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Abstract

As a simple representation of interactions among distributed brain regions, brain networks have 

been widely applied to automated diagnosis of brain diseases, such as Alzheimer’s disease (AD) 

and its early stage, i.e., mild cognitive impairment (MCI). In brain network analysis, a challenging 

task is how to measure the similarity between a pair of networks. Although many graph kernels 

(i.e., kernels defined on graphs) have been proposed for measuring the topological similarity of a 

pair of brain networks, most of them are defined using general graphs, thus ignoring the 

uniqueness of each node in brain networks. That is, each node in a brain network denotes a 

particular brain region, which is a specific characteristics of brain networks. Accordingly, in this 

paper, we construct a novel sub-network kernel for measuring the similarity between a pair of 

brain networks and then apply it to brain disease classification. Different from current graph 

kernels, our proposed sub-network kernel not only takes into account the inherent characteristic of 

brain networks, but also captures multi-level (from local to global) topological properties of nodes 

in brain networks, which are essential for defining the similarity measure of brain networks. To 
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validate the efficacy of our method, we perform extensive experiments on subjects with baseline 

functional magnetic resonance imaging (fMRI) data obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database. Experimental results demonstrate that the proposed 

method outperforms several state-of-the-art graph-based methods in MCI classification.

Index Terms

Graph kernel; brain network; Alzheimer’s disease (AD); mild cognitive impairment (MCI); 
classification

I. Introduction

AS a neurodegenerative disorder, Alzheimer’s disease (AD) is the most common form of 

dementia in elderly population worldwide, which usually starts slowly and gets worse over 

time. In general, AD leads to substantial, progressive neuron damage that is irreversible, 

which eventually causes death. Recently, a prodromal stage of AD called mild cognitive 

impairment (MCI) has gained increasing attention, due to its high probability of progression 

to AD. It is reported the patients with MCI will progress to clinical AD at an annual rate of 

approximately 10% to 15%, while normal controls (NCs) will develop dementia at an annual 

rate of 1% to 2% [1]. In addition, disease-modifying therapies, given to patients at the early 

stage of their disease development, will have better effect in slowing down the disease 

progression and helping preserve some cognitive functions of the brain. Thus, accurate 

diagnosis of MCI is very important for early treatment and possible delay of AD 

progression.

A large amount of evidences from both anatomical and physiological studies suggest that 

cognitive processes depend on interactions among distributed brain regions [2]. In the past 

years, some new emerging medical imaging techniques, such as modern magnetic resonance 

imaging (MRI) and functional MRI (fMRI), have provided non-invasive ways to map the 

patterns of structural and functional interaction of brain regions [3, 4]. These interaction 

patterns can be characterized as brain networks, thus helping us better understand the 

pathological underpinnings of neurological disorder by exploring connectivity in brain 

networks. For example, fMRI provides an opportunity to quantify functional interaction by 

measuring the correlation between intrinsic blood oxygen level-dependent (BOLD) signal 

fluctuations of distributed brain regions at rest. Accordingly, functional connectivity 

networks have been widely used in brain disease analysis [5–7].

Among various studies for brain network analysis, graph theory provides an effective 

solution to concisely quantify the connectivity properties of networks, where each node 

denotes a particular anatomical element (e.g., a brain region) and each edge represents the 

relationship (e.g., connectivity) between a pair of nodes. However, different from traditional 

data that can be represented in a feature space, data in the form of graph cannot be directly 

represented by feature vectors. Hence, it is challenging to determine how to compare (i.e., 
measure the similarity of) a pair of graphs, which is a fundamental problem in graph-based 

analysis. To deal with this problem, many studies have been focused on defining the 

similarity among graphs (i.e., networks) in the last decade.
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Among various methods for computing the graph similarity, kernel methods [8] offer a 

natural framework to study this problem. In particular, graph kernels, i.e., the kernels 

constructed on graphs, have been proposed and applied to brain network analysis. However, 

most of the existing graph kernels ignore the uniqueness of each node in brain networks, 

which is an inherent characteristics of brain networks. That is, after registering brain images 

of all subjects into a common space, each node in the brain networks is uniquely 

corresponding to a specific brain region (denoted by a letter or number, called as label of the 

node). Previous graph kernels seldom take advantage of the uniqueness of each node, due to 

the difficulty of computing the similarity between brain networks. Fig. 1 illustrates an 

example of brain networks for a NC and an MCI patient, where each node corresponds to a 

specific brain region (denoted by a letter). Since the connections in the patient’s brain 

network have been affected by the disease, these two brain networks in Fig. 1 are isomorphic 

if ignoring the label information of each node. Obviously, based on the existing graph 

kernels without using the label information, the similarity of two networks can not reflect 

the real topological characteristics of these networks.

Numerous studies have suggested that neurodegenerative diseases (e.g., AD and MCI) are 

related to connectivity among specific brain regions [6, 9, 10]. Therefore, both local and 

global topological properties on brain regions are very important for brain network analysis. 

Figure 2 illustrates the discriminative power of each connection in brain networks between 

99 MCI patients and 50 normal controls using the standard t-test on a real dataset from 

Alzheimer’s disease Neuroimaging Initiative (ADNI)1. The characteristics of these subjects 

and the corresponding brain networks are presented in Sections III-A and III-B, respectively. 

Here, Fig. 2 (a) shows the obtained p-values on all connections, and Fig. 2 (b) shows the 

thresholded p-values (i.e., by setting p-values more than 0.05 to 1). From Fig. 2 (a)-(b), it 

can be seen that lots of discriminative connections (with their corresponding p-values less 

than 0.05) mainly distribute on several specific brain regions. Intuitively, exploring both 

local and global connectivity properties of brain regions can construct more effective kernels 

for measuring the similarity of brain networks. To the best of our knowledge, we are among 

the first to exploit both local and global connectivity properties of brain regions to construct 

graph kernels for measuring the similarity of brain networks.

