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Abstract

Schistosomiasis is a debilitating neglected tropical disease, caused by flatworms of Schistosoma 
genus. The treatment relies on a single drug, praziquantel (PZQ), making the discovery of new 

compounds extremely urgent. In this work, we integrated QSAR-based virtual screening (VS) of 

Schistosoma mansoni thioredoxin glutathione reductase (SmTGR) inhibitors and high content 

screening (HCS) aiming to discover new antischistosomal agents. Initially, binary QSAR models 

for inhibition of SmTGR were developed and validated using the Organization for Economic Co-

operation and Development (OECD) guidance. Using these models, we prioritized 29 compounds 

for further testing in two HCS platforms based on image analysis of assay plates. Among them, 2-
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[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine and 2-(benzylsulfonyl)-1,3-benzothiazole, two 

compounds representing new chemical scaffolds have activity against schistosomula and adult 

worms at low micromolar concentrations and therefore represent promising antischistosomal hits 

for further hit-to-lead optimization.

Graphical Abstract

INTRODUCTION

Schistosomiasis is a neglected tropical disease caused by flatworms of the genus 

Schistosoma. These worms cause a chronic and often debilitating infection that impairs 

development and productivity, and exposure to these worms is strongly linked to extreme 

poverty.1–4 Recent estimates of World Health Organization suggest that around 258 million 

people are infected resulting up to 200000 deaths annually. Currently, schistosomiasis is 

endemic in 78 countries worldwide, mainly in sub-Saharan Africa, the Middle East, the 

Caribbean, and South America, where infections are mediated through poor knowledge 

about the disease, poor sanitation, and lack of effective health policies.5

In the absence of a vaccine, the control of schistosomiasis relies on a single drug, 

praziquantel (PZQ), which has been used in clinical practice for almost four decades.6 

However, because of high incidence of reinfection, the widespread and repeated use of this 

drug in endemic areas raises concerns about the development of drug resistance by the 

parasite.7–11 This problem is further emphasized by the known lack of efficacy of PZQ 

against juvenile worms,12 which is a potential cause of treatment failure in endemic areas. 

Hence, there is an urgent need for new antischistosomal drugs with novel mechanisms of 

action.

The complete genome sequencing of Schistosoma mansoni,13,14 Schistosoma japonicum,15 

and Schistosoma hematobium16 has provided new information on their biological pathways, 

identifying potentially relevant targets for therapeutic intervention.17 Thioredoxin 

glutathione reductase (TGR) is one of these targets; it plays a crucial role in the redox 

homeostasis of the parasite.18 TGR is a multifunctional enzyme that acts in the 

detoxification of reactive oxygen species (ROS) generated by digestion of red blood 

cells19,20 and by the host immune system.21,22 In mammalian cells, there are two major 

systems to detoxify ROS, one is based on glutathione (GSH) and the other is based on 

thioredoxin (Trx). In both systems, NADPH provides reducing equivalents via two 

specialized oxidoreductase flavoenzymes. Glutathione reductase (GR) reduces glutathione 

disulfide (GSSG) and drives the GSH-dependent systems, whereas Trx reductases (TR) are 

pivotal in the Trx-dependent system. On the other hand, in schistosomes, thiol redox 
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homeostasis is completely dependent on TGR, which controls the NADPH reduction of 

GSSG and Trx in both systems.23–25 Given these characteristics, it is expected that the 

maintenance of the homeostatic levels of Trx and GSH in schistosomes play a key role in a 

variety of cellular processes such as defense against oxidative stress, DNA synthesis, 

detoxification, protein folding, and repair.26 Moreover, RNA interference studies have 

showed that inactivation of TGR of S. mansoni (SmTGR)18 and TGR of S. japonicum 
(SjTGR)27,28 has profound effects on worm survival rates both in culture medium and 

infected mice.

Due to the importance of TGR in parasite’s redox balance, we hypothesized that known 

SmTGR inhibitors listed on publicly available databases may serve as the chemical basis to 

discover new antischistosomal compounds by virtual screening (VS). Docking-based and 

pharmacophore-based approaches are the most popular VS strategies to identify putative hits 

in chemical libraries. However, in recent years, quantitative structure–activity relationships 

(QSAR) models have been used widely in VS applications as well.29–35

The main goal of this study was the identification of new structurally dissimilar compounds 

with high antischistosomal activity. To achieve this goal, we designed a study with the 

following steps: (i) collection, rigorously curation, and integration of the largest possible 

data set of SmTGR inhibitors, (ii) development of rigorously validated and mechanistically 

interpretable binary QSAR models, (iii) application of generated models for VS of three 

subsets from ChemBridge library (~150000 compounds), (iv) interpretation of developed 

models to derive structural rules useful for targeted design of new inhibitors, and (v) 

experimental validation of prioritized/designed hits on live schistosomula and adult worms 

in two distinct HCS platforms. As a result of this study, we found that the QSAR models 

were efficient for prediction of new SmTGR inhibitors and identified six novel 

antischistosomal hit compounds active against schistosomula and three hits active against 

adult worms. Among them, two hits, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine (3) 

and 2-(benzylsulfonyl)-1,3-benzothiazole (4), representing new chemical scaffolds 

structurally dissimilar to known inhibitors of S. mansoni, could be considered as promising 

antischistosomal agents.

