method towards estimation of metabolite 

concentration from homogenous ROIs while accounting for partial volume effects (6,7). 

SLIM reconstructs compartmental spectra by solving an over-estimated system using the 

tissue information from high resolution MR images. Partial volume effects in MRSI can also 

be accounted for by modeling the spectrum from a voxel as a linear mixture of constituent 

spectra from the individual tissue regions. The linear mixture model can be represented as a 

superposition of the constituent spectra with the partial volume fraction used as weighting 

factors. Mandl et al. presented a linear model to estimate the metabolite concentration in the 

cingulum bundle using tissue fractions derived from segmentation of gray and white-matter 

from T1-weighted images, and the cingulum from diffusion tensor imaging (8). Statistical 

analysis methods, such as principal component analysis (PCA) (9) and independent 

component analysis (ICA) (10), perform the spectral factorization by exploiting statistical 

properties of covariance and independence. Nonnegative matrix factorization method has 

also been proposed for blind recovery of constituent spectra (11). This iterative method 

assumes that both the partial volume fraction and the constituent spectra can only take on 

non-negative values, and estimates simultaneously the partial volume fractions of the 

underlying tissue and the set of constituent spectra that result in the least error in the model.

The aims of this study are to evaluate the accuracy of a spectral decomposition technique 

that uses anatomical MR based tissue fractions as weighting factors. The technique is 

evaluated for separation of spectra corresponding to 100% WM and GM regions using a 

whole-brain MRSI measurement, and for analysis of a specific brain region that is subject to 

partial volume contributions from surrounding tissue. Results of metabolite quantifications 

Goryawala et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



obtained using the spectral decomposition technique are compared to those obtained by 

spectral fitting of individual voxels, using mean values and linear regression against tissue 

fractions, and spectral fitting of regionally integrated spectra (3). These methods are 

compared using simulation studies and volumetric MRSI data obtained from healthy 

subjects. Finally, we demonstrate the utility of the spectral decomposition technique towards 

estimation of metabolite concentrations in small anatomical regions such as thalamus and 

putamen, which are of value in various neurological conditions (12,13).

METHODS

Simulated MRSI Data

Simulated spectroscopic data were created to determine the accuracy of the spectral 

decomposition technique in estimating metabolite concentrations in volumes containing a 

mixture of GM and WM and for a region simulating the putamen. Evaluations were carried 

out for varying conditions of noise and spatial smoothing.

MRSI data sets were simulated using methods available in the MIDAS package (14,15), 

based on the BrainWeb structural images (16). The BrainWeb data consisted of a 1 mm 

isotropic T1-weighted image with segmentations of WM and GM, cerebrospinal fluid 

(CSF), skull, and a lipid layer. Additionally, maps for putamen were created by manually 

segmenting this region in the T1 image. The spectrum for each segmentation region was 

defined as a combination of single resonances for each simulated metabolite, using a 

Gaussian lineshape for all resonances with a linewidth of 5.0 Hz and for a field strength of 

1.5 T.

Different spectral signatures were simulated in the WM, GM, CSF, and putamen to enable 

the accuracy of regional analyses to be determined. For WM and GM, the spectra were 

simulated with N-acetylaspartate (NAA) at 2.0 ppm, Creatine (Cr) at 3.0 ppm, Choline 

(Cho) at 3.2 ppm, and water at 4.7 ppm. Spectral amplitudes for the simulated spectra in the 

different tissue regions relative to H2O are given in Table 1. To provide a unique spectral 

pattern for the putamen, the spectra were simulated without Cr at 3.0 ppm but with an 

additional simulated peak at 2.5 ppm, referred to as pseudocreatine (psCr), since the 

simulated properties of this peak were similar to that of Cr in GM.