Motivated by a recent work in [11], in this paper, we propose a novel sub-network kernel on 

brain networks for brain disease classification. Specifically, we first construct a group of 

sub-networks on each node to reflect the multi-level (i.e., from local to global) connectivity 

properties of brain networks. Then, we define the similarity of a pair of brain networks, by 

calculating the similarities of all corresponding pairs of sub-network groups when 

considering the uniqueness of nodes. Different from traditional graph kernels, our sub-

network kernel not only takes into account the inherent characteristics of brain network, but 

also captures the multi-level topological properties on nodes of brain networks. We evaluate 

our proposed method on 183 subjects with the baseline resting-state fMRI (rs-fMRI) data 

from the ADNI database, which contains 50 normal controls, 99 MCI patients and 34 AD 

patients. The experimental results demonstrate the efficacy of our proposed method.

The main contributions of this paper are three-fold. First, we define a novel sub-network 

kernel for measuring the similarity between brain networks. To the best of our knowledge, 
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our proposed method is among the first attempts to build brain-network-oriented kernel by 

utilizing the specific characteristics of brain network. Second, we develop a sub-network 

kernel based learning (SKL) framework for automated brain disease diagnosis based on 

fMRI data. Finally, we provide an implementation for performing inference on brain 

network data.

The rest of the paper is organized as follows. In Section II, we briefly review the related 

studies. Then, we describe the data used in current study, and present the proposed method 

and classification framework in Section III. In Section IV, we introduce experimental setting 

and results. In Section V, we give discussions for the experimental results, the influence of 

parameters, and the limitation of our method. Finally, we conclude this paper in Section VI.

II. Related Works

A. Graph-based Methods

Graph theory has been successfully applied to investigate brain networks related to various 

diseases [12, 13]. For example, studies have investigated the local connectivity properties of 

brain networks for AD/MCI patients by using graph-theory-based approaches, and reported 

a series of abnormal structural and functional connectivity, including the disrupted 

functional connectivity between the hippocampus and other brain regions [14, 15], and also 

the decreased functional connectivity with a network of posterior cingulate cortex, 

temporoparietal junction, and hippocampus [16]. Also, other studies have investigated the 

global topological characteristics of functional brain networks, and found that the small-

world characteristics (i.e., high degree of clustering and short path length) have been 

disrupted in AD patients [9]. Besides, a similar study has also investigated the topological 

organization of brain networks in the apolipoprotein E epsilon 4 allele (APOE-4) carriers, 

where APOE-4 is a major genetic determinant for AD [17]. More recently, graph theory has 

been applied to automatic diagnosis of brain diseases, e.g., AD and MCI [18–21].

Compared with other brain network analysis approaches, graph theory offers two important 

advantages [6]. First, it provides quantitative measurement of each node, which can preserve 

the connectivity information in the network and thus reflect the segregated and integrated 

nature of local brain activity. For example, the clustering coefficient [22], which quantifies 

the degree to which nodes in a graph tend to cluster together, is one of the simplest and most 

common measures of functional segregation in brain network analysis. Researchers have 

investigated the local clustering properties of functional connectivity networks, and found 

the disruption of local clustering in AD/MCI patients [14, 15]. This may indicate that the 

functional connectivity network becomes less modular and thus the efficient organization for 

information transferring is lost for AD/MCI patients [15, 19, 23].

Another advantage of graph theory is that it provides a general framework for comparing 

heterogeneous graphs constructed using different types of data (e.g., anatomical and 

functional data). Therefore, graph theory shows great promise to disentangle how various 

pathological processes in brain diseases develop, and provides a possible way to identify 

image-based biomarkers for automated diagnosis of brain diseases [6, 7, 24]. For example, 
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the clustering coefficients from structural and functional connectivity networks have been 

used for the classification of MCI individuals [7, 25].

B. Network Similarity Measurement

Among various network similarity measurement methods, one simple and straightforward 

approach is to extract some local measures of networks (e.g., edge weights, path lengths, and 

clustering coefficients) as feature vectors for computing network similarity and performing 

network analysis. For example, Chen et al. [26] used connectivity strengths between the 

brain region pairs as features for AD/MCI classification. Wee et al. [27] extracted clustering 

coefficients from white matter connectivity networks as features for identification of MCI 

patients. Zanin et al. [28] explored sixteen topological features from functional connectivity 

networks to find the optimal network representation. Also, Tijms et al. [6] investigated 13 

graph properties and examined which properties have been consistently reported to be 

disturbed in AD studies by using group analysis. These studies demonstrate the advantages 

of graph theory in neuroimaging data analysis. However, these methods usually composite 

the local topological measures of brain networks as feature vectors, and thus lose their 

global topology characteristics.

In addition, kernel methods offer a natural framework to study the similarity of networks. 

Informally, a kernel is a function that measures the similarity between a pair of objects, 

which mathematically corresponds to an inner product in a reproducing kernel Hilbert space 

[8, 29]. Once a kernel is defined, many learning algorithms such as support vector machines 

(SVM) can be applied directly, which facilitates the subsequent classification/regression 

tasks. In the literature, graph kernels, i.e., the kernels constructed on graphs, have been 

proposed and applied to diverse fields including neuroimaging studies [30–32], image 

classification [33], and protein function prediction [34]. Kernel methods have been recently 

applied to brain network classification, such as classification of patients with brain disease 

and normal controls [35–37] as well as classification of task-related state and resting state 

[30].

