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Abstract. The standard treatment for locally advanced uterine 
cervical cancer is concurrent chemoradiotherapy. Successful 
neoadjuvant chemotherapy (NAC) may reduce tumor size and 
facilitate a hysterectomy, thereby improving the prognosis for 
patients with locally advanced cervical cancer. In contrast, 
unsuccessful NAC may worsen the prognosis because if a 
hysterectomy is not possible, the change in treatment plan 
may delay the initiation of core treatment. Therefore, there 
is a need to identify biomarkers that predict the efficacy of 
NAC in patients with uterine cervical cancer. The xeroderma 
pigmentosum complementation group A (XPA) protein 
serves a major role in nucleotide excision repair, which is a 
key DNA damage response pathway involved in cisplatin 
resistance. In the present study, the association between XPA 
expression in tumor tissue and the efficacy of NAC for locally 
advanced uterine cervical cancer was investigated. Data from 
56 patients aged <70 years with locally advanced uterine 
cervical cancer (FIGO stages IIIA or IIIB) who were classi-
fied into two groups based on effective (n=31) and ineffective 
(n=25) responses to NAC treatment was evaluated. Tumor 
tissue samples were obtained by punch biopsy prior to NAC 
and XPA expression was examined immunohistochemically 
and scored using a weighted scoring system. In addition, the 
effects of RNA interference‑mediated downregulation of XPA 
on the cisplatin sensitivity of uterine cervical cancer cells was 
investigated in vitro. It was revealed that the NAC effective 
group had significantly lower weighted XPA scores than 
the NAC ineffective group (P=0.001). Similarly, low tumor 

expression of XPA was significantly associated with higher 
sensitivity to NAC (P=0.001). Additionally, the downregula-
tion of XPA expression in cervical cancer cells significantly 
increased their sensitivity to cisplatin in vitro. The results of 
the present study suggest that low XPA expression may be a 
predictive biomarker of NAC efficacy for patients with locally 
advanced uterine cervical cancer, which may be helpful for 
improving their prognosis.

Introduction

Cervical cancer is a frequent cause of cancer death among 
women worldwide  (1). The standard treatment for locally 
advanced uterine cervical cancer including International 
Federation of Gynecology and Obstetrics (FIGO) stage IIIA, 
IIIB, and IVA cancer consists Platinum‑based concurrent 
chemoradiotherapy (CCRT) (2‑4). However, the prognosis of 
these patients is poor, and the 5‑year survival is <60% (5,6).

Successful neoadjuvant chemotherapy (NAC) can 
reduce tumor size in patients with locally advanced cervical 
cancer, thereby facilitating hysterectomy and improving the 
prognosis  (7). However, the prognosis worsens if NAC is 
unsuccessful, because hysterectomy may no longer be practi-
cable and the switch to radiotherapy may delay the initiation 
of the core treatment (8‑10). Therefore, there is an urgent need 
to identify predictive biomarkers of NAC efficacy for patients 
with locally advanced uterine cervical cancer (10‑14).

The antineoplastic activity of cisplatin is primarily due 
to its ability to induce DNA damage, particularly intrastrand 
DNA crosslinks, which leads to apoptosis (15). Nucleotide 
excision repair (NER) is a pathway that identifies and repairs 
intrastrand DNA crosslinks. Tumor sensitivity to cisplatin 
has been associated with a decrease in the induction of DNA 
repair  (16). Consistent with this, overexpression of NER 
proteins confers resistance to platinum‑based drugs (17,18). 
The xeroderma pigmentosum complementation group A 
(XPA) protein is an indispensable factor for NER. Several 
reports have shown that XPA recognizes and verifies DNA 
damage sites, stabilizes repair intermediates, and contributes 
to the induction of other NER‑associated factors (19‑24). XPA 
expression has been reported to correlate with the resistance 
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of nasopharyngeal carcinoma and lung cancer cell lines 
to platinum drugs (17‑25). However, the role of XPA in the 
response of uterine cervical cancer cell lines and uterine 
cervical cancer patients to cisplatin is not clear.

Here, we sought to determine the utility of XPA expres-
sion as a predictive biomarker by investigating the relationship 
between tumor expression of XPA and the efficacy of NAC for 
locally advanced uterine cervical cancer.