Each data set was simulated with a matrix size of 64 x 64 with 32 slices resulting in a 

simulated voxel size of 4 x 4 mm in-plane and a slice thickness of 6 mm. The resultant field 

of view was 256 x 256 x 192 mm3. Spectra were simulated with 256 spectral points and a 

sweep width of 1000 Hz. Random Gaussian spectral noise was simulated in time-domain 

and spatial smoothing was applied as a post-processing option. Five levels of spectral noise 

(0 – 4) were simulated that cover a range of signal-to-noise ratios (SNR) typical for human 

MRSI. To examine the effect of changes in the spatial response function a range of spatial 

smoothing was applied in k-space, from none to a value of σ = 2.0 using a Gaussian filter 

function expressed as exp(−σ*(2k/K)2), for −K/2 ≤ k ≤ K/2, where K is the number of k-

space points. The combined effect of different noise and spatial smoothing levels represents 

a mean WM SNR range of 5 dB (noise level 4, no spatial smoothing) to 41 dB (noise level 0, 

spatial smoothing of σ = 2.0). SNR is estimated as the ratio of the height of the NAA peak to 
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the standard deviation of the noise signal estimated between 0 to 1.2 ppm (3). SNR is 

expressed in decibels (dB) as 10*log10 (SNR). In Figure 1 are shown the simulated ROIs 

and the spectral signatures of each region for different noise and smoothing levels. T1 

images and the segmented regions of WM, GM and putamen and the corresponding spectra 

are shown in Figure 1a and 1b. Partial volume effects are illustrated in Figures 1c and 1d for 

single voxel spectra from the putamen region, which is indicated by the reduced psCr and 

presence of Cr.

Human MRSI Data

To examine the effect of the different methods on the evaluation of regional GM and WM 

metabolite concentrations and changes of these values with age, data were obtained from an 

existing database (17) for 197 normal subjects, 111 female and 86 male, with a mean age of 

37.2 ± 14.2 years (median 35 years). Subjects completed a self-reporting questionnaire to 

indicate the absence of neurological or psychological disease or injury and all MRIs were 

confirmed to be without any structural abnormalities via visual inspection. Informed consent 

was acquired from each subject, and all studies were approved by the institutional review 

boards. Subjects underwent an MR study at 3T (Siemens Medical Solutions, Erlangen, 

Germany) that included a T1-weighted MRI and volumetric MRSI.

T1-weighted imaging was carried out using a 3D Magnetization Prepared Rapid Acquisition 

Gradient Echo (MPRAGE) sequence with 1.0 mm isotropic resolution; TR/TE/

TI=2150/4.38/1100 ms; FA, 8°; NEX, 1; image matrix, 256 x 256 x 144. Whole-brain MRSI 

was acquired using echo-planar acquisition with spin-echo excitation; TR/TE = 1710/70 ms; 

non-selective lipid inversion-nulling with TI = 198 ms; a FOV of 280 x 280 x 180 mm3; k-

space matrix size of 50x50x18 points; echo train length of 1000 points; bandwidth of 2500 

Hz; and acquisition time of 26 min. The acquisition included a water reference measurement 

interleaved with the metabolite signal acquisition.

Preprocessing for in vivo MRSI data included corrections for B0 shifts (3), lipid k-space 

extrapolation (18), and linear registration between T1-weighted MR and whole-brain MRSI 

(14,19). Metabolite maps were interpolated to 64x64x32 points, for an interpolated voxel 

volume of 0.107 cc. Following spatial smoothing, the effective voxel volume was 1.55 cc.

Spectral Decomposition

A set of spectra from all voxels within an ROI can be represented as a system of linear 

equations that describe the fractional contributions from WM and GM as D ≈ WS ; where 

D(n x m) is a matrix of n voxel spectra with m points each, W(n x 2) is the fractional WM 

and GM content for each voxel, and S(2 x m) are the representative spectra for WM and GM 

each with m points. This system of linear equations can be solved for S as S = ((W)−1 WTD, 

where WT is the transpose of W.