Graph kernels are instances of the family of so-called R-convolution kernels by Haussler 

[38]. Most of graph kernels are defined via comparing small sub-graphs such as walks [39], 

paths, or graphlets [40]. Since searching for structural similarities in a pair of graphs is often 

computationally expensive, some researchers explore graph kernels with lower 

computational complexity by using computational techniques [41]. Recently, researchers 

have defined an effective graph kernel via building a new mathematical representation for 

graphs [11]. Other researchers have also constructed graph kernels by using geometric 

embedding approach [42]. Compared with feature-based methods, kernel-based methods can 

capture both local and global topological properties of graphs, and thus usually achieve 

better performance in brain network classification. In general, the existing graph kernels can 

be roughly divided into two categories: 1) kernels defined on unlabeled graphs where each 

node has no distinct identification except using their interconnectivity, such as graph kernels 

in [11, 40, 42]; 2) kernels defined on labeled graphs where each node is labeled with 

different letter, such as graph kernels used in [39, 41]. Note that some graph kernels, e.g., 
those used in [43], can be defined on both labeled graphs and unlabeled graphs.
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In the first category, graph kernels defined on the unlabeled graphs can also be used for 

computing the similarity of labeled graphs by ignoring their label information, but this may 

make those graph kernels not able to compute the actual similarity of labeled graphs. See 

Fig. 1 for example, where graph kernels defined on unlabeled graphs will fail to measure the 

actual similarity of two brain networks in Fig. 1. Besides, most graph kernels in the second 

category are not suitable to compare the similarity of a pair of brain networks, because some 

graph kernels are infeasible for brain networks due to their computational complexity [39, 

44]. Also, some graph kernels in this category cannot be computed on the brain networks. 

For instance, graph kernels in [44] are used to compare graphs with edge labels, and graph 

kernels in [41] are used to compare graphs with continuous-valued node labels. Other graph 

kernels such as those in [43] are constructed based on the Weisfeiler-Lehman test of graph 

isomorphism. However, no graph isomorphism problem exists, when considering the 

specific information of each node on brain networks.

To address these problems, in this paper we propose a novel sub-network kernel for 

measuring similarity of brain networks.

III. Materials and Method

Figure 3 illustrates our proposed sub-network kernel based learning (SKL) framework for 

brain disease classification, which includes three main steps: (1) image preprocessing and 

connectivity network construction, (2) network thresholding and sub-network kernel 

construction, and (3) classification. In this section, we first introduce the data used in this 

study, and then present the details of each step in our proposed framework.

A. Subjects

In this study, we use a total of 183 subjects, which includes 50 normal controls, 99 MCI 

patients and 34 AD patients, each with fMRI. Among 99 MCI subjects, there are 56 early 

MCI (EMCI) and 43 late MCI (LMCI) subjects. Table S1 in the Supporting Information 

gives the ID of those subjects. All rs-fMRI data were acquired on 3.0 Tesla Philips scanners 

(with varied models/systems) at multiple sites. There is a range for imaging resolution in X 
and Y dimensions, which is from 2.29 mm to 3.31mm and the slice thickness is 3.31mm. TE 

(echo time) for all subjects is 30ms and TR (repetition time) is from 2.2s to 3.1s. For each 

subject, there are 140 volumes (time points). All rs-fMRI data can be downloaded from the 

ADNI database. Table I reports the demographic and clinical information of the studied 

subjects.

B. Image Preprocessing and Network Construction

We perform image pre-processing for all rs-fMRI data using a standard pipeline, including 

brain skull removal, slice time correction, motion correction, spatial smoothing, and 

temporal pre-whitening using FSL FEAT software package (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FEAT). Specifically, the acquired rs-fMRI images are corrected for the acquisition 

time difference among all slices. All images are then aligned to the first volume for motion 

correction and a brain mask is also created from the first volume. At last, the global drift 

removal and band pass filtering between 0.01Hz–0.1Hz are performed using tool in [45]. 
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The pre-processing steps of the T1-weighted data include brain skull removal and tissue 

segmentation into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 

using FSL FAST software package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST). The pre-

processed T1 image is then co-registered to the first volume of the preprocessed rs-fMRI 

data of the same subject and the BOLD signals in GM are merely extracted and adopted to 

avoid the relatively high proportion of noise caused by the cardiac and respiratory cycles in 

WM and ventricle [46]. Finally, the whole brain of each subject in rs-fMRI space is 

parcellated into 90 regions of interest (ROI), by warping the automated anatomical labeling 

(AAL) template [47] to the rs-fMRI image space of each subject using the FSL FLIRT 

software package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). For each of the 90 ROIs, the 

mean rs-fMRI time series was calculated by averaging the GM-masked BOLD signals 

among all voxels within the specific ROI. Finally, we use Pearson correlation coefficients to 

build functional connectivity between the ROIs. Specifically, for each subject, we construct a 

fully-connected functional connectivity network, where each node corresponds to a 

particular ROI and the edge weight is the Pearson correlation coefficient of a pair of specific 

ROIs. Then, we apply Fisher’s r-to-z transformation on the elements of the functional 

connectivity network to improve the normality of the correlation coefficients.

C. Proposed Sub-network Kernel

In this section, we first introduce some related notations. Then, we briefly introduce the 

existing studies in [11]. Motivated by that work, we propose our graph kernels. In the rest of 

the paper, we use Pij to denote the entry (i, j) of matrix P.

Defintion 1 (graph)—A graph  can be defined as a pair, i.e., , where V is a set 

of nodes, and E is a set of edges between nodes, i.e., E ⊆ {(u, v)|u, v ∈ V}.

Defintion 2 (sub-graph)—A graph  is a subgraph of another graph 

 iff V′ ⊆ V and E′ ⊆ {(u, v)|(u, v) ∈ E ∧ u, v ∈ V′}.

According these definitions, the graph and sub-graph are binary graph, there is no weight 

information on edges in graph or sub-graph. We denote W ∈ RN×N as the adjacency matrix 

for a graph , where Wij = 1 if there has an edge between nodes i and j; otherwise, Wij = 0. 

And, N is the number of nodes in . To effectively represent a graph, Shrivastava and Li 

[11] defined a symmetric positive semi-definite covariance matrix C ∈ Rd×d with

(1)

where cov denotes the covariance between two vectors, Wie denotes the i-th power iteration 

of matrix W on a given starting vector e (i.e., the vector of all ones), and d represents the 

number of power iterations, which also controls the number of algorithm iterations in this 

new mathematical representation for the graph . Also, the term ‖·‖1 denotes the l1 norm of 

a vector. Here, the set of power iterations on a given vector v, i.e., {v, Wv, W2v, ⋯, Wdv}, is 

known as the “d-order Krylov subspace”, which contains sufficient information to describe 
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the associated matrix W for some appropriately chosen d. Let v = e which makes the 

covariance between different pairs of vectors in the power iteration being “graph invariant” 

(i.e., with the same representation for isomorphic graphs).

