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Summary

Dopamine is a neurotransmitter that has been implicated in processes as diverse as reward, 

addiction, control of coordinated movement, metabolism and hormonal secretion. 

Correspondingly, dysregulation of the dopaminergic system has been implicated in diseases 

ranging from schizophrenia, Parkinson’s disease, depression, attention deficit hyperactivity 

disorder, nausea and vomiting, among others. Dopamine’s actions are mediated by a family of five 

G-protein coupled receptors (GPCRs) (viz. D1, D2, D3, D4 and D5)1. The D2 dopamine receptor 

(DRD2) is the primary target for both typical2 and atypical3,4 antipsychotic drugs, and for 

Parkinson’s disease drugs. Unfortunately, many drugs targeting DRD2 frequently suffer from 

serious and potentially life-threatening side effects due to promiscuous activities against related 

receptors4,5. Accordingly, a molecular understanding of DRD2 structure and function could 
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provide a template for the design of safer and more effective medications. Here we provide the 

crystal structure of DRD2 in complex with the widely prescribed atypical antipsychotic drug 

risperidone. The DRD2-risperidone structure reveals an unexpected mode of antipsychotic drug 

binding to dopamine receptors, and illuminates structural determinants essential for the actions of 

risperidone and related drugs at DRD2.

The D2 dopamine receptor (DRD2) is essential for mediating the actions of antipsychotic 

drugs2,3,4,6, and also for medications used to treat Parkinson’s disease, hyperprolactinemia, 

nausea and vomiting, among many other disorders1,7,8. DRD2 has also been implicated in 

the actions of several drugs of abuse including amphetamines, cocaine and opioids9. 

Although DRD2 was cloned nearly 30 years ago10,11,12 and has been subject to extensive 

pharmacological13, mutagenesis14 and molecular modeling studies15, we lack high 

resolution structures of DRD2 in complex with ligands, impeding a molecular understanding 

of the receptor’s function. Meanwhile, a 3.2 Å crystal structure of the related D3 dopamine 

(DRD3) was reported 7 years ago16 while 1.95 and 2.2 Å structures of the D4 dopamine 

(DRD4) receptors have been more recently reported17. The DRD3 and DRD4 ligand 

complexes–obtained with the substituted benzamides eticlopride and nemonapride, 

respectively–revealed distinctive extended binding sites16,17. Given the importance of 

DRD2-targeted drugs, and recent successes in leveraging GPCR structures for the structure-

guided discovery of new probes and drug-leads18,19, the structure of a DRD2 complexed 

with non-benzamides ligands will not only clarify the specificity determinants of the family, 

but will also expand our understanding of how different scaffolds interact with dopamine 

receptors. We anticipate that the ligand discovery enabled by DRD2 structures would thus 

inform both basic and translational neuroscience20.

Structural studies were carried out using an engineered human DRD2 construct, which 

included three thermostabilizing mutations (I1223.40A, L3756.37A and L3796.41A), and T4 

lysozyme (T4L) fused into intracellular loop 3 (Extended Data Figs.1a-b and METHODS). 

This construct was purified and crystallized in complex with the atypical antipsychotic 

risperidone. The binding affinities of multiple antipsychotics were similar with this DRD2 

construct versus the wild-type receptor (Extended Data Table 1), suggesting that the 

engineered alterations which facilitate crystallization do not perturb ligand binding. The 

crystal structure of the DRD2/risperidone complex was determined at 2.9 Å resolution 

(Extended Data Table 2 and Extended Data Figs. 1c-h).

Compared with DRD4 (PDB codes: 5WIU and 5WIV) and DRD3 (PDB code: 3PBL), 

DRD2 displays substantial structural differences in extracellular loops 1 and 2 (EL1 and 

EL2) and the extracellular ends of Transmembrane helices (TM) V, VI and VII (Figs. 1a-c). 

Unexpectedly, the largest extracellular loop of DRD2–EL2–flips away from the top of the 

receptor core (Fig. 1c) when compared with DRD3 and DRD4. Importantly, the highly 

conserved hydrophobic residue of EL2, which is two residues away from the conserved 

cysteine of EL2 in all extant aminergic GPCR structures and is represented by Ile184 in 

DRD2, points towards the receptor core (Extended Data Fig. 2). This residue has been 

implicated in the on- and off-rate kinetics and in β-arrestin biased signaling for some ligands 

at DRD2 and other receptors19,20,21. However, because of the rearrangement of EL2 and its 
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formation of a small helical turn (residues 182–185) in the DRD2/risperidone structure (Fig. 

1c and Extended Data Fig. 2c), Ile184 does not directly interact with this ligand, as does the 

analogous residue in some aminergic structures (Extended Data Figs. 2a-l). Instead, Ile184 

points across the binding pocket to interact with Trp100 in EL1, forming a network of 

hydrophobic residues near the binding pocket’s orifice (Extended Data Fig. 2m). We note 

that interactions between T4L with part of EL1 and EL2 in the crystal lattice may further 

stabilize this conformation (Extended Data Figs. 1c-e). While crystal contacts may influence 

sidechain rotamers on protein surfaces, their low binding energies are unlikely to induce the 

observed conformation.

Another difference observed between DRD2 and the other two D2-like dopamine receptors 

is that the extracellular tip of TM V is shifted towards the transmembrane bundle, while the 

extracellular tips of TM VI and TM VII move away from the receptor core by approximately 

5.8/7.3 Å and 1.4/2.1 Å (Fig. 1b), respectively, versus DRD3 and DRD4. As in DRD3, an 

inter-helical hydrogen bond forms between Tyr7.35 and His6.55 (Extended Data Fig. 3a-d), 

which in DRD3 is important for regulating constitutive activity17. The side-chain 

conformations for DRD2, DRD316 and DRD417 at residues Tyr/Val7.35 and His6.55 

(Extended Data Figs. 3a-c) are also distinct17. Specifically, the side chain of Tyr7.35 in 

DRD2 is rotated 52° compared to DRD3 to accommodate risperidone (Extended Data Fig. 

3d). Together, these differences may further stabilize the outward movement of TM VI.

Like most antipsychotics, risperidone is a DRD2 inverse agonist22, and the DRD2/

risperidone complex appropriately reflects an inactive state conformation. The most notable 

difference between active and inactive state GPCR structures is the extent to which the 

cytoplasmic tip of TM VI moves away from the transmembrane helical bundle to 

accommodate transducer binding23. A comparison of DRD2/risperidone with the active and 

inactive β2 adrenergic receptor (β2AR) or adenosine A2A receptor (A2AR) structures reveals 

no substantial outward movement of the intracellular end of TM VI (Extended Data Figs. 