For human studies, the tissue content in each SI voxel was estimated by downsampling the 

tissue segmentation maps obtained using FSL/FAST algorithm (20), using the spatial 

response function of the MRSI acquisition, to generate partial volume maps for WM, GM, 

and CSF. To remove the effect of CSF, which contributes no metabolite signal, the fractional 
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tissue content for WM, fWM, was then derived as fWM = pWM/(pWM + pGM), where pWM 

and pGM are the fractions of WM and GM, respectively, as obtained from FAST. Similarly, 

fGM was estimated as fGM = pGM/(pWM + pGM). Before performing spectral decomposition, 

quality criteria were applied to remove spectra with a linewidth of >12 Hz or a CSF fraction 

>20%.

To demonstrate the utility of the spectral decomposition technique for estimation of relative 

metabolite concentrations in small anatomical regions, partial volume maps of the thalamus 

and putamen were created at SI resolution. For simulation studies, partial volume maps were 

created by manual segmentation of putamen followed by downsampling to the SI resolution, 

whereas, for in vivo studies, partial volume maps were derived by inverse transforming the 

AAL atlas (21) to the subject space at MRSI resolution (22). Contribution of partial volume 

fractions was accounted for by updating the WM and GM fractional tissue contents 

respectively as fWM = pWM/(pWM + pGM + pSub) and fGM = pGM/(pWM + pGM + pSub), and 

by incorporating an additional tissue fraction fSub = pSub/(pWM + pGM + pSub) in the linear 

system. Here, fSub and pSub are the fractional tissue content and partial volumes calculated 

for the sub-cortical region under consideration (putamen or thalamus).

Comparative Analysis

The relative metabolite concentrations estimated for WM and GM by the spectral 

decomposition technique (sDec) were compared to those obtained by (i) fitting of a 

spectrum obtained by integrating all spectra within an ROI (M-Int) (3); (ii) averaging the 

results from fitting individual voxels within a ROI (vAvg); and (iii) linear regression of 

values obtained by fitting individual spectra against tissue fractions (vReg) (15). M-Int 

spectra for WM and GM regions were created by averaging voxels with >80% of WM and 

GM tissue fraction respectively. The vReg method used the metabolite estimates obtained by 

fitting of a single voxel, which is the same employed in the vAvg method, with the addition 

of linear regression-based correction for partial volume effects (4,15).

Spectral analysis was carried out using the FITT program (23), which included estimation of 

H2O, NAA, Cho, Cr and psCr for simulation data; and NAA, Cho, and Cr for the human 

data. Depending on the estimation method, spectral analysis was either carried out on 

individual voxels (vAvg and vReg) or the calculated high SNR spectra (M-Int and sDec) for 

each ROI independently. For all methods, fitted spectra with a linewidth of >12 Hz, CSF 

fraction >20%, and Cramer-Rao Lower Bounds (CRLB) > 10% for the fitting of NAA, Cho, 

or Cr were excluded from any further analysis. Additionally, for the vAvg and vReg 

methods, voxels with outlying data values were also excluded using a threshold based on the 

mean value and standard deviation of all voxels within the ROI, with values ≥3 times the 

standard deviation (SD) away from the mean being omitted from the analysis.

For simulation data, the ratios of NAA, Cho, Cr, and psCr to H2O were calculated for 

different noise values and spatial smoothing settings, and the percent absolute error in 

estimation of NAA/H2O, Cho/H2O, and Cr/H2O were calculated for GM and WM and 

NAA/H2O, Cho/H2O, and psCr/H2O were calculated for the putamen.
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For in vivo studies, the metabolite maps were spatially registered to a reference MRI, 

defined in MNI space, and a lobar level atlas (14) was used to estimate lobar mean values of 

NAA/Cr and Cho/Cr for WM and GM. A partial fraction of 50% was used to assign a voxel 

to a particular lobe of the brain in the reference atlas. Two-tailed paired t-tests were carried 

out to identify if estimated metabolite ratios obtained by the M-Int, vAvg, and vReg methods 

were significantly different from those estimated using the sDec method. A False Discovery 

Rate (FDR) corrected p-value less than 0.05 was considered significant for the differences. 