Shrivastava and Li in [11] have argued that the matrix C can capture critical information of 

the underlying graph, including the spectrum of adjacency matrix W as well as counts of 

various sub-structures (e.g., the number of triangles and the number of small paths, etc.), and 

owns many good properties, such as graph invariant. According to the definition in Eq. 1, 

different kinds of graphs or sub-graphs can be represented in a common mathematical space 

and thus directly compared to each other.

Motivated by this work, we propose a novel sub-network (i.e., sub-graph) kernel for 

measuring similarity between a pair of brain networks. Specifically, we first construct a 

group of sub-networks on each node to reflect the multi-level (i.e., from local to global) 

connectivity properties of a brain network. Then, we can compute the similarity of brain 

networks by calculating the similarities of all pairs of sub-network groups from the same 

node across different brain networks, since each node in a brain network is corresponding to 

a particular brain region and is thus unique.

Specifically, we denote  and  as a pair of brain networks (i.e., 
corresponding thresholded functional-connectivity-networks in current studies, as shown in 

Fig. 3), where V denotes the corresponding node set for both brain networks since they share 

the same nodes (w.r.t. brain regions). Also, E and E′ denote the corresponding edge sets for 

 and , respectively. To reflect the multi-level topological properties of brain networks, 

we first define two sets of sub-networks on each node vi in the networks  and , i.e.,

(2)

where , , , 

, and s(·, vi) denotes the length of the shortest-path between 

node vi and other. Here, h determines the maximum of s(·, vi) (i.e., s(·, vi) ≤ h), and also 

defines the number of sub-networks in the set  and the set .

According to Eq. (2),  denotes a sub-network defined on the node vi from the original 

networks , where  represents the corresponding node set which consists of node vi and 

the nodes with their shortest path length to node vi less than or equal to j, and  represents 

the corresponding set of edges occurred in . So,  reflects the topological properties of 

node vi. And,  with larger value of j usually contain more nodes and edges, thus reflecting 

more global topological properties of node vi. Therefore, the sub-network set 

 reflects the multi-level (i.e., from local to global) topological properties 
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of node vi. Fig. 4 illustrates an example of the construction process for two groups of sub-

networks on a specific node. For simplicity, we set sizes of sub-network sets for all nodes as 

a constant h. Thus, we can obtain N sets of sub-networks with the same size for brain 

network with N nodes, i.e.,

(3)

Given a fixed d, the obtained sub-networks can be represented in a common mathematical 

space (i.e., the space of symmetric positive semidefinite matrices C ∈ Rd×d) according to Eq. 

(1), and thus can be compared to each other. Considering the uniqueness of each node, we 

can define the kernel on brain networks  and  by computing the similarity between pairs 

of sub-networks from the same node, i.e.,

(4)

with

(5)

and

(6)

where |·| denotes the determinant,  and  represent the 

corresponding covariance matrices, which are, respectively, defined on the sub-networks 

and  by Eq. (1) via computing the first d terms of power iteration of their adjacency 

matrices, .

Algorithm 1

Sub-network kernel construction.

Input: Two brain networks  and  (each with N nodes), and the numbers d and h

1 Step1: Construct N sets of sub-networks for each brain network by Eq. (2) and Eq. (3)

2

Step2: Compute the similarity between  and  by Eq. (5)
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3
Step3: Compute the kernel  by Eq. (4)

Output: Graph Kernel 

Accordingly, the function in Eq. (6) defines the similarity of a pair of sub-networks  and 

 by calculating Bhattacharya similarity between corresponding covariance matrices 

and . Then, the function in Eq. (5) defines the similarity of pairs of sub-networks from 

the same node. Finally, the function in Eq. (4) defines the similarity of pairs of sub-networks 

for all nodes, which measures the similarity of brain networks  and . The detailed 

construction process of proposed graph kernel is summarized in Algorithm 1. Since the 

Bhattacharya similarity is positive semi-definite, the kernel defined in Eq. (4) is also positive 

semi-definite kernels according to the principle of weighted summation kernel [8]. Thus, the 

proposed kernel is a valid kernel, and hence can be directly used in the existing kernel-based 

methods, such as SVM.

It is worth noting that a set of sub-networks (e.g., ) are constructed on a particular node 

(e.g., vi) to reflect the multilevel topological properties of each node in a brain network, and 

the size for the set of sub-networks is decided by h. Intuitively, the set of sub-networks with 

larger value of h can reflect more global topological property (i.e., containing much more 

nodes and edges), and  if s < j(s, j ∈ [1, ⋯, h]). Besides, the kernel defined in Eq. 

(5) computes the similarity of each pair of sub-network sets constructed on each node. 

Therefore, our proposed graph kernel can not only capture the level-specific-topological 

properties on nodes of brain networks, but also take into account the uniqueness of node. 

Furthermore, the kernel in Eq. (5) is also a valid kernel, which measures similarity of 

specific brain region across brain networks.

Computation Complexity: The complexity for constructing sub-networks is . 

According to [11], the complexity for computing the similarity of a pair of sub-graphs (w.r.t. 

sub-networks) is , where  and  denote the maximum number of edges 

and the maximum number of nodes on both sub-graphs  and , respectively. Note that 

, , where S and N denote the numbers of edges and nodes on brain network, 

respectively. Thus, the total time complexity in computing the similarity of a pair of 

connectivity networks is less than O(Nh(Sd + Nd2 + d3) + N2). Finally, the total time 

complexity of Algorithm 1 is less than , since d ≪ N and h ≪ N.