3e-f)–a finding consistent with an inactive-state structure. Another important structural 

feature of GPCR activation is the rearrangement of side chains in the highly conserved 

microswitches D(E)/RY (TM III) and NPxxY (TM VII)23. Here, Tyr7.53 from the NPxxY 

motif and Arg3.50 from the DRY motif, adopt almost identical positions with homologous 

residues in the β2AR and A2AR inactive structures (Extended Data Figs. 3g-j). Moreover, a 

key inactive-state salt-bridge interaction, the ‘ionic lock’ between the conserved Arg3.50 and 

Glu6.30 2425,26 is maintained in the DRD2/risperidone structure (Fig. 1d).

Risperidone–a benzisoxazole27–displays a unique mode of dopamine receptor binding 

versus those of the substituted benzamides eticlopride at DRD3 and nemonapride at DRD4 

(Fig. 2). The benzisoxazole moiety of risperidone extends into a deep binding pocket defined 

by the side chains of helices III, V and VI (Figs. 2a and 2d), interacting with Cys1183.36, 

Thr1193.37, Ser1975.46, Phe1985.47, Phe3826.44, Phe3906.52 and Trp3866.48 which form a 

subpocket below the orthosteric site (Fig. 2d). Additionally, another hydrophobic pocket 

above the orthosteric site encloses risperidone’s tetrahydropyridopyrimidinone moiety while 

Asp1143.32 forms a salt-bridge with risperidone’s tertiary amine (Fig. 2d). Alanine 

mutagenesis of many of these contact residues reduce risperidone’s affinity at DRD2 (Fig. 

2d and Extended Data Table 3). In the DRD3 and DRD4 structures, neither eticlopride nor 
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nemonapride engage this deeper hydrophobic pocket (Figs. 2b and 2c). Importantly, alanine 

substitutions of the equivalent residues in this deeper hydrophobic pocket do not 

substantially alter [3H]-nemonapride binding affinity, except for Trp3866.48 and Phe3906.52, 

which are large enough that mutagenesis-induced alterations in helical packing alone might 

explain the observed effects (Extended Data Table 3).

Comparison of the overall ligand binding pocket of DRD2 with DRD3 and DRD4 structures 

revealed striking differences around residues Val/Phe2.61, TrpEL1, Phe/Leu3.28 and Tyr/

Val7.35, which help to define a DRD2 extended binding pocket (DRD2-EBP) (Figs. 3a and 

b). Indeed, previous studies16,17 on DRD3 and DRD4 revealed a selective EBP for each 

receptor. The DRD3-EBP is formed by the junction of EL1 and EL2 and the interface of 

helices II, III and VII and towards the EL1 (Fig. 3c). While the DRD4-EBP is elsewhere, 

reaching deep into a cleft between TMs II and III in this receptor, defined by Phe912.61/

Leu1113.28 (Fig. 3d); the structural definition of this DRD4-EBP enabled the structure-based 

discover of agonists highly specific for this receptor17. Unique to the DRD2, the DRD2-EBP 

extends toward the extracellular part of TM VII consisting of EL1 and the junction of helices 

I, II and VII (Fig. 3b).

There are four distinctive features of the DRD2-EBP: (1) Compared with the DRD3 

structure, part of the EL1 loop rotates to move the conserved residue TrpEL1 to the top of the 

binding pocket at DRD2 (Figs. 3a-c and Extended Data Fig. 4), thereby disrupting what 

would be the DRD3-EBP (Figs. 3a-c). In all published aminergic receptor structures, only 

DRD2’s TrpEL1 adopts this unique conformation (Extended Data Fig. 4). (2) Compared with 

the DRD4 structure, the residue phenylalanine is located at 3.28 of DRD2, not 2.61, thereby 

eliminating the extended pocket as it exists in DRD4 (Figs. 3a, b and d). (3) Meanwhile, the 

side chain of Tyr4087.35 rotates towards the side chain of His3936.55 thereby avoiding 

clashes with risperidone (Extended Data Figs. 3a and 3d). (4) Finally, an outward movement 

of the extracellular tip of TM VII (Fig. 1b) makes additional space for the DRD2-EBP.

Compared to the conformation risperidone adopts when crystalized by itself4, in complex 

with DRD2, risperidone’s tetrahydropyridopyrimidinone ring rotates by ~90° (Extended 

Data Fig. 5a). This ring interacts with a hydrophobic patch formed by the side-chains of 

Trp100EL1, Ile184EL2, and Leu942.64. Although the electron density for Leu942.64 is weaker 

than for the other residues, it appears that the observed conformation of Trp100EL1 is 

stabilized by any rotamer of Leu942.64 that would fit the density.

In the DRD2/risperidone structure, the side chain of Trp100EL1 forms extensive contacts 

with the tetrahydropyridopyrimidinone ring, wedging it into the DRD2-EBP (Figs. 3b, 4a 

and Extended Data Fig. 5b). Besides these hydrophobic contacts between Trp100EL1 and 

risperidone, Trp100EL1 is also stabilized by contacts with Ile184EL2 and, perhaps Leu942.64, 

though the side-chain of Leu942.64 lacks electron density (Fig. 4b and Extended Data Fig. 

5c). The observed configuration of risperidone is likely driven by the DRD2 binding pocket, 

and the conservation of key pocket residues such as Trp100EL1 implies that risperidone 

could bind other aminergic receptors (e.g. 5-HT2A or the α1A adrenergic receptor) in a 

similar binding mode, though further structures will be needed to test this notion.
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Intriguingly, molecular docking of risperidone to homology models of the DRD2, templated 

on either the DRD3 or DRD4 structures, failed to reproduce the unique pose of risperidone 

(Extended Data Figs. 5d-h). Rather, docking places the ligand higher in the binding site, in a 

space analogous to where both eticlopride and nemonapride are observed in the DRD3 and 

DRD4 structures (Figs. 2b-c), respectively. This is a direct consequence of the 

conformational rearrangements in DRD2 concomitant with accommodating risperidone–

mainly movement of TMs V, VI, VII, and the relocation of Trp100EL1, which consequently 

affects the size and shape of the ligand binding pocket, allowing risperidone to engage a 

deep binding pose and DRD2-EBP. Moreover, the docked conformation of risperidone 

resembles that of the receptor-free risperidone crystal structure4, not that adopted in the 

receptor-bound complex (Extended Data Figs. 5d-h). This is not a problem of 

conformational sampling on the part of docking–the receptor-free structure is, after all, a low 

energy structure, and docking does capture it, but rather it reflects the incorrect modeling of 

Trp100EL1, owing to the lack of an analogous configuration in templates used in the 

modeling. Accordingly, docking did not predict the ~90° rotation of the 

tetrahydropyridopyrimidinone ring of risperidone in the DRD2-complex. This unique DRD2 

binding pocket, and the unusual risperidone conformation that is accommodated by it, are 

unexpected features of this structure, with implications for our understanding of ligand 

recognition by this receptor, and the future design of new ligands to modulate it.