Materials and methods

Patients and tissue samples. We evaluated 56 patients with 
locally advanced uterine cervical cancer (FIGO stages IIIA 
and IIIB). All patients were <70 years of age and were first 
treated at Osaka City University Hospital (Osaka, Japan) 
between April 1995 and March 2010. Tumor tissue samples 
were obtained by punch biopsy before NAC. Patients 
were classified into two groups based on the response to 
NAC: Patients who were successfully treated with NAC, 
underwent hysterectomy, and received radiation therapy 
(NAC + OP+ R group; n=31), and patients who were unsuc-
cessfully treated with NAC and received only radiation therapy 
(NAC + R group; n=25). Balloon‑occluded arterial infusion 
chemotherapy for NAC is performed for all patients. We infused 
Cisplatin (Bristol‑Myers Squibb, Tokyo, Japan) intra‑arterially 
through the catheters over 30 min. Cisplatin was administered 
three times at doses of 50, 75 or 100 mg/m2, depending on the 
patient's age and renal function (26).

Written informed consent was obtained from all patients 
prior to tumor biopsy. The study was approved by the insti-
tutional review board of Osaka City University Hospital 
(IRB no. 3526).

Immunohistochemical staining. XPA protein expression was 
examined in four‑micrometre sections from paraffin‑embedded 
tissue samples using a mouse monoclonal antibody against 
XPA (cat no. sc‑28353; Santa Cruz Biotechnology, Inc., Dallas, 
TX, USA) and a Dako LSAB2 Peroxidase kit (cat no. K0675; 
Agilent Technologies, Santa Clara, CA, USA). After routine 
deparaffnization and rehydration, sections were immersed 
in 3% hydrogen peroxide at room temperature for 10 min to 
block endogenous peroxidase activity. Heat‑mediated antigen 
retrieval was performed with 10 mM citrate buffer (pH 6.0) 
by an autoclave at 110˚C for 20 min. After washing with 
phosphate‑buffered saline (PBS), tumor tissue sections were 
incubated with a 1:100 dilution of the anti‑XPA antibody 
overnight at 4˚C. Next, sections were washed in PBS for 
15 min and then incubated for 10 min with biotinylated goat 
anti‑mouse and anti‑rabbit immunoglobulin G secondary 
antibody (Dako; Agilent Technologies), followed by an 
incubation with a streptavidin‑peroxidase complex, and 
color was developed using 3,3'‑diaminobenzidine used as the 
chromogen. Finally, tissue sections were counterstained with 
hematoxylin. A specificity control was prepared in the same 
manner except the primary antibody was omitted.

The expression levels of XPA were quantitatively analyzed 
using the weighted score method of Sinicrope et al (27). The 
mean percentage of stained tumor cells was scored on a scale of 
0 to 4 as follows: 0, ≤5%; 1, 5-25%; 2, 25-50%; 3, 50-75%; and 
4, >75%. Staining intensity was classified into three categories: 

1+, weak; 2+, moderate; and 3+, intense. The weighted score 
for each tissue specimen was determined by multiplying the 
score of percentage of stained tumor cells by that of staining 
intensity.

Cell culture. The human uterine cervical cancer cell line 
Ca Ski (cat no. IFO50007; Japanese Collection of Research 
Biosources Cell Bank, Osaka, Japan) was cultured in RPMI 
medium (Gibco; Thermo Fisher Scientific, Waltham, MA, 
USA) containing 10% fetal bovine serum (Gibco; Thermo 
Fisher Scientific) and 1% penicillin and maintained in a 
humidified atmosphere with 5% CO2 at 37˚C.

RNA interference. Small interfering RNA (siRNA) targeted to 
XPA (5'‑GUA​CCG​UAA​GAC​UUG​UAC​Utt, 5'‑AGU​ACA​AGU​
CUU​ACG​GUA​Ctt; cat. no. sc‑36853) and a negative control 
sequence (cat. no. sc‑37007) were obtained from Santa Cruz 
Biotechnology. Cells were seeded in 6‑well plates overnight and 
then transfected with siRNAs using Lipofectamine RNAiMax 
(Invitrogen, Carlsbad, CA, USA) according to the manufac-
turer's instructions. The culture medium was changed 24 h 
after transfection and cells were used for experiments 24 h 
after transfection.