D. Sub-network Kernel based Learning

1) Discriminative Network Construction—Since the brain networks of all subjects are 

full-connected, for improving classification performance, we first screen out those less 

discriminative nodes (or brain regions) from the original brain networks and then construct 

more discriminative networks. Specifically, we first extract the local weighted clustering 

coefficient ci(i = 1, ⋯, N) [22] from the original brain connectivity network  with N nodes.
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(7)

where di is the number of neighboring nodes around node vi, and wij represents the weight 

(i.e., Pearson correlation coefficient) between node vi and node vj. These extracted 

clustering coefficients are composited as a feature vector and used for subsequent feature 

selection. Then, we perform a standard paired t-test to screen out features that are not 

significant for discrimination between patients and normal controls. For instance, given 

training subjects, the p-value of each feature is first computed via standard t-test and then 

features with p-value larger than a given threshold are considered as insignificant features 

and thus removed. Finally, all surviving features (i.e., brain ROIs) are used to construct the 

discriminative network with the same weights of edges as in the original connectivity 

network.

2) Network Thresholding—The functional connectivity networks and the corresponding 

discriminative networks of all subjects are fully connected, with edge weights corresponding 

to the Pearson correlation coefficients. To reflect the topological properties of discriminative 

networks, we simultaneously threshold them with a set of predefined values using the 

following formulation:

(8)

where T = {Tm}m=1,2,·⋯, M denotes a set of given thresholds, and M is the number of 

thresholds. In this way, the edges with zero weights will be removed. Here, we select 

multiple thresholds instead of a single threshold, since there is no golden standard to select 

the optimal threshold. Also, the brain networks with multiple thresholds may represent 

multiple levels of topological properties (i.e., the networks with larger threshold often 

preserve fewer connections and thus are sparser in connections). These properties may be 

complementary to each other in improving the classification performance. It is worth noting 

that all nodes are unchanged in network thresholding step, thus still having the same nodes 

(i.e., ROIs) in thresholded networks for all subjects.

3) Multi-kernel SVM Classification—We compute our proposed sub-network kernels on 

each thresholded network across different subjects according to Algorithm 1. Therefore, we 

can get multiple kernels with multiple predefined thresholds. Finally, we adopt a multi-

kernel SVM technique used in [48] for classification, i.e., by adopting the following multi-

kernel learning technique to combine the multiple graph kernels:

(9)
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where  denotes the kernel function over the m-th thresholded networks across 

brain networks  and , and αm is a no-negative weight parameter with . 

Following work in [48], we adopt a coarse-grid search approach via cross-validation on the 

training subjects to determine the optimal αm. Once the optimal parameter αm(m = 1, 2, ⋯, 

M) is obtained, multiple kernels will be transform into single kernel, so traditional SVM 

technique can be directly applied for classification.

IV. Results

In this section, we present our experimental settings, results of brain disease classification 

and comparison between our proposed method and several state-of-the-art network-based 

methods.

A. Methods for Comparison

We compare our proposed sub-network kernels to the state-of-the-art kernels that are 

selected to represent three major groups of graph kernels, i.e., defined on subtrees, shortest 

paths, and edges, respectively. Those graph kernels belong to the Weisfeiler-Lehman graph 

kernel framework proposed in [43] (thus denoted as WL-subtree, WL-shortestpath and WL-

edge, respectively, in this paper). Also, we compare with the graph kernels defined in [11] 

for measuring the similarity of ego network (denoted as Ego-net in this paper) and shortest-

path kernels proposed in [40] (denoted as Shortest-path in this paper). It is worth noting that 

all graph kernels used for comparison are constructed by ignoring the label information of 

nodes in the brain networks. Besides, we also compare with the baseline method using only 

local topological measures (i.e., weighted clustering coefficients [22]) as features, where t-
test is used for feature selection and a linear SVM is used to perform classification.

B. Experimental Setting

In our experiments, two kinds of binary classification tasks are performed, i.e., 1) MCI vs. 

NC classification, and 2) early MCI (EMCI) vs. late MCI (LMCI) classification. We 

evaluate the classification performance using the leave-one-out (LOO) cross-validation with 

a SVM classifier. The performances of all methods are evaluated by computing the 

classification accuracy, balanced accuracy (i.e., the average accuracy obtained on either 

class), and area under receiver operating characteristic (ROC) curve (AUC).

In our study, The SVM is implemented based on the LIBSVM library [49] with the default 

parameter values. A statistical t-test with the same threshold (i.e., p-value< 0.01) is 

performed to construct the discriminative network. For simplicity, we adopt five different 

values (i.e., T = {0.30, 0.35, 0.40, 0.45, 0.50}) to threshold the obtained discriminative 

networks. The corresponding average connection density (i.e., the fraction of present 

connections to all possible connections) of each threshold is located in the interval [30%, 

70%]. It has been reported that the average connection density interval of [25%, 75%] 

demonstrates higher classification performance [28]. In the classification step, the optimal 

parameter αm is learned based on another LOO cross-validation on the training subjects via 

a grid search, using the range from 0 to 1 with step size of 0.1.
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C. Classification Performance

Classification results of all methods are summarized in Table II. For comparison, in Fig. 5, 

we also give the classification performances of different methods under different single 

thresholded sub-networks. As shown in Table II, our proposed method consistently 

outperforms other methods in both classification tasks. Specifically, our proposed method 

yields accuracies of 82.6% and 74.8% for MCI vs. NC and EMCI vs. LMCI classification, 

respectively, while the best accuracies of the competing methods are 76.5% and 70.7%, 

respectively. Also, our proposed method yields balanced accuracies of 75.5% and 72.6% in 

both classification tasks, respectively, while the best balanced accuracies of other methods 

are 67.5% and 67.4%, respectively. In addition, the AUC of proposed method, respectively, 

is 0.78 and 0.72 in two tasks, which indicates excellent diagnostic power. Besides, we could 

observe from Fig. 5 that 1) the combination of multiple thresholded networks performs 

significantly better than the method using any single thresholded network alone, and 2) the 

performance of our graph kernel on single thresholded network also outperforms the 

performances of the state-of-the-art graph kernels, which again shows the efficacy of our 

proposed graph kernel.