Compared with the DRD3 and DRD4 structures, the rearrangement of the extracellular 

surface and movement of Trp100EL1 not only allows it to interact with risperidone, but also 

forms, together with Ile184EL2 and Leu942.64, a hydrophobic patch that potentially narrows 

DRD2’s binding pocket (Figs. 4b-c). We hypothesized that these residues prevent 

risperidone’s egress from the binding pocket and found that Trp100EL1Phe, Trp100EL1Leu 

and Trp100EL1Ala mutants decreased risperidone residence time from 233 min (WT) to 59, 

23, 28 min (Table 1 and Extended Data Figs. 6a-d), respectively. Interestingly, these kinetic 

effects of the Trp100EL1Phe, Trp100EL1Leu and Trp100EL1Ala mutants on residence time 

were shared with other tested antipsychotics, including N-methylspiperone, nemonapride 

and aripiprazole (Extended Data Figs. 6h-k and 6o-p and Extended Data Table 4). Similar to 

the findings obtained for the I184ECL2A/L942.64A double mutation (Table 1 and Extended 

Data Fig. 6g), this double mutation also reduces risperidone residence time to 6 min, as it 

does for other antipsychotics (Table 1, Extended Data Figs.6n, 6q and 6r and Extended Data 

Table 4). In summary, L942.64, Trp100EL1 and I184ECL2 form hydrophobic contacts which 

contribute to risperidone’s slow DRD2 dissociation.

Among the most dramatic and serious side-effects of antipsychotics are extra pyramidal 

symptoms (EPS). In patients with EPS, a consistent finding is DRD2 occupancy > 80% in 

the central nervous system, as demonstrated by positron emission tomography (PET)28. It 

has been suggested that differential binding kinetics29,30 as well as the relatively higher 

affinity of atypical antipsychotic drugs for 5-HT2A serotonin receptors3,4, contribute to the 

lower incidence of EPS with atypical antipsychotic drugs like risperidone versus typical 

antipsychotics. Relevant to these hypotheses we note that Trp100EL1 regulates both the 

association and dissociation kinetics for risperidone, and that many of the residues essential 

for risperidone binding to DRD2 are shared with 5-HT2A serotonin and other biogenic 

amine receptors. Thus, although our findings do not definitively resolve these hypotheses, 
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they do provide the initial underpinnings for molecularly-derived models of antipsychotic 

drug actions at dopamine and other receptors. Finally, given recent successes in leveraging 

crystal structures of GPCRs for ligand discovery17,18,19, we anticipate that the DRD2/

risperidone complex structure will accelerate the search for novel antipsychotic drugs 

targeting DRD2.

Methods

Protein engineering for structural studies

To facilitate expression, purification and crystallography, a human DRD2 (D2 long receptor 

variant31) construct was generated with several modifications. T4L residues 2–16132 were 

fused into third intracellular loop of DRD2 (V223–R361) with truncations of the N termini 

residues1–34. The DRD2-T4L gene was further modified by introducing three mutations 

I1223.40A, L3756.37A and L3796.41A -identified by alanine scanning - to improve protein 

thermo-stability. In brief, alanine scanning was used to identify thermo-stabilization 

mutations (see Radioligand Binding Assay for details; Extended Data Fig. 1a). The receptor 

chimeric sequences were then subcloned into a modified pFastBac1 vector (Invitrogen), 

designated as pFastBac1-833100, which contained an expression cassette with a 

haemagglutinin (HA) signal sequence followed by a Flag tag, a 10×His tag, and a TEV 

protease recognition site at the N terminus before the receptor sequence.

Protein expression and purification

The modified DRD2-T4L protein was expressed in Spodoptera frugiperda (Sf9) cells 

(Expression Systems) using Bac-to-Bac Baculovirus Expression System (Invitrogen) for 48 

h. The insect cells were lysed by repeated washing and centrifugation, with hypotonic buffer 

with low (10 mM HEPES, pH 7.5, 10 mM MgCl2, 20 mM KCl and EDTA-free complete 

protease inhibitor cocktail tablets (Roche)) (one time) and high salt (1.0 M NaCl, 10 mM 

HEPES, pH 7.5, 10 mM MgCl2, 20 mM KCl) (three times). The washed membranes were 

suspended in buffer containing 10 mM HEPES, pH 7.5, 10 mM MgCl2, 20 mM KCl, 150 

mM NaCl, 20 μM risperidone, and EDTA-free complete protease inhibitor cocktail tablets, 

and incubated at room temperature for 1 h. And, incubated at 4 °C for 30 min before 

solubilization. The membranes were then solubilized in 10 mM HEPES, pH 7.5, 150 mM 

NaCl, 1% (w/v) n-dodecyl-β-D-maltopyranoside (DDM, Anatrace), 0.2% (w/v) cholesteryl 

hemisuccinate (CHS, Sigma) for 2 hr at 4 °C.

The supernatant was isolated by centrifugation at 150,000 × g for 30 min, followed by 

incubation in 20 mM buffered imidazole (pH 7.5), 800m M NaCl with TALON IMAC resin 

(Clontech) at 4 °C, overnight. The resin was then washed with 10 column volumes (cv) of 

Wash Buffer I (50 mM HEPES, pH 7.5, 800 mM NaCl, 0.1% (w/v) DDM, 0.02% (w/v) 

CHS, 20 mM imidazole, 10% (v/v) glycerol, and 10 μM risperdone, followed by 10 cv of 

Wash Buffer II (25 mM HEPES, pH 7.5, 150 mM NaCl, 0.05% (w/v) DDM, 0.01% (w/v) 

CHS, 10% (v/v) glycerol, and 10 μM risperidone). The protein was then eluted in 3–4 

column volumes of Elution Buffer (50 mM HEPES (pH 7.5), 50 μM risperidone, 500 mM 

NaCl, 10% (v/v) glycerol, 0.05% (w/v) DDM, 0.01% (w/v) CHS, and 250 mM imidazole). 