RNA extraction and reverse‑transcription‑quantitative 
polymerase chain reaction (RT‑qPCR). Total RNA was 
extracted from the Ca Ski cells using an RNeasy Mini 
kit (QIAGEN GmbH, Hilden, Germany) according to the 
instruction of the manufacturer. RNA was reverse tran-
scribed using a High Capacity cDNA Reverse Transcription 
kit (Applied Biosystems; Thermo Fisher Scientific). PCR 
was performed using a TaqMan Gene Expression Assay 
(Applied Biosystems; Thermo Fisher Scientific) and an 
Applied Biosystems 7500 Fast Real‑Time PCR System. 
XPA mRNA levels were normalized to glyceraldehyde 
3‑phosphate dehydrogenase (GAPDH) mRNA in the same 
samples. TaqMan probes were Hs00902270_m1 for XPA 
and Hs99999905_m1 for GAPDH.

Chemosensitivity assay. The sensitivity of Ca Ski cells to 
cisplatin was examined using a Cell Counting kit‑8 (CCK‑8; 
Dojindo Molecular Technologies, Kumamoto, Japan). Cells 
were transfected with negative control or XPA‑specific 
siRNAs as described above and then seeded into 96‑well 
tissue culture plates at 2x103 cells/well. After 24 h, the culture 
medium was removed and vehicle or cisplatin (0‑10 µg/ml) 
was added for 48 h. Subsequently, 10 µl/well CCK‑8 was 
added and the plates were incubated for 2 h. The absor-
bance at 450 nm was then assesed with a microplate reader 
(Corona Electric, Ibaraki, Japan). Dose‑response curves were 
constructed of the percentage viable cells compared with 
untreated cells.

Statist ical analysis. All statist ical analyses were 
c onduc t e d  w i t h  SPSS  sof t wa r e  ve r s ion  21. 0 
(IBM SPSS, Armonk, NY, USA). Data are presented as 
the mean  ±  standard deviation in the tables and as the 
mean ±  standard error in the figures. Kaplan‑Meier plots 
and log‑rank analyses were used for prognostic analysis. 
Weighted scores were compared using the Mann‑Whitney 
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U test. Student's t‑test was used for comparison of significant 
differences between group means, and χ2 tests were used for 
identification of the association between group categorical 
variables. P<0.05 was considered to indicate a statistically signi
ficant difference.

Results

Patient characteristics. A total of 56 patients with locally 
advanced uterine cervical cancer were divided into two 
groups based on their response to therapy: The NAC effective 
group (NAC + OP + R group; n=31) and the NAC ineffective 
group (NAC + R group; n=25). Table I shows the patients' 
clinicopathological characteristics. No statistically significant 
differences were observed between the two groups.

XPA expression in uterine cervical cancer tissue. XPA was 
expressed in both the nuclei and cytoplasm of the tumor cells 
(Fig. 1). Table II shows the weighted scores for XPA tissue 
staining. The mean weighted score of the NAC ineffective 
group was significantly higher than that of the NAC effec-
tive group (7.12 and 3.90, respectively; P=0.001) (Fig. 2 and 
Table II). Of the 56 patients, 17 had weighted scores of 0‑3 
(designated low expression) and 39 had weighted scores of 

Table I. Characteristics of the patients in the NAC effective 
and ineffective groups.

	 NAC	 NAC
Characteristic	 effective	 ineffective 	 P‑value

No. of patients	 31	 25	
Age (years) 			   0.317a

  Mean ± SD	 48.9±13.2	 52.3±11.5	
  Range	 24‑69	 36‑68	
FIGO stage			   0.397b

  IIIA	 1	 0	
  IIIB	 30	 25	
Histology			   0.433b

  SCC	 27	 21	
  A	 4	 3	
  AS	 0	 1	
Tumor size (mm)			   0.956a

  Mean ± SD	 41.1±22.7	 41.4±23.8	

aStudent's t‑test; bχ2 test; NAC, neoadjuvant chemotherapy; FIGO, 
International Federation of Gynecology and Obstetrics; SCC, 
squamous cell carcinoma; A, adenocarcinoma; AS, adenosquamous 
carcinoma; SD, standard deviation. Data are the number of patients, 
unless indicated.