In addition, for better comparison, we also test the performance of AD vs. NC and AD vs. 

MCI classifications with the same experiment setting. Table S3 in the Supporting 

Information gives the results of all methods. As we can see from Table S3, the proposed 

method consistently performed better than the competing methods for AD vs. NC and AD 

vs. MCI classifications, which further demonstrates the efficacy of our proposed method.

D. Discriminative Power of Proposed Graph Kernels

In this subsection, we investigate the discriminative power of our proposed graph kernels. In 

the step of constructing discriminative networks, since the training subjects are slightly 

different in different LOO cross-validation folds, and the selected ROIs by t-test based 

feature selection are often different, thus the corresponding constructed discriminative 

networks are also different. Therefore, we first construct a common discriminative network 

from the original connectivity network of each subject, with its nodes corresponding to the 

ROIs occurred in all LOO cross-validations while its weights corresponding to those in the 

original connectivity network. Then, we use the same thresholds as used in the classification 

step to simultaneously threshold this common discriminative sub-network. Finally, based on 

each thresholded common discriminative sub-network, we perform a significance test 

between two groups of graph kernels, i.e., the graph kernels constructed on intra-class 

subjects (i.e., subjects with the same class label) and the graph kernels constructed on inter-

class subjects (i.e., subjects with the different class label), using the standard paired t-test.

The obtained p-values for the five thresholded common discriminative networks are 

2.39×10−4, 1.22×10−8, 2.04×10−3, 2.31 × 10−10 and 7.76 × 10−5, respectively. These results 

show the values of graph kernel constructed on intra-class subjects are significantly larger 

than those defined on inter-class subjects (i.e., with very small corresponding p-values), 

which indicates our proposed graph kernels can capture the topological similarity of brain 

networks for brain disease classification.
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E. Important Brain Regions

Furthermore, in this subsection, we investigate the importance of ROIs (i.e., brain regions) 

based on our proposed graph kernel. Since the kernel defined in Eq. 5 measures the 

similarity of each ROI across brain networks, we can identify some important brain regions 

according to their classification performance using this kernel. Specifically, we also 

construct the common discriminative network from all LOO cross-validations using the 

same approach as described in the above subsection, and simultaneously threshold this 

network with the same five different thresholds. Then, for each thresholded network, we 

construct the kernels on each ROI among sub-network sets from that ROI across brain 

networks according to Eq. 5, and compute the accuracy of each ROI for MCI classification 

with SVM classifier via a LOO cross-validation strategy. Finally, we rank these ROIs 

according to their classification accuracy and select the top 10 ROIs with the highest 

classification accuracy. Table S2 in the Supporting Information gives those ROIs selected 

from each thresholded networks. Figure 6 also shows all those ROIs. These selected ROIs 

include hippocampus, cingulate, parahippocampal gyrus, amygdala, heschl gyrus and 

temporal gyrus, which are consistent with those reported in that previous studies.

F. Connectivity Analysis

To analyze the connectivities between those selected ROIs in the above section and to 

visually show the differences on connectivity networks for patients and normal controls, we 

also compute the average network based on all selected ROIs in Fig. 6. Specifically, for each 

group (i.e., MCI patients or normal controls), we define an average network based on all 

selected ROIs with each connection as the average of connectivity strength of corresponding 

edge in the original brain networks for subjects from the same group, and compute the 

connectivity difference between patient group and normal control (NC) group. Fig. 7 

graphically shows the obtained results, where color in Fig. 8 denote the difference of 

connectivity strength. As we can see from Fig. 7, the connectivity strengths in MCI group 

are lower than those in NC group in almost all cases. This result is consistent with previous 

findings using group analysis method. On the other hand, to visualize the topology of 

connectivity network for MCI and NC, we construct a thresholded average connectivity sub-

network from the average connectivity network of each group, based on the ROIs selected in 

each thresholded network (listed in Table S2 in Supporting Information). For instance, the 

ROIs selected in each thresholded network are used to define an average connectivity 

network with the nodes corresponding to the selected ROIs and the connections 

corresponding to the connections in the average connectivity network of each group, and the 

value used for thresholding the discriminative connectivity networks is also used to 

threshold this average connectivity sub-network. Fig. 8 plots those thresholded average 

connectivity sub-networks. Here, T1, T2, T3, T4, T5 denote the single thresholded average 

connectivity sub-networks, respectively. Each node in Fig. 8 represents an ROI, and each 

edge in Fig. 8(a)-(b) represents the connectivity between each pair of ROIs. While, each 

edge in Fig. 8(c) denotes the changed connectivity between MCI and NC groups, with blue 

edges and red edges denoting the decreasing and increasing functional connectivity in MCI 

patient, respectively. As can be seen from Fig. 8, compared with NC group, the connections 

in MCI group are significantly reduced, which again suggests possible disruption in 

connectivity between those ROIs, as reported in the previous studies.
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V. Discussion

In this paper, we have proposed a novel sub-network kernel for similarity computation of 

brain networks. The key of our proposed kernel is to take into account the inherent 

characteristics of brain network and capture the multi-level topological properties on nodes 

of brain networks. Furthermore, we built a sub-network kernel based learning framework for 

MCI classification. We have evaluated the performance of our proposed method on a real 

MCI dataset from ADNI via LOO cross-validation to ensure the generalization of the 

classifier. The experimental results show that, compared with the state-of-the-art graph 

kernels, our proposed sub-network kernel can significantly improve brain disease 

classification performance, thus can be potentially used for automated image-based 

classification of brain diseases. In addition, based on proposed graph kernel, we have 

identified disease-related brain regions and found that these brain regions are related with 

MCI disease and have been widely reported in the previous studies. It is worth noting that 

our proposed graph kernel is a general similarity measure for brain networks, which can also 

be applied to other similarity-based brain network analysis tasks, such as the regression/

prediction of some clinical scores (e.g., MMSE).