A PD MiniTrap G-25 column (GE Healthcare) was used to remove imidazole. The protein 
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was then treated overnight with His-tagged TEV protease and His-tagged PNGase F (NEB) 

to remove the N-terminal His-tag, Flag-tag and deglycosylate the receptor. His-tagged TEV 

protease, His-tagged PNGase F, cleaved His-tag and uncleaved protein were removed from 

the sample by passing the sample over equilibrated TALON IMAC resin (Clontech). The 

receptor was then concentrated to 40–50 mg ml−1 with a 100 kDa molecular mass cut-off 

Vivaspin 500 centrifuge concentrator (Sartorius Stedim).

Lipidic cubic phase crystallization

Protein samples of DRD2 in complex with risperidone were reconstituted into the lipidic 

cubic phase (LCP) by mixing 40% of ~60 mg/ml with 60% lipid (10%(w/w)cholesterol, 

90%(w/w)monoolein) using the twin-syringe method33. Crystallization trials were 

performed in glass sandwich plates (Marienfeld GmbH) using a handheld dispenser (Art 

Robbins Instruments), dispensing 45 nL of protein-laden LCP and 1 μl precipitant solution 

per well. Plates were then incubated at 20 °C. Crystals were obtained from precipitant 

conditions containing 100 mM Tris/HCl pH 7.8, 230 mM Lithium nitrate, 25% PEG400, 4% 

(±)-1,3-Butanediol. Crystals grew to maximum size of 40 μm ×40 μm ×10 μm within two 

weeks and were harvested directly from the LCP matrix using MiTeGen micromount and 

flash frozen in liquid nitrogen.

Data collection, structure solution and refinement

Crystallographic diffraction data collection were performed at the 23ID-B and 23ID-D 

beamlines (GM/CA CAT) at the Advanced Photon Source, Argonne, IL using a 10 μm 

minibeam at a wavelength of 1.0330 Å and a Dectris Eiger-16m or MarMosaic 300 CCD or 

Pilatus3 6M detector, respectively. The crystals were exposed to 0.5 s of unattenuated beam 

using 0.5° oscillation per frame. A 97.3 % complete data set at 2.90 Å resolution of DRD2/

risperidone from 20 crystals were integrated, scaled and merged using HKL300034. Initial 

phase information was obtained by molecular replacement (MR) with the program 

PHASER35 using two independent search models - a receptor portion of the DRD4/

nemonapride complex (PDB code: 5WIU), and the T4L portions of β2AR-T4L (PDB code: 

2RH1) as initial models. Refinement was performed with PHENIX36 and REFMAC 

followed by manual examination and rebuilding of the refined coordinates in the program 

COOT37 using |2Fo| - |Fc|, |Fo| - |Fc|, and omit maps.

Radioligand Binding Assay

Binding assays were performed using Sf9 membrane fractions expressing the crystallization 

construct DRD2-T4L (I1223.40A, L3756.37A and L3796.41A) or HEK293 T membrane 

preparations transiently expressing DRD2 (D2 long receptor) and different mutants. 

HEK293 T cells (ATCC CRL-11268; 59587035; mycoplasma free) were transfected and 

membrane preparation and radioligand binding assays were set up in 96-well plates as 

described previously38. All binding assays were conducted in standard binding buffer (50 

mM Tris, 10 mM MgCl2, 0.1 mM EDTA, 0.1% BSA, pH 7.4). For displacement 

experiments, increasing concentrations of compounds were incubated with membrane and 

radioligands (0.8–1.0 nM [3H]-N-methylspiperone or 0.1–0.5 nM [3H]-nemonapride) 

(PerkinElmer) for 2 hr at room temperature in the dark. To determine the affinity of 

nemonapride in DRD2 and different mutants, all assays utilized at least 2 concentrations of 
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[3H]-nemonapride. The reaction was terminated by rapid vacuum filtration onto chilled 0.3% 

PEI-soaked GF/A filters followed by three quick washes with cold washing buffer (50 mM 

Tris HCl, pH 7.4) and quantified as described previously8. Results (with or without 

normalization) were analyzed using GraphPad Prism using one-site shift models where 

indicated.

Radioligand Based Thermostability Assay

Membranes from HEK293 T cells expressing wild-type or mutant human DRD2 were 

resuspended in binding buffer (50 mM Tris, 10 mM MgCl2, 0.1 mM EDTA, 0.1% BSA, pH 

7.4). [3H]-N-methylspiperone added to the membranes to give a final concentration of 1 nM. 

The samples were incubated at room temperature for 1 hr, then were aliquoted into PCR 

strips. Samples were heated to the desired temperature for exactly 30 min, then cooled down 

to 25 °C for 30 min. The samples were terminated by rapid vacuum filtration onto chilled 

0.3% PEI-soaked GF/A filters followed by three quick washes with cold washing buffer (50 

mM Tris HCl, pH 7.4) and quantified as described previously8. Results were analyzed using 

GraphPad Prism. Apparent Tm values were derived from sigmoidal dose–response analysis. 

Results represent the mean ± SEM of three independent experiments.

Differential Scanning Fluorimetry Based Thermostability Assay

The thermal stability of purified protein was determined by measuring fluorescence of thiol-

reactive dye BODIPY FL-L-cystine (Invitrogen). The standard assay conditions were 20 

mM HEPES (pH 7.5), 200 mM NaCl, 0.025% DDM and 10 mM risperidone with protein 

concentrations 1 mg/mL and BODIPY FL-L-cystine concentrations 1 μM. The melting 

experiments were performed on a StepOnePlus real-time PCR System from Applied 

Biosystems. The melting curve experiments were conducted (1 °C/min) and recorded using 

StepOne software from Applied Biosystems. Results were analyzed using GraphPad Prism. 

Apparent Tm values were derived from sigmoidal dose–response analysis. Results represent 

the mean ± SEM of three independent experiments.

Ligand Association and Dissociation Radioligand Binding Assays

Binding assays were performed using HEK293 T membrane preparations transiently 

expressing DRD2 (D2 long receptor) and different mutants at room temperature. 