Figure 1. Immunohistochemical staining of XPA in locally advanced cervical 
cancer. (A) Negative control staining performed without primary antibody. 
(B and C) Representative sections stained with a primary antibody against 
XPA showing scores of 6 (B) and 12 (C). Sections were counterstained with 
hematoxylin. Magnification, x400. XPA, xeroderma pigmentosum comple-
mentation group A.

Table II. Weighted scores for XPA expression in the NAC 
effective and ineffective groups.

	 No. of patients
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Weighted score	 NAC effectivea	 NAC ineffectiveb

  0	 3	 0
  1	 4	 1
  2	 4	 1
  3	 4	 0
  4	 6	 6
  6	 5	 4
  8	 2	 5
  9	 3	 3
12	 0	 5
Total	 31	 25
Weighted score (mean)	 3.90	 7.12

aThe NAC effective group underwent neoadjuvant chemotherapy, 
surgery, and radiotherapy. bThe NAC ineffective group underwent 
neoadjuvant chemotherapy and radiotherapy only. NAC, neoadjuvant 
chemotherapy.
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4‑12 (high expression). There were no significant differences 
in patient characteristics between these two groups (Table III).

NAC effectiveness correlates with XPA expression. Of the 
17 patients with low XPA expression, 15 (88%) were in the 
NAC effective group and 2 (12%) were in the NAC ineffective 
group. In the high XPA expression group, 16 patients (41%) 
were in the NAC effective group and 23 (59%) were in the 
NAC ineffective group. Thus, patients in the low XPA expres-
sion group were more sensitive to NAC than those in the high 
XPA expression group (P=0.001, Table IV).

Survival. Overall survival was significantly longer for the 
NAC effective group than for the NAC ineffective group 
(P<0.001) (Fig. 3) and was significantly longer for the low 
XPA expression group than for the high XPA expression group 
(P=0.01)  (Fig. 4).

Knockdown of XPA enhances the sensitivity of a uterine cervical 
cancer cell line to cisplatin treatment. qRT‑PCR analysis of 
Ca Ski cells confirmed that XPA expression was effectively 
suppressed by transfection with a specific targeting siRNA but 
not by a non‑targeting control siRNA (Fig. 5). Cells transfected 
with XPA‑specific siRNA were significantly more sensitive to 
cisplatin than were the control cells (P<0.05) (Fig. 6).

Discussion

CCRT is considered the standard treatment for patients with 
locally advanced uterine cervical cancer. Effective NAC 

can reduce the tumor size, allowing the patient to undergo 
hysterectomy and potentially improving their prognosis (7). 
However, the prognosis can worsen if NAC is unsuccessful 
because the change in treatment plan from surgery to radio-
therapy can delay implementation of the core treatment (8‑10). 
Therefore, it is important to identify biomarkers that can 
predict the efficacy of NAC in patients with locally advanced 
uterine cervical cancer.

The antitumor mechanism of platinum‑containing drugs 
such as cisplatin results from covalent binding to DNA and 
formation of platinum‑DNA adducts, which interfere with 
DNA replication and ultimately induce apoptosis  (28). 
Although platinum‑based chemotherapy often has good initial 
efficacy, cancer cells may acquire resistance to this therapy. 
Some of the potential mechanisms of resistance are reduced 
intracellular accumulation of cisplatin (29‑31), inactivation 
of apoptotic pathways (32), increased DNA damage repair 
capacity (18,33), increased detoxification of cisplatin (34), 
and other epigenetic changes occurring at the molecular and 
cellular levels (35,36). Among these, NER, which mediates 
DNA damage repair, is believed to be one the most crucial 
determinants  (18). XPA is an indispensable factor for 

Figure 2. Weighted scores for XPA expression in tumor samples from 
patients with locally advanced cervical cancer. *P=0.001 (Mann‑Whitney 
U test). NAC + OP + R, neoadjuvant chemotherapy + surgery + radiotherapy; 
NAC + R, neoadjuvant chemotherapy + radiotherapy; XPA, xeroderma 
pigmentosum complementation group A.

Table IV. Number of patients with low and high XPA expres-
sion in the NAC effective and NAC ineffective groups.