A. Significance of Results

Graph objects have been widely used for brain network analysis (e.g., classification). In the 

graph-based network analysis method, a fundamental challenge task is how to compute the 

similarity of a pair of graphs (i.e., networks). Among all kinds of methods, kernel methods 

provide a general framework to solve this problem. However, existing graph kernels mainly 

focus on general graphs and thus ignore some specific characteristics of brain network. In 

this paper, we have built a novel brain-network-oriented kernel and applied it to brain 

disease classification. The experimental results on a real MCI dataset show the efficiency of 

our proposed method, compared with the state-of-the-art methods.

In addition, some important ROIs have been identified based on our proposed graph kernel. 

These ROIs include hippocampus [14, 50], cingulate [50, 51], parahippocampal gyrus [10], 

amygdala [51], heschl gyrus [52] and temporal gyrus [53], which have been reported in the 

previous MCI studies. For example, hippocampal formation is one of the first brain regions 

to suffer damage with memory loss and disorientation. It is widely reported that the 

hippocampal formation is damaged heavily in early AD and MCI [14, 50], and is a focal 

point for pathology [54]. The amygdala, as another important subcortical region, is one of 

the most vulnerable structures in the early stage of AD. Studies have reported the alteration 

of the functional connectivity of the amygdala in MCI patients [55].

Further analysis of connectivity between identified brain regions shows that the connectivity 

strengths in MCI group are lower than those in NC group in almost all cases, which is also 

consistent with the previous studies using group analysis method. For example, Wang et al. 
[24] have found disrupted functional connectivity between different functional modules by 

investigating functional connectome of MCI patients. Bai et al. [56] also found the evidence 

of impaired connectivity in the MCI group by exploring the properties of whole-brain 

networks. Other studies have found a loss of small-world characteristics in AD/MCI patients 
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[9, 15, 52]. Besides, a series of abnormal connectivities have been reported in both EMCI 

and LMCI [57, 58].

These changes may suggest that the connectivities between some brain regions are disrupted 

by the disease. These results may also suggest that these disrupted connectivities may lead to 

reduced functional integration and information processing capability of the brain, which 

may account for cognitive deficits in patients. On the other hand, these changes also provide 

an important alternative to explore the properties of brain connectivity network for 

classification of brain diseases. Our results demonstrate that the proposed method can 

effectively classify MCI from NC, and classify LMCI from EMCI, by making use of 

topological properties of functional connectivity networks, which also provides empirical 

evidence for disrupted network organization in MCI (including EMCI and LMCI) patients.

B. Effect of Parameters

In our proposed graph kernel, there are two parameters, i.e., the numbers d and h. The 

number d controls the number of algorithm iterations in computing the mathematical 

representation of sub-networks. The number h controls the size of a sub-network set. To 

investigate the effects of these two parameters on the classification performance of our 

proposed graph kernel, we test different values for the number d from {3, 4, 5, 6, 7, 8}, and 

also the number h from {1, 2, 3}. Fig. 9 shows the classification results with respect to 
different values of the numbers d and h. For comparison, in Fig. 9 we also give the 

classification performance of Ego-net method proposed in [11] with different values of d 
(i.e., d = {3, 4, 5, 6, 7, 8}). As we can see from Fig. 9 and Table II, for all parameter values, 

our proposed method significantly outperforms the Ego-net method on both classification 

tasks. Also, for most values of d and h, the classification performance of our defined graph 

kernel outperforms the performances of other graph kernels, which further shows the 

efficacy of our graph kernel. Besides, Fig. 9 shows that, with a fixed h, the curves varied 

with the value of d are very smooth, which shows that our method is very robust to the 

parameter d. Moreover, from Fig. 9 we can observe that, given a fixed d, the classification 

performance is largely affected by different values of h. When h = 2, our graph kernel 

obtains the best classification performance. These results imply that the selection of h is 

critical for our proposed graph kernel. This is reasonable since the number h controls the 

size of a sub-network set for each node in a brain network, and thus affects the similarity 

measurement of brain networks.

C. Influence of Different Brain Network Modeling Methods

A number of modeling methods have been proposed for estimating the functional 

connectivity networks, with the varying degrees of validation [59]. To evaluate the 

robustness of our method for different network modeling methods, we test the classification 

performance of our proposed graph kernels by using sparse inverse covariance estimation 

(SICE) [60], also called Gaussian graphical model, for brain network estimation. 

Specifically, for each subject, we use the resulting sparse inverse covariance matrix  from 

SICE to build connectivity network, where edges correspond to the conditional partial 

correlation between nodes (i.e., ROIs). That is, if , then ROIs i and j are conditionally 

independent, and there is no edge between them (i.e., Wij = 0); otherwise, Wij = 1. Since the 
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regularization parameter λ in SICE controls the sparsity of inverse covariance matrix , we 

simultaneously use five different values of λ (i.e., λ = {0.2, 0.3, 0.4, 0.5, 0.6}) to build five 

brain networks with different connection densities. Then, we directly compute the proposed 

graph kernels on the brain networks constructed with each λ value across different subjects, 

and use the multi-kernel SVM technique defined in Eq. 9 for classification. Table S4 in the 

Supporting Information gives the classification results of our proposed graph kernel.

The results show that our proposed graph kernel, respectively, yields accuracies of 83.2% 

and 73.7% for MCI vs. NC and EMCI vs. LMCI classifications, indicating the robustness of 

our proposed graph kernel for different brain network modeling methods. In addition, for 

comparison, Table S4 also gives the classification performance of other graph kernels, 

including Ego-net, Shortest-path, WL-subtree, WL-shortestpath and WL-edge. These results 

further demonstrate the efficacy of our proposed method.