Radioligand dissociation and association assays were performed in parallel utilizing the 

same concentrations of radioligand, membrane preparations, and binding buffer (50 mM 

Tris, 10 mM MgCl2, 0.1 mM EDTA, 0.1% BSA, pH 7.4). All assays utilized at least 2 

concentrations of radioligand ([0.5–1.0 nM [3H]-N-methylspiperone; 0.5–2.0 nM [3H]-

nemonapride). For dissociation assays, membranes were incubated with radioligand for at 

least 2 hr at room temperature before the addition of 10 μL of 10 μM excess cold ligand to 

the 200 μL membrane suspension at designated time points. For association experiments, 

100 μL of radioligand was added to 100 μL membrane suspensions at designated time 

points. Time points spanned 1 minutes to 7 hr, depending on experimental conditions and 

radioligand. For the determination of kon and koff for unlabeled risperidone or aripiprazole, 

membranes of either wild type or mutants were incubated with [3H]-methylspiperone and 

several concentrations of risperidone or aripiprazole. Non-specific binding was determined 

by addition of 10 μM nemonapride. Immediately at time = 0 min, plates were harvested by 
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vacuum filtration onto 0.3% polyethyleneimine pre-soaked 96-well filter mats (Perkin 

Elmer) using a 96-well Filtermate harvester, followed by three washes of cold wash buffer 

(50 mM Tris pH 7.4). Scintillation cocktail (Meltilex, Perkin Elmer) was melted onto dried 

filters and radioactivity was counted using a Wallac Trilux MicroBeta counter 

(PerkinElmer). Data were analyzed using “Dissociation-One phase exponential decay” or 

“Association kinetics-Two or more concentrations of hot radioligand” in Graphpad Prism 

5.0. The previously determined [3H]-N-methylspiperone kon and koff rates of DRD2 or 

mutants was used to estimate the kon and koff rates of risperidone and aripiprazole using the 

“Kinetics of competitive binding” equation in Graphpad Prism 5.0 as put forth by Motulsky 

and Mahan39.

Homology modeling of DRD2

Sequence alignment for construction of the DRD2 homology models was generated with 

PROMALS3D40, using sequences of human DRD2 (Uniprot accession number: P14416), 

DRD3 (P35462) and DRD4 (P21917), as well as sequences of available DRD2-family X-ray 

structures [DRD3 - PDB: 3PBL (chain A)41 and DRD4 - 5WIU (chain A)42]. The alignment 

was manually edited to remove the amino and carboxy termini which extended past the 

template structures, and to remove the engineered T4 lysozyme (3PBL) or apocytochrome 

b562 RIL (BRIL; 5WIU) from the template sequences. MODELLER-9v1543 was then used 

to generate (1) a total of 1000 homology models of DRD2, based on the crystal structure of 

DRD4 in complex with Nemonapride as the template, and (2) a set of 500 models based on 

the crystal structure of DRD3 in complex with Eticlopride. We then evaluated the models for 

their ability to enrich known DRD2 ligands over property-matched decoys through docking 

to the orthosteric binding site, using DOCK 3.744 (as detailed below). While sharing 

physical properties of known ligands, decoy molecules are topologically distinct and so 

unlikely to bind the receptor, thus controlling for the enrichment of molecules by physical 

properties alone. Thirty-two known DRD2 antagonists with MW < 420 were extracted from 

the IUPHAR database45, and 1836 property-matched decoys were generated using the 

DUD-E server46. The models were then ranked on the basis of their adjusted logAUC. The 

selected best scoring model in terms of ligand enrichment was further optimized through 

minimization with the AMBER protein force field and the GAFF ligand force field 

supplemented with AM1BCC charges47.

Molecular docking of risperidone

Risperidone was docked to the orthosteric binding site of the DRD2 homology models based 

on the DRD3 or DRD4 crystal structures, using DOCK3.744. DOCK3.7 places pre-

generated flexible ligands into the binding site by superimposing atoms of each molecule on 

matching spheres, representing favorable positions for individual ligand atoms. Forty-five 

matching spheres were used here, based on the pose of the corresponding x-ray ligand 

(eticlopride/nemonapride) in the template structure. The resulting docked ligand poses were 

scored by summing the receptor-ligand electrostatics and van der Waals interaction energies, 

and corrected for context-dependent ligand desolvation. Receptor structures were protonated 

using Reduce48. Partial charges from the united-atom AMBER47 force field were used for 

all receptor atoms. Grids which evaluate the different energy terms of the DOCK scoring 

function were precalculated using AMBER47 for the van der Waals term, QNIFFT49,50 (an 
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adaptation of DELPHI) for electrostatics, and ligand desolvation51. Ligands were protonated 

with Marvin (version 15.11.23.0, ChemAxon, 2015; http://www.chemaxon.com), at pH 7.4. 

Each protomer was rendered into 3D using Corina52 (Molecular Networks GmbH) and 

conformationally sampled using Omega53 (OpenEye Scientific Software). Ligand charges 

and initial solvation energies were calculated using AMSOL54,55.

Data availability

Atomic coordinates and structure factor files for the DRD2/Risperidone structure have been 

deposited in the RCSB Protein Data Bank with identification code 6C38. All other data are 

available from the corresponding authors upon reasonable request.
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Extended Data

Extended Data Figure 1. Thermo-stability of DRD2 constructs, crystal packing of the DRD2/
Risperidone complex and representative electron density of the DRD2 structure
a, DRD2 or thermo-stability mutation membrane with 1nM [3H]-N-methylspiperone were 

heated for 30 min, the amount of [3H]-ligand bound determined. b, Purified DRD2-T4L 

(with or without thermo-stability mutation) protein with 10 μM risperidone and 1 μM 

BODIPY FL L-cystine dye were heated by a temperature gradient and the amount of dye 

bound to unfolding protein determined. Data were analyzed by nonlinear regression and 
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apparent Tm values (transition temperature where 50% of the receptor is inactive) were 

determined from analysis of the sigmoidal dose-response curves. All data in a-b are the 

mean SEM of three independent assays. Error bars in a-b denote SEM from three 

independent assays. c, d, e, Packing of the DRD2/Risperidone complex crystallized in the 

P212121 spacegroup. The DRD2 is shown in green and T4L fusion protein is shown in red or 

cyan (interact with DRD2). EL1 and EL2 of DRD2 were shown in magenta and blue, 

respectively. f, 2Fo-Fc electron density map (blue mesh) of risperidone (yellow) contoured at 

1σ. g, Fo-Fc omit map (green mesh) contoured at 3.0σ of risperidone (yellow). h, 2Fo-Fc 

electron density map of DRD2 binding pocket residues (blue mesh) contoured at 1σ.
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Extended Data Figure 2. Conserved hydrophobic residue of EL2 in all available aminergic 
receptor structures
In all panels, receptors are shown as cartoon. Ligands and residues are shown as sticks. a, 

5HT1B (PDB code 4IAR). b, 5HT2B (PDB code 5TVN). c, DRD2. d, DRD3 (PDB code 

3PBL). e, DRD4 (PDB code 5WIU). f, ACM1 (PDB code 5CXV). g, ACM2 (PDB code 

3UON). h, ACM3 (PDB code 4ADJ). i, ACM4 (PDB code 4DSG). j, HRH1 (PDB code 

3RZE). k, ADRB1 (PDB code 2VT4). l, ADRB2 (PDB code 2RH1). m, DRD2. n, 

Conserved EL2 hydrophobic residues (red box) are located two residues away from 
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conserved cysteine that forms a disulfide bridge between EL2 and helix III. Notable 

exceptions to the presence of a hydrophobic residue are DRD1 and DRD5, which contain a 

serine, and HRH1 and HRH4, which contain a threonine and proline, respectively.