Additionally, mean lobar SNR was also reported. For spectral decomposition and M-Int 

methods, the SNR of the resultant spectrum is reported whereas for the vAvg (and 

consequently vReg) the mean SNR of the constituent spectra of the ROI is reported. For 

assessment of spectral quality, whole-brain WM and GM linewidth and CRLBs of spectral 

fitting of NAA, Cr, and Cho are reported.

General linear models were used to evaluate correlations of lobar NAA/Cr and Cho/Cr with 

age, controlling for the effect of gender. In the case that gender effects were found 

insignificant, associations of metabolites with age were assessed using linear regression 

analysis. An FDR corrected p-value less than 0.05 was considered significant for the 

correlations.

RESULTS

Simulation Results

In Figure 2 are shown the simulated spectra and the resultant spectrum using the SDec 

method for parietal WM and GM lobar regions under no noise and no spatial smoothing 

conditions. The simulated and the sDec derived spectra are qualitatively identical in the 

absence of noise and spatial smoothing with small errors in the estimation of NAA/H2O 

(0.32%), Cho/H2O (0.24%), and Cr/H2O (0.23%).

In Figure 3a and 3b are shown the results for the quantification of NAA/H2O in GM and 

WM, and in Figure 3c and 3d are shown NAA/H2O, and psCr/H2O in the putamen, 

respectively. The graphs show the percent absolute errors in the estimation of metabolite 

ratios for zero noise conditions with different spatial smoothing to examine the performance 

of the different methods with increasing partial volume effects. Results demonstrate that for 

WM (Figure 3a), a considerably homogeneous region, M-Int, vAvg, and vReg show on 

average 2.12 ± 0.67%, 2.75 ± 0.54% and 1.04 ± 0.34% across different smoothing levels for 

the NAA/H2O ratio with the sDec method performing the best showing 0.60 ± 0.36% error. 

For GM regions (Figure 3b), there is a clear difference between the performance of methods 

that account for partial fractions, sDec and vReg, which show an error <2%, and those that 

do not, M-Int and vAvg, which show an average error of approximately 6% for NAA/H2O 

and 8% for Cho/H2O and Cr/H2O (results not shown).

The results for metabolite ratio estimation in the putamen show that the sDec method 

outperforms the other approaches, with an error of <1% for the estimation of NAA/H2O 

(Figure 3c). The M-Int method also performed well, with errors in the range of 2–3%. 

However, methods that rely on spectral fitting of individual spectra (vAvg and vReg) show a 

worse performance with increasing errors with higher smoothing. Results for the estimation 
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of psCr/H2O in the putamen (Figure 3d) show the considerable advantage of spectral 

decomposition. In the worst case, the sDec method showed an error of 3.5% while vReg, M-

Int, and vAvg showed errors of 7.4%, 18.4%, and 54.1%, respectively, in psCr/H2O 

estimation for a smoothing of σ = 2.0.

Quantitative analysis for estimation of psCr/H2O in the putamen under various noise and 

smoothing conditions is shown in Figure 4. The estimated SNR for WM NAA is also shown, 

as a function of noise and smoothing. The maps in Figure 4 show that the percent absolute 

error in estimated psCr/H2O increases with larger noise values. As would be anticipated for 

a small ROI and measurements from noisy single-voxel spectra, the volume averaging 

method shows a considerable error, reaching a maximum value of 54%. By spectral 

averaging, the fitting errors can be reduced and the maximum error for the M-Int method is 

reduced to 25%. The maximum error values for the sDec and vReg methods were much 

smaller at 13% and 17%, respectively, and showed a flatter error map than the others. The 

sDec showed slightly improved performance at larger spatial smoothing (σ > 1.0).

In simulation studies, the average number of voxels analyzed across different noise and 

spatial smoothing combinations in WM ROIs were 701 ± 147 (frontal lobe), 169 ± 42 

(temporal lobe), 353 ± 67 (parietal lobe), 122 ± 41 (occipital lobe), and 121 ± 54 

(cerebellum). GM ROIs had 190 ± 179 (frontal lobe), 164 ± 122 (temporal lobe), 81 ± 83 

(parietal lobe), 53 ± 55 (occipital lobe), and 912 ± 104 (cerebellum) voxels in lobar regions. 