D. Effect of Discriminative Networks

In the proposed SKL framework, we construct the discriminative networks from the original 

functional connectivity networks for improving the classification performance. In order to 

evaluate the effect of this step, we test the performance of our proposed SKL framework 

without constructing the discriminative networks. Specifically, we directly threshold the 

original functional connectivity networks derived from rs-fMRI data using the same five 

different thresholds, and further construct five sub-network kernels and perform the multi-

kernel SVM classification. Table S5 in the Supporting Information gives the classification 

results of our proposed graph kernel. As we can see from Table II and Table S5, the results 

of the proposed SKL using discriminative networks are better than those of the method 

without using discriminative networks, indicating the importance of constructing 

discriminative networks. For comparison, Table S5 also gives the classification performance 

of other methods without using discriminative networks, including Ego-net, Shortest-path, 

WL-subtree, WL-shortestpath and WL-edge. The results show that, compared with the 

competing methods, our proposed graph kernel still achieves the best performance, 

indicating again the efficacy of our proposed method.

E. Importance of Network Topology

In our studies, the sub-network-based topological properties are used to construct the graph 

kernel for measuring the similarity of brain networks. To evaluate the importance of 

topological properties of network, we do another experiment to test the classification 

performance by directly using the adjacency matrices of brain networks. Specifically, we 

convert the adjacency matrix of functional connectivity network derived from rs-fMRI into a 

vector, followed by t-test for feature selection and a linear SVM for classification. In both 

tasks of MCI vs. NC classification and EMCI vs. LMCI classification, this achieves 

accuracies of 59.7% and 53.5%, respectively. These results are inferior to those of graph-

kernel-based methods (see Table II and Fig. 5), suggesting that the topological properties of 

networks help improve the performance of brain disease classification.
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F. Limitation

Currently, this study is limited by the following four aspects. First, more priori knowledge 

about brain disease may be embed into network similarity measurement to improve the 

learning performance. For instance, there may have different effects on different brain 

regions by a specific brain disease, thus different brain regions should have their own 

importance for network similarity measurement, which is not considered in current studies. 

Second, the definition of nodes (i.e., brain parcellation) is a very important step for brain 

network analysis. Existing studies have shown that the connectivity networks constructed 

with different brain parcellations exhibit different topological properties [61], while our 

current work did not analyze the effects of different brain parcellations on the performance 

of our proposed method. Third, we construct the graph kernel by comparing the similarity of 

sub-networks. However, the label information of nodes in sub-networks is ignored in our 

proposed method, considering that those sub-networks usually have different topologies 

(i.e., containing different nodes and edges). It is very interesting to explore label information 

for further improving the performance of graph kernels. Finally, there are only 183 studied 

subjects used in the experiments. In the future work, we will further evaluate our proposed 

method on a larger size of dataset.

VI. Conclusions

The similarity measurement between graphs (or networks) is a fundamental challenge in 

network-based analysis. In this paper, we have built a novel sub-network kernel for 

measuring the similarity of a pair of brain networks. Different from existing graph kernels, 

our constructed graph kernels can effectively reflect the specific characteristics of brain 

networks and also capture multi-level topological properties of each node in brain networks. 

We have further developed a sub-network kernel based learning framework for MCI 

classification using rs-fMRI data, with the experimental results demonstrating the efficacy of 

our proposed method.
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Fig. 1. 
Examples of brain networks illustrating a normal control (left) and a MCI patient (right). 

Note that some connections in the patient’s network have been changed. These two brain 

networks are isomorphic when ignoring the label information of each node; thus, the 

similarity between these two networks without using label information will be not their 

actual similarity.
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Fig. 2. 
The discriminative power of each connection in brain networks in identification 99 MCI 

patients and 50 normal controls using the standard t-test on a ADNI database. (Left) The p-

values on connections between all pairs of brain regions (or graph nodes). (Right) The 

corresponding thresholded p-values (i.e., by setting p-values more than 0.05 to 1).
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Fig. 3. 
Illustration of the sub-network kernels based learning (SKL) framework.
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Fig. 4. 
Illustration of process of constructing two sub-network sets at the node B on a pair of brain 

networks  (left) and  (right) with h = 2. Here, {Gj
B}j=1,2 and {Hj

B}j=1,2 are two sub-

network sets constructed on node B, where Gj
B and Hj

B are two sub-networks that consist of 

node B and nodes with their shortest-path length to B less than or equal to j.
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Fig. 5. 
Classification performances of different methods with single or multiple thresholed network, 

in (a) MCI vs. NC classification, and (b) EMCI vs. LMCI classification. Here, T1, T2, T3, 

T4, and T5 denote using the single thresholded network, respectively, while “combined” 

denotes using all thresholded networks.
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Fig. 6. 
The important ROIs selected by our proposed sub-network kernel.

Jie et al. Page 27

IEEE Trans Image Process. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Difference in average connectivity networks based on all selected ROIs between NC and 

MCI groups. Here, colors denote the amounts of difference between two groups on different 

pairs of ROIs.
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Fig. 8. 
Illustration of thresholded average connectivity networks with selected ROIs (listed in Table 

S2 in the Supporting Information) for (a) top row: NC group middle and row: (b) MCI 

group, along with (c) bottom row: their group difference of thresholded average connectivity 

network. Here, red nodes denote brain regions, the connections in (a) and (b) denote the 

connectivities between brain regions. While the connections with different colors in (c) 

denote increase (red connection) or decrease (blue connection) of functional connectivity in 

MCI patients, compared with NC group.
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Fig. 9. 
The classification performance of our proposed method using different parameters (i.e., d 
and h) in (a) MCI vs. NC classification, and (b) EMCI vs. LMCI classification.
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TABLE I

Characteristics of the subjects (MMSE ± Standard Deviation). MMSE:Mini-Mental State Examination.

Group NC MCI AD

Male/Female 21/29 47/52 18/16

Age (Mean ± SD) 75.0 ± 6.9 71.7 ± 7.4 72.8 ± 7.2

MMSE (Mean ± SD) 28.9 ± 1.6 27.8 ± 1.8 21.4 ± 3.1
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