Extended Data Figure 3. Comparison of D2 receptors view from the extracellular side and 
structural alignment with the β2 adrenergic receptor (β2AR) and A2A adenosine (A2AAR) 
reveals inactive-state of the DRD2
In a-d panels, the DRD2 colored in green; DRD3 in magenta (PDB code 3PBL), and DRD4 

in blue (PDB code 5WIU). Risperidone (yellow), eticlopride (cyan) and nemonapride 
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(lightpink) are shown sticks and spheres. a, b, c, Displacements of H6.55 and Y/V7.35 are 

shown at DRD2 (a), DRD3 (b) and DRD4 (c). d, The views from extracellular side of DRD2 

and DRD3. e, f, Superposition of TM VI at DRD2 (green), inactive β2AR (yellow) (PDB 

code: 2RH1), active β2AR (lightpink) (PDB code: 3SN6), inactive A2AAR (brown) (PDB 

code: 3REY) and active A2AAR (blue) (PDB code: 5G53) aligned through helices I-IV. g, h, 
i, j, Cytoplasmic view of an alignment between DRD2 and active/inactive β2AR (g, h) or 

A2AAR (i, j). Rearrangements of two highly conserved residues (Y7.53 and R3.50) within the 

core of the receptor are shown as sticks. Ligands are omitted for clarity, hydrogen bonds are 

shown as grey dotted line and the Ballesteros-Weinstein numbering is shown as superscript.
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Extended Data Figure 4. Conserved Trp of EL1 in all available aminergic receptor structures 
illustrates unique position in DRD2/risperidone
In all panels, receptors are shown as cartoon. Ligands and residues are shown as sticks. a, 

Conserved Trp of EL1 was show in red box. b, 5HT1B (PDB code 4IAR). c, 5HT2B (PDB 

code 5TVN). d, DRD2. e, DRD3 (PDB code 3PBL). f, DRD4 (PDB code 5WIU). g, ACM1 

(PDB code 5CXV). h, ACM2 (PDB code 3UON). i, ACM3 (PDB code 4ADJ). j, ACM4 

(PDB code 4DSG). k, HRH1 (PDB code 3RZE). l, ADRB1 (PDB code 2VT4). m, ADRB2 

(PDB code 2RH1).
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Extended Data Figure 5. Risperidone has distinct poses in solution and in complex with DRD2 
and comparison of x-ray structure and model of DRD2
a, Trp100EL1 determines the configuration of the tetrahydropyridopyrimidinone moiety of 

risperidone. Structure of unbound risperidone colored in green and DRD2-bound risperidone 

in yellow. b, Electron density (2Fo-Fc maps, blue mesh) for W100EL1 in the DRD2/

Risperidone complex (contoured at 1.0σ). c, 2Fo-Fc electron density map (blue mesh) of 

Leu942.64, Trp100EL1, Ile184EL2 and risperidone (yellow) contoured at 0.8σ. Ballesteros-

Weinstein numbering is shown as superscript. d, Overall view of DRD2/Risperidone x-ray 

structure and model. e, f, g, h, Comparison of x-ray structure and model of DRD2. In d-h 
panels, DRD2 x-ray structure and model is shown as cartoons, with the x-ray structure 

colored in green and model in magenta or blue. Risperidone in x-ray structure is shown as 

yellow spheres or sticks and model as cyan or lightpink.
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Extended Data Figure 6. Patch residues of the DRD2 orthosteric pocket impair the dissociation 
rates of risperidone, aripiprazole, N-methylspiperone and nemonapride
a, b, c, e, f, g, Comparison of risperidone dissociation from wild-type DRD2 (a) and 

W100EL1A (b), W100EL1L (c), W100EL1F (d), L942.64 A (e), I184EL2A (f) or L942.64A /

I184EL2A (g) mutants. h, i, j, k, l, m, n, Comparison of aripiprazole dissociation from wild-

type DRD2 (h) and W100EL1A (i), W100EL1L (j), W100EL1F (k), L942.64 A (l), I184EL2A 

(m) or L942.64A /I184EL2A (n) mutants. o, p, Comparison of N-methylspiperone (o) or 

nemonapride (p) dissociation from wild-type DRD2 and W100EL1A, W100EL1L or 
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W100EL1F mutants(n=3). q, r, Comparison of N-methylspiperone (q) or nemonapride (r) 

dissociation from wild-type DRD2 and L942.64 A, I184EL2A or L942.64A /I184EL2A 

mutants. All data are the mean SEM of four independent assays (n = 4 independent 

experiments). Error bars in o-r denote SEM from four independent assays. Ballesteros-

Weinstein numbering is shown as superscript.

Extended Data Table 1
Affinities of antipsychotic drugs for thermostabilized 
mutant and wild-type RDR2

Data represent mean Ki (pKi ± SEM) for competition binding experiments using [3H]-N-

methylspiperone (0.8–1.0 nM) as radioligand. All data are the mean SEM of three 

independent assays (n = 3 independent experiments).

Receptor Kj, nM (pKi±SEM) Risperidone Aripiprazole N-Methylspiperone Nemonapride Bifeprunox

DRD2
wild-type

1.91
(8.84±0.19)

6.28
(8.21±0.05)

0.04
(11.06±0.18)

0.03
(11.06±0.10)

1.04
(9.52±0.38)

DRD2
I1223.40A/L3756.37A/L3796.41A

1.86
(9.10±0.38)

1.25
(8.91±0.04)

0.09
(11.01±0.11)

0.05
(11.03±0.06)

0.24
(9.62±0.02)

DRD2-T4L(Sf9)
I1223.40A/L3756.37A/L3796.41A

3.13
(8.57±0.18)

1.88
(8.73±0.02)

0.06
(11.02±0.04)

0.09
(11.03±0.33)

0.57
(9.25±0.03)

Extended Data Table 2
Data collection and refinement statistics

Highest resolution shell is shown in parentheses.