	 Number of patients (%)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ --
	 NAC + OP + R	 NAC + R	
XPA expression	 n=31	 n=25	 P‑value

Low expression 	 15 (88%)	 2 (12%)	 0.001a

(≤3 score)
High expression 	 16 (41%)	 23 (59%)
(≥4 score)

aχ2 test; NAC+OP+R, neoadjuvant chemotherapy + surgery 
+ radiotherapy; NAC+R, neoadjuvant chemotherapy + radiotherapy; 
XPA, xeroderma pigmentosum complementation group A.

Table III. Characteristics of patients in the low and high XPA 
expression groups.

	 XPA	 XPA
	 expression	 expression
Characteristic	  (≤3 score)	  (≥4 score)	 P‑value

Number of patients	 17	 39	
Age (years)			   0.808a

  Mean ± SD	 49.8±13.6	 49.8±13.6	
  Range	 24‑68	 24‑69	
FIGO stage			   0.505b

  IIIA	 0	 1	
  IIIB	 17	 38	
Histology			   0.759b

  SCC	 15	 33	
  A	 2	 5	
  AS	 0	 1	
Tumor size (mm)			   0.470a

  Mean ± SD	 44.6±18.5	 39.8±24.8	

aStudent's t‑test; bχ2 test; XPA, xeroderma pigmentosum comple-
mentation group A; FIGO, International Federation of Gynecology 
and Obstetrics; SCC, squamous cell carcinoma; A, adenocarcinoma; 
AS, adenosquamous carcinoma; SD, standard deviation. Data are the 
number of patients, unless indicated.
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NER (17,18). Several reports have shown that XPA mediates the 
initial recognition and verification of DNA lesions, stabilizes 
repair intermediates, and is involved in the induction of other 
NER factors (19‑24). Therefore, it is likely that upregulation of 
XPA expression would increase platinum resistance. Indeed, 
XPA expression has been reported to correlate with the 
resistance of nasopharyngeal carcinoma and lung cancer cell 
lines to platinum‑based therapy (17,18,25).

The present study reveals a significant relationship between 
XPA expression and the effectiveness of NAC in patients 
with locally advanced uterine cervical cancer. Patients with 
low XPA expression tended to be more sensitive to NAC and 
underwent surgery after NAC. This is consistent with the 
longer overall survival times of the low XPA expression group 
and NAC effective group compared with the high XPA expres-
sion group and NAC ineffective group, respectively. We also 
found that downregulation of XPA expression increased the 

cisplatin sensitivity of cultured uterine cervical cancer cells, 
suggesting that XPA is a cisplatin‑resistance factor. This is the 
first report of a correlation between XPA expression and NAC 
efficacy for locally advanced uterine cervical cancer. However, 
this study included only 56 patients. One of the limitations of 
this study was the small number of patients. We need further 
investigations with a larger number of cases to know the 
critical fact.

In summary, XPA expression may be a predictive marker 
of the effectiveness of NAC for patients with locally advanced 
uterine cervical cancer. This finding could help to improve the 
prognosis of these patients.
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Figure 6. Cell viability of Ca Ski cells transiently transfected with control 
or XPA‑targeting siRNAs and then incubated with the indicated concentra-
tions of cisplatin for 24 h. *P<0.05 (Student's t‑test). NC, negative control; 
XPA, xeroderma pigmentosum complementation group A; siRNA, small 
interfering RNA.

Figure 5. Reverse transcription‑quantitative polymerase chain reaction 
analysis of XPA mRNA expression levels in the uterine cervical cancer cell 
line Ca Ski after transfection with control or XPA‑targeting siRNAs. mRNA 
levels were normalized to GAPDH. NC, negative control; XPA, xeroderma 
pigmentosum complementation group A; siRNA, small interfering RNA; 
GAPDH, glyceraldehyde 3‑phosphate dehydrogenase.

Figure 4. Overall survival of the low XPA expression group (solid line, n=17) 
and high XPA expression group (dashed line, n=39). P=0.01 (Kaplan‑Meier 
and log‑rank tests). XPA, xeroderma pigmentosum complementation 
group A.

Figure 3. Overall survival rate of the NAC effective group (dashed line, n=31) 
and NAC ineffective group (solid line, n=25). P<0.001 (Kaplan‑Meier and 
log‑rank tests). NAC, neoadjuvant chemotherapy.
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