On the other hand, putamen ROIs had 46 ± 17 voxels.

Finally, simulation results showed that both M-Int and sDec methods, due to their inherent 

spectral averaging property, showed an average improvement of 319% and 270% in lobar 

WM SNR, respectively, relative to single voxel spectra.

In Vivo Results

In Table 2 are shown the results for mean lobar measures for Cho/Cr in WM and GM using 

the four estimation methods. Along with lobar ratios, absolute percent differences are also 

reported. These percent differences report the deviation that the M-Int, vAvg, and vReg 

methods show from the developed sDec method for estimation of Cho/Cr in WM and GM. 

In WM, there were no significant differences for the M-Int and sDec results, whereas the 

vAvg and vReg methods showed significant differences in multiple regions across the brain. 

Whole-brain Cho/Cr maps showed an average difference of 1.9%, 4.3%, and 4.0% for M-

Int, vAvg, and vReg methods, respectively, in the WM. GM analysis indicated a greater 

number of brain regions with significant differences between the results from the different 

methods compared to the WM results. On comparing other methods to sDec, vReg methods 

showed the best agreement, though still reported differences of up to 18% for Cho/Cr. 

Considerably larger differences were seen for Cho/Cr with M-Int and vAvg methods. For 

NAA/Cr, the analysis showed a mean difference of 1.0%, 2.5%, and 1.72% for NAA/Cr in 

WM for M-Int, vAvg and vReg methods, respectively (Supporting Table S1).

In vivo results show that for WM regions M-Int and sDec (average difference of 1.9%) show 

slightly better agreement in quantification of Cho/Cr than vReg and sDec (average 

difference of 4.0%), whereas vReg and sDec methods show better agreement in GM regions 
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(average difference of 10.5% for vReg vs. 34.6% for M-Int). At noise levels comparable to 

in vivo data (Noise level = 3) similar trend was seen in simulated data. In Figure 5 are shown 

the percent absolute errors in measurement of Cho/H2O in simulated data at noise level 3 

(9.3±4.0 dB). Results show that in WM lobar regions M-Int (3.75%) shows similar (p = 

0.729) performance as vReg (3.92%) across different spatial smoothing levels, but in GM 

regions vReg shows significantly improved (p< 0.01) performance as compared to the M-Int 

method. Moreover, the sDec method shows significantly improved (p<0.01) performance 

than both M-Int and vReg methods in GM regions.

In Figure 6 are shown typical WM and GM spectra from the parietal lobe for a) single 

voxels, as used in the vAvg and vReg methods; b) obtained using the M-Int method; and c) 

derived using the sDec method. The sDec and M-Int methods show an average improvement 

of 175% and 190% in lobar WM SNR and a 145% and 139% improvement in lobar GM 

SNR, respectively, as compared to the single voxel spectra that are used for the spectral 

fitting with the vAvg and vReg methods. However, sDec and M-Int methods do not show 

significant differences (p>0.05) in SNR from each other. The sDec derived WM and GM 

spectra for an individual from all lobar regions has been provided in Supporting Figure S1.

The number of voxels analyzed in WM ROIs for in vivo studies was 651 ± 54 in the frontal 

lobe, 195 ± 20 in the temporal lobe, 417 ± 33 in the parietal lobe, 135 ± 20 in the occipital 

lobe, and 138 ± 58 in the cerebellum. In contrast, GM ROIs had fewer voxels analyzed with 

frontal, temporal, parietal, and occipital lobar regions comprising of 102 ± 31, 51 ± 16, 54 

+12, and 28 ± 6 respectively.