Structure Human DRD2 (ΔN/ΔICL3T4L/ΔC)-Risperidone complex

 Data Collection APS, GMCA/CAT 23ID-B/D, 10 μm microfocus beam

 Crystals 20

 Resolution range 30.00 - 2.90 (2.99 - 2.90)

 Space group P212121

 Unit cell Dimensions a, b, c (Å) 50.98 72.52 151.31

 Unique reflections 12826 (889)

 Multiplicity 5.5 (2.5)

 Completeness (%) 97.3 (86.9)

 Mean 1/σ(l) 15.2 (1.0)

 Rmerge (%) 13.4 (73.8)

 CC1/2(%) 99.4 (53.5)

Refinement Statistics

 Reflections used in refinement 12826 (889)

 Reflections used for R-free 622 (40)

 R-work (%) 22.6 (37.4)

 R-free (%) 24.9 (34.1)

Number of Atoms

 DRD2 1948
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Structure Human DRD2 (ΔN/ΔICL3T4L/ΔC)-Risperidone complex

 T4L 1176

 Risperidone 30

 Lipid and other 82

Overall B-factors (Å2)

 Receptor 84.1

 T4L 97

 Risperidone 75.8

 Lipids, water, other 86.8

Model Statistics

 RMSD-bonds (Å) 0.004

 RMSD-angles (°) 0.56

 Ramachandran favored (%)# 97.36

 Ramachandran allowed (%)# 2.64

 Ramachandran outliers (%)# 000

 Rotamer outliers (%)# 0.67

 Clashscore* 399

*
Rmerge = Σhkl |I(hkl) − <I(hkl)>|/Σhkl(hkl), where <I(hkl)> is the mean of the symmetry equivalent reflections of I(hkl).

#
As defined in MolProbity.

Extended Data Table 3
Affinity of risperidone and nemonapride at ligand 
binding pocket mutants of the D2 dopamine receptor

Data represent mean Ki (pKi ± SEM) for competition binding experiments and Kd (pKd ± 

SEM) for homologous competition binding experiments using [3H]-nemonapride (0.1–0.5 

nM) as radioligand. All data are the mean SEM of three independent assays (n = 3 

independent experiments).

Receptor

Risperidone Nemonapride

Ki, nM
(pKi ± SEM)

ΔpKi
(mutant-WT)

Kd, nM
(pKd ± SEM)

ΔpKd
(mutant-WT)

DRD2
wild-type

4.50
(8.41 ±0.07)

– 0.21
(9.69 ±0.06)

DRD2
W100EL1A

8.14
(8.19 ±0.13)

−0.21 1.97
(8.71 ±0.02)

−0.98

DRD2
F1103.28A

36.89
(7.48±0.09)

−0.93 0.17
(9.77 ±0.03)

0.08

DRD2
D1143.32A

>10000 – 8.10
(8.09 ±0.04)

−1.60

DRD2
V1153.33A

3.07
(8.52 ±0.04)

0.11 0.84
(9.08 ±0.02)

−0.61

DRD2
C1183.36A

4.84
(8.32 ±0.01)

−0.09 0.40
(9.40 ±0.02)

−0.29

DRD2
T1193.37A

177.19
(6.83 ±0.12)

−1.58 0.43
(9.38 ±0.06)

−0.31

DRD2
I1223.40A

13.87
(7.97 ±0.13)

−0.44 0.30
(9.52 ±0.01)

−0.17
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Receptor

Risperidone Nemonapride

Ki, nM
(pKi ± SEM)

ΔpKi
(mutant-WT)

Kd, nM
(pKd ± SEM)

ΔpKd
(mutant-WT)

DRD2
S1975.46A

1.22
(8.92 ±0.03)

0.51 043
(9.37 ±0.01)

−0.32

DRD2
F1985.47A

41.95
(7.38 ±0.03)

−1.02 0.76
(9.12 ±0.02)

−0.57

DRD2
F3826.44A

57.70
(7.25 ±0.05)

−1.16 030
(9.53 ±0.05)

−0.16

DRD2
W3866.48A

>10000 – 402
(8.40 ±0.04)

−1.29

DRD2
F3896.51A

2992
(5.65 ±0.17)

−2.76 4.70
(8.35 ±0.08)

−1.34

DRD2
F3906.52A

31.20
(7.61 ±0.15)

−0.80 1.30
(8.89 ±0.03)

−0.80

DRD2
Y4087.35A

13.63
(7.95±0.13)

−0.46 0.18
(9.76 ±0.02)

0.07

DRD2
T4127.39A

102.68
(7.02 ± 0.08)

−1.77 4.92
(8.33 ±0.10)

−1.36

DRD2
Y4167.43A

2772
(5.61 ±0.15)

−2.80 088
(9.06 ±0.01)

−0.63

Extended Data Table 4
Compound dissociation and association rates at wild-
type and mutant DRD2

Data were acquired by association and dissociation kinetic experiments conducted in parallel 

at room temperature using [3H]-N-methylspiperone (0.8–1.0 nM) for Aripiprazole and N-

methylspiperone or [3H]-nemonapride (0.8–1.0 nM) for nemonapride. Estimates of koff, kon, 

and Kd were obtained from four independent experiments. Residence time was calculated as 

1/koff. All data are the mean SEM of four independent assays (n = 4 independent 

experiments). Asterisks indicate statistically significant differences between WT and mutant 

receptors (n.s.=Not significant. p values are indicated, unpaired two-tailed Student’s t-test).

Compound Receptor Residence Time, min (koff 
± SEM) min−1

kon ± 
SEM, M
−1, min−1

kdr nM (pKd ± 
SEM)

Aripiprazole DRD2 wild-type 154
(0.0065 ± 0.0004)

7.68 × 105 

± 4.94 × 
105

9.43(8.03 ± 0.07)

DRD2 W100EL1A 15
(0.067 ± 0.015)⊥p=0.006

2.48 × 105 

± 6.5 × 
104

273(6.56 ± 0.02)

DRD2 W100EL1L 14
(0.071 ± 0.0007)⊥p=0.006

1.89 × 105 

± 3.7 × 
104

387(6.42 ± 0.08)

DRD2 W100EL1F 26
(0.038 ± 0.007)⊥p=0.008

6.32 × 105 

± 8.5 × 
104

62.8(7.22 ± 0.14)

DRD2 L942.64A 59
(0.017 ± 0.002)n.s.

1.23 × 106 

± 1.06 × 
106

49.8(7.56 ± 0.52)
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Compound Receptor Residence Time, min (koff 
± SEM) min−1

kon ± 
SEM, M
−1, min−1

kdr nM (pKd ± 
SEM)

DRD2 I184EL2A 100
(0010 ± 0.001)n.s.

6.65 × 105 

± 5.1 × 
104

15.5(7.81 ± 0.03)

DRD2 L942.64A/I184EL2A 3
(0.32 ± 0.06)⊥p=0.005

2.93 × 106 

± 2.58 × 
106

413(6.64 ± 0.52)

N-Methyl spiperone DRD2 wild-type 250
(0.004 ± 0.0003)

2.34 × 108 

± 6 × 107
0.018(10.75 ± 0.08)

DRD2 W100 EL1A 21
(0.048 ± 0.0079) ⊥p=0.0073

1.65 × 108 

± 6 × 107
0.31(9.51 ± 0.08)

DRD2 W100EL1L 20
(0.050 ± 0.0064)⊥p=0.0072

1.72 × 108 

± 4 × 107
0.29(9.53 ± 0.03)

DRD2 W100EL1F 38
(0.026 ± 0.00003)⊥p=0.0083

2.08 × 108 

± 5 × 107
0.13(9.89 ± 0.10)

DRD2 L942.64A 77
(0.013 ± 0.0047)n.s.

2.08 × 108 

± 4 × 107
0.062(10.21 ± 0.08)

DRD2 I184EL2A 128
(0.0078 ± 0.00004)n.s.

1.70 × 108 

± 3 × 107
0.048(10.33 ± 0.08)

DRD2 L942.64A/I184EL2A 6
(0.170 ± 0.063)⊥p=0.064

1.62 × 108 

± 1 × 107
1.02(9.01 ± 0.14)

Nemonaptide DRD2 wild-type 167
(0.006 ± 0.0002)

2.0 × 108 

± 5 × 107
0.031(10.52 ± 0.09)

DRD2 W100EL1A 43
(0.023 ± 0.001)⊥p =0.002

1.17 × 108 

± 2 × 107
0.19(9.75 ± 0.14)

DRD2 W100EL1L 45
(0.022 ± 0.0018)⊥p =0.003

1.07 × 108 

± 3 × 107
0.20(9.70 ± 0.02)

DRD2 W100EL1F 40
(0.025 ± 0.0019)⊥p =0.002

2.03 × 108 

± 6 × 107
0.13(9.90 ± 0.10)

DRD2 L942.64A 26
(0.039 ± 0.0033)⊥p =0.0015

2.97 × 108 

± 5 × 107
0.13(9.88 ± 0.03)

DRD2 I184EL2A 149
(0.0067 ± 0.0004)n.s.

9.60 × 107 

± 7 × 106
0.07(10.16 ± 0.06)

DRD2
L942.64A/I184EL2A

5
(0.20 ± 0.0048)⊥p=0.0009

2.89 × 108 

± 1 × 108
0.82(9.12 ± 0.19)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Structural details of DRD2 and comparison with DRD3 and DRD4
In all panels, dopamine receptor structures are shown aligned to the DRD2, with the DRD2 

colored in green; DRD3 in magenta (PDB code 3PBL), and DRD4 in blue (PDB code 

5WIU). Risperidone (yellow) is shown in sphere representation. a, Overall structure of the 

DRD2/Risperidone complex. b, c, Comparison of the view from the extracellular side. d, 

Cytoplasmic surface showing salt-bridge interaction (grey dotted line) between R1323.50 and 

E3686.30. In all panels, the Ballesteros-Weinstein numbering is shown as superscript.
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Figure 2. Comparison of the ligand binding pocket across the D2-like family receptors
a, b, c, Surface representations of the ligand binding pockets of DRD2 (a), DRD3 (b) (PDB 

code 3PBL) and DRD4 (c) (PDB code 5WIU) are shown in transparent gray. d, A schematic 

representation of risperidone binding interactions at a 4.0 Å cut-off is shown. Hydrogen 

bonds are shown in grey dashed lines. Mutations of the amino acid in the red boxes reduces 

risperidone binding affinity by more than tenfold. The thermo-stabilizing mutation 

(I1223.40A) colored in blue. The outline of deeper hydrophobic pocket is colored as orange.
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Figure 3. Different extended binding pockets revealed across D2-like family receptors
a, The distinctive selective extended binding pocket (EBP) defined by four key residues in 

the D2-like family receptors are delineated. The residues of DRD2 (green), DRD3 (pink) 

(PDB code 3PBL) and DRD4 (blue) (PDB code 5WIU) are shown as sticks. b, c, d, 

Structural differences in the EBPs of DRD2 (b), DRD3 (c) and DRD4 (d) are evident. 

Residues and ligands are colored as in (a). The position of each EBP is shown as an ellipse 

with the Ballesteros-Weinstein numbering as superscript.
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Figure 4. The hydrophobic “patch” of the DRD2 binding pocket
a, Risperidone (yellow) bound to DRD2 (green) orthosteric pocket viewed from extracellular 

space. b, The W100EL1 side chain forms extensive hydrophobic contacts with residues 

L942.64 and I184EL2. c, The residues L942.64, W 100EL1 and I184EL2 form a patch (red, with 

other residues in grey) that narrows DRD2’s binding pocket.
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Table 1

Risperidone dissociation and association rates at wild-type and mutant DRD2.

Receptor Residence Time, min
(koff ± SEM) min−1

kon ± SEM,
M−1 min−1

Kd, nM
(pKd ± SEM)

DRD2 wild-type 233 (0.0043 ± 0.0003) 1.65 × 106 ± 1.7 × 105 2.51 (8.65 ± 0.21)

DRD2 W100 EL1A 28 (0.036 ± 0.0022)*p=0.007 5.63 × 106 ± 3.2 × 105 6.74 (8.17 ± 0.04)

DRD2 W100EL1L 23 (0.043 ± 0.004) *p=0.06 6.32 × 106 ± 5.5× 105 6.77 (8.17 ± 0.002)

DRD2 W100EL1F 59 (0.017 ± 0.002) *p=0.01 3.12 × 106 ± 1.8 × 105 5.30 (8.28 ± 0.02)

DRD2 L942.64A 139 (0.0072 ± 0.0029)n.s. 1.43 × 107 ± 2.3 × 106 0.48 (9.33 ± 0.12)

DRD2 I184EL2A 185 (0.0054 ± 0.002) n.s. 9.84 × 106 ± 1.4 × 106 0.54 (9.28 ± 0.10)

DRD2 L942.64A/I184EL2A 6 (0.16 ± 0.05) *p=0.005 2.36 × 107 ± 7.8 × 106 7.01 (8.15 ± 0.02)

Data were acquired by association and dissociation kinetic experiments conducted in parallel at room temperature using [3H]-N-methylspiperone 
(0.8–1.0 nM). Estimates of koff, kon, and Kd were obtained from four independent experiments. Residence time was calculated as 1/koff. All data 

are the mean 

SEM of four independent assays (n = 4 independent experiments). Asterisks indicate statistically significant differences between WT and mutant 
receptors (n.s.=Not significant, p values are indicated, unpaired two-tailed Student’s t-test).
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