The average whole-brain spectral linewidth and the CRLB of the spectral fitting assessed 

using the four methods are shown in Figure 7. sDec and M-Int methods show a significant (p 

< 0.001) improvement in linewidth as compared to individual voxel. Additionally, 

significantly (p <0.001) lower CRLB were seen for M-Int and sDec methods as compared to 

vAvg or vReg methods. sDec and M-Int methods do not show significant (p > 0.05 ) 

differences from each other in terms of linewidth or CRLB.

In Figure 8 are shown the mean metabolite estimates for the thalamus and putamen for all 

subjects. NAA/Cr and Cho/Cr in thalamus calculated using sDec were significantly (p < 

0.05) lower than that calculated using vAvg and vReg methods. M-Int method shows a 

significant difference from vAvg and VReg method only in the estimation of Cho/Cr. The 

vAvg method shows a 3.0%, and 4.8% over-estimation of NAA/Cr and Cho/Cr, respectively, 

as compared to the sDec method. Similar findings are seen in the putamen with significant 

(p < 0.05) variations in NAA/Cr between the sDec and vAvg methods. vAvg and vReg 

methods did not show significant (p > 0.05) differences in estimation of either metabolite in 

thalamus or putamen. Over-estimation in NAA/Cr using the vAvg method seen in the 

thalamus and putamen can be attributed to bleeding from surrounding white-matter regions 

due to partial volume effects. This finding is consistent with other reports that indicate 

higher NAA/Cr in surrounding WM as compared to the thalamus (24).
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Impact of Estimation Techniques on Age and Gender Correlations

Age- and gender- dependent regression of lobar metabolite ratios, NAA/Cr and Cho/Cr, 

showed that gender was not significant in regression models (FDR p>0.05), therefore results 

using linear regression with age are reported. The slopes of regressions were compared using 

Student t-tests (25). Regression of NAA/Cr as estimated by the sDec method showed a 

−3.1% change per decade in right frontal WM. In comparison, the M-Int, vAvg, and vReg 

methods showed significantly (p < 0.05) lower values of −2.3%, −2.2%, and −2.3% change 

per decade, respectively. For Cho/Cr, the sDec method indicated a 3.0% increment per 

decade, whereas the vAvg, vReg, and M-Int methods returned values of 1.7%, 3.0%, and 

2.6%, respectively, although only the M-Int method show a significant difference compared 

to the sDec method (p < 0.05). Detailed results of regressions in WM and GM regions can 

be found in Supporting Tables S2 and S3 respectively.

DISCUSSION

This study has evaluated a spectral decomposition technique to quantify mean values of 

tissue-specific metabolites using MRSI measurements that account for partial volume 

effects. Comparisons with other methods commonly used for regional analysis of MRSI 

studies demonstrate that the spectral decomposition technique provides increased accuracy 

for estimation of metabolite concentrations over a range of SNRs and spatial resolutions. 

The sDec method was also applied to the analysis of MRSI data from a large cohort of 

human subjects to examine how the analysis method may impact measurements in the 

relatively small volumes of the thalamus and putamen, as well as the associations of regional 

metabolite ratios with age and gender. The findings of this study indicate that significant 

differences in the measured metabolite ratios are obtained when partial volume effects are 

accounted for.

Simulation results showed that the spectral decomposition method showed little value in 

large homogeneous regions, such as lobar WM; however, in regions where partial volume 

effects are more pronounced the sDec and vReg methods clearly show significant 

improvement in the estimation of relative metabolite concentrations (Figure 3). While both 

the sDec and vReg methods account for partial volume effects, the vReg method can have 

larger errors as a result of fitting single voxel spectra with lower SNR. In addition to the 

increased spectral SNR obtained by the sDec method, this commonly generates spectra with 

better baselines as compared to individual spectra, as seen from Figure 6, which can benefit 

the spectral analysis. Moreover, individual spectra fitting is affected due to the presence of 

residual lipid signals and unsuppressed water artifacts which are generally reduced due to 

the inherent averaging property of the sDec method.

Comparison of the M-Int and vReg methods showed that for WM regions both methods 

performed similarly, however in GM regions vReg method performed significantly better 

than M-Int. In WM regions which are comparatively more homogenous than GM, the M-Int 

spectrum is similar to sDec spectrum, whereas the significant partial volume effects in GM 

result in quantification errors when simple averaging is employed. In principle, the sDec and 

vReg methods are inherently weighted averaging techniques that work with spectra and fit 
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results, respectively, accounting for tissue fraction and show improved performance over 

simple averaging in GM regions.

Several studies have presented techniques to account for partial volume effects in MR 

spectroscopic imaging studies. Tal et al. (5) showed a theoretical 10% error for measurement 

of Cr in WM due to partial volume effects assuming a 20% contamination of WM voxels 

from the GM. In this study, the simulation found a 6–8% error for the vAvg method in 

quantifying Cr/H2O for GM, which was similar to that offered theoretically (5). However, 

human studies showed that a variation of 31.5% was seen using vAvg methods in the 

estimation of GM Cho/Cr as compared to the sDec method. The larger errors in human data 

as compared to simulation (or theoretical) can be attributed to errors in the fitting of 

individual voxels and in the tissue segmentation. Additionally, for vAvg and vReg methods 

that analyze individual spectra outliers may impact the accuracy of the estimations, 

especially in small regions with few voxels. The effect of the outliers was reduced by 

imposing a standard deviation based threshold and limiting the analyses to ROIs with at least 

25 voxels.

Sajda et al. demonstrated the use of a nonnegative matrix factorization approach to derive 

constituent MRSI spectra and showed the utility of the technique towards estimating spectra 

in lesions (11,26). Mandl et al. have used the spectral decomposition technique to analyze 

2D MRSI data based on voxel selection using diffusion tensor fiber tracking to estimate a 

single spectrum for the cingulum bundle while accounting for partial volume effects from 

WM and GM (8). Maudsley et. al. mapped metabolite concentrations in WM and GM using 

regression to tissue fractions to account for partial volume effects, which has been replicated 

in this study in the vReg method (15). The current study, not only presented an effective 

non-iterative method for spectral decomposition but provided the most comprehensive 

analysis to date of errors in relative metabolite estimation due to partial volume effects in 

various tissue compartments.

For a lobar analysis, the sDec technique showed a 270% improvement in the SNR of the 

spectra obtained after decomposition compared to individual voxels. Su et. al. showed that a 

minimum individual voxel spectrum SNR of 4dB was required for accurate estimation of 

constituent spectra using the nonnegative matrix factorization scheme (26). For this study, 

lobar spectra derived using sDec method showed an average WM and GM SNR of 19dB and 

18dB, respectively. This increased SNR as a result of the inherent averaging property of the 

sDec method while accounting for partial fractions offers significant improvement in fitting 

quality and reliability of metabolite estimates.

The simulation study indicated that for estimation of metabolites in small ROIs, such as the 

putamen, the simple voxel averaging approach can result in errors of 40 to 55% (Fig. 2c). 

However, in the good SNR situation, the sDec and M-Int methods showed similar 

performance, suggesting that the advantage of the sDec method is seen most clearly where 

partial volume effects are even larger, as in measurements in the cortical GM.

The regression analyses indicated strong associations with age for NAA/Cr, in both lobar 

WM and GM regions, and for Cho/Cr in WM, similar to those previously reported (15,27–
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29), but also that significant differences in the findings were found between the analysis 

methods. A previous study that applied the vReg analysis method to a sub-sample of the data 

analyzed in this study, showed that NAA/Cr reduced at the rate of −3.68%/decade in frontal 

WM regions (15). This study showed an average change of −3.12%/decade in frontal WM 

(averaged over left and right hemisphere) using the sDec method. Differences of the reported 

values, which are on the order of 10–15% in the cerebrum and 23% in the cerebellum for 

WM NAA/Cr, may be attributed to the additional subjects included, better spectral fitting of 

high SNR spectra (Figure 7) and different quality control criteria used in this study. To 

account for the different sample sizes between this study and (15), a regression analysis 

performed using a reduced sample of 88 subjects showed that NAA/Cr calculated using the 

sDec method in frontal WM reduced at the rate of −3.23%/decade. The differences found for 

the associations of the metabolite ratios with age with the different analysis methods are 

impacted by errors due to spectral fitting making it difficult to estimate the direct effect of 

partial volumes on these correlations.

An obvious limitation of all the ROI-based analysis approaches used in this study is the 

inability to account for variations across the ROI or tissue type. In the case of diseases that 

show focal changes, such as the presence of lesions or white-matter abnormalities, the 

assumption of uniformity across an ROI or tissue type may not hold true and the methods 

presented would only be sensitive to the average change over the ROI. Moreover, the 

simulated data are simplified to have a constant linewidth, lineshape, and a homogenous bias 

field rendering any heterogeneity across an ROI muted. The presented technique assumes 

homogenous relaxation rates, bias field, and linewidth across an ROI. Preprocessing for in 

vivo MRSI data included corrections for B0 shifts but variations in linewidth were not 

accounted for. This study was also limited to metabolite ratios, to reduce the effects of 

receive and transmit bias fields (30) and CSF partial volume contribution. Finally, the 

methods that aim to account for tissue content are limited by the accuracy of the tissue 

segmentation algorithms, which differ in their approaches to assign partial tissue fractions 

based on MRI images and can be affected by motion and field inhomogeneity (31).

In summary, this study indicates that the spectral decomposition analysis approach is of 

considerable value in studies of pathologies that may preferentially affect either WM or GM, 

and also provides increased accuracy for measurements in smaller brain regions that are 

subject to significant partial volume effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) Simulated brain model showing white and gray-matter regions and the putamen. 

Simulated spectral signatures are shown for each region, with b) zero noise and no spatial 

smoothing, c) zero noise and a spatial smoothing of σ = 2.0 and d) a noise level of 4 and a 

spatial smoothing of σ = 2.0.
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Figure 2. 
Comparison of simulated spectra and sDec derived spectrum in parietal (a) WM and (b) GM 

for zero noise and no spatial smoothing.
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Figure 3. 
Results for quantification of NAA/H2O in white-matter (a), gray-matter (b), and putamen 

(c), and psCr/H2O in the putamen (d) for zero noise condition and a varying spatial 

smoothing σ.
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Figure 4. 
Maps showing the percent absolute error in the estimation of psCr/H2O in the simulated 

putamen area using M-Int (a), sDec (b), vAvg (c), and vReg (d) methods along with the WM 

SNR (e) as a function of noise and spatial smoothing, σ.
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Figure 5. 
Errors in estimation of Cho/H2O in (a) WM and (b) GM averaged across spatial smoothing 

levels using sDec, M-Int, vAvg, and vReg methods in simulation data with noise comparable 

to in vivo data. Significant differences using two-sample t-test with p<0.05, p<0.01, and 

p<0.001 are denoted by *, **, and ***, respectively.
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Figure 6. 
Typical single voxel WM and GM spectra in parietal lobe used in vAvg and vReg methods 

(a), WM and GM spectra using spectral averaging (M-Int) over the parietal lobe (b), and 

representative WM and GM spectra using the spectral decomposition (sDec) method (c).
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Figure 7. 
Whole-brain linewidth (a) and CRLB (b) for spectra evaluated using sDec, M-Int, vAvg, and 

vReg methods. CRLBs for the spectral fitting of Cho, Cr, and NAA in WM and GM are 

reported. Significant differences with p<0.05, p<0.01, and p<0.001 are denoted by *, **, and 

***, respectively, with ns = not significant.
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Figure 8. 
NAA/Cr (a) and Cho/Cr (b) calculated in the thalamus and putamen using the sDec, M-Int, 

and vAvg methods. Significant differences in metabolite ratios are shown with asterisks. 

FDR corrected probabilities p<0.05, p<0.01, and p<0.001 are denoted by *, **, and ***, 

respectively.
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