RESULTS AND DISCUSSION

Data Set Balancing

Initially, thousands compounds with SmTGR inhibition data were retrieved from the 

PubChem Bioassay Database (AID: 485364) and used to build binary QSAR models. 

Further, uncurated chemical structures were standardized, duplicates were removed, and 

2854 compounds with reproducible potency (IC50) ≤10 μM were considered as inhibitors, 

whereas the remaining 337327 compounds were considered as noninhibitors. Because the 

original data set was highly unbalanced, i.e., 2854 inhibitors and 337327 non-inhibitors 

(1:118 ratio), it is not recommended for building binary QSAR models for the entire data 

set. During model building, most machine learning methods need equal weighting of the 

classes in terms of both the number of instances and the level of importance (i.e., active class 

has the same importance as inactive class). Consequently, when trying to predict a minority 

class in an unbalanced data set, machine learning methods are prone to assign most samples 
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to the majority class, resulting in a large number of erroneous predictions for minority class.
36

To reduce the number of the noninhibitors and ideally maintain the “chemical space” of the 

original data set, we evaluated the optimal number of representative compounds. To 

accomplish this task, we developed an undersampling workflow based on k-nearest 

neighbors (kNN) distances of the each noninhibitor to all inhibitors using the public 

available 166 substructures MACCS keys. We tested different sizes of the data set by 

removing noninhibitors and changing the inhibitors-to-noninhibitors ratios of 1:1 (balanced), 

1:2, and 1:3.

To visualize the structural diversity of our data set before and after balancing, we performed 

a principal component analysis (PCA). PCA transforms the original measured variables into 

new orthogonal variables called principal components, which are a linear combination of the 

original variables. Detailed results of structural diversity investigation are shown in 

Supporting Information, Figure S1. The top two principal components retained 20% of the 

original information. Supporting Information, Figure S1A, represents the PCA plot of 2854 

inhibitors (blue dots) vs all 337327 noninhibitors (gray dots). As we can see, the inhibitors 

are widely distributed across chemical space, reflecting significant chemical diversity. 

Supporting Information, Figure S1B–D, shows the non-inhibitors selected with different 

ratios: 1:1 or 2854 non-inhibitors, Figure S1B; 1:2 or 5705 noninhibitors, Figure S1C; and 

1:3 or 8562 noninhibitors, Figure S1D. As we can see from the distribution of these dots, the 

most representative compounds were chosen that allowed minimal reduction of the original 

chemical space.

Performance of Individual QSAR Models

The balanced (ratio of 1:1) and unbalanced data sets (ratios of 1:2 and 1:3) were modeled by 

a combination of AtomPair,37,38 molecular access system (MACCS),39–41 and Morgan 

fingerprints,38,42 chemistry development kit (CDK),43 and Dragon descriptors44,45 along 

with eight machine learning methods leading to 120 different binary QSAR models 

(Supporting Information, Tables S1, S2, and S3). According to the statistical results of a 5-

fold external cross-validation procedure, we could draw three general conclusions: (i) 

random forest (RF), support vector machine (SVM), and gradient boosting machine (GBM) 

methods showed the best prediction ability among the eight tested machine learning 

methods; (ii) QSAR models built on balanced data sets are better than unbalanced (1:2 and 

1:3 ratios) due to discrepant values between sensitivity (SE) and specificity (SP), the latter 

are prone to assign most samples as noninhibitors, resulting in a large number of erroneous 

predictions; and (iii) the QSAR models which were built from the balanced data set showed 

a high level of agreement between correct classification rate (CCR), SP, and SE values. 

Table 1 shows the detailed performances of the more predictive QSAR models derived from 

the balanced data set.

The combination of Morgan fingerprints with RF (Morgan–RF), MACCS key with RF 

(MACCS–RF), AtomPair finger-prints with SVM (AtomPair–SVM) and GBM (AtomPair–

GBM), Dragon descriptors with SVM (Dragon–SVM) and GBM (Dragon–GBM), and CDK 

descriptors with SVM (CDK–SVM) led to more predictive QSAR models, with correct 
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classification rate (CCR) ranging between 0.81 and 0.85 and coverage of 0.62–0.77 (Table 

1). The best individual model was built using the combination of Morgan–RF (CCR = 0.85, 

SE = 0.85, and SP = 0.86).

To ensure that the accuracy of the models was not due to chance correlation, 10 rounds of Y-

randomization were performed for each data set (Supporting Information, Table S4). The 

results from this analysis (CCR values around 0.50) indicate that our models built using 

balanced data set are statistically robust.

Performance of Consensus Models

Several individual QSAR models were generated using multiple machine learning 

algorithms and descriptors/fingerprints. However, our previous experience suggests that 

consensus models that combine individual QSAR models are advantageous46–49 and 

naturally minimize prediction errors during a VS campaign. Therefore, consensus models 

were built by averaging the predicted values obtained after combining the individual models 

built using the balanced data set. The detailed performances of 12 consensus models are 

given in Supporting Information, Table S5. Among them, the consensus model built by 

combining the Morgan–RF, MACCS–RF, AtomPair–SVM, Dragon–SVM, and CDK–SVM 

(Table 1 and Supporting Information, Table S5) showed the best performance among all 

constructed consensus models (CCR = 0.87, SE = 0.87, and SP = 0.88). This consensus 

model discriminates inhibitors and noninhibitors better than any of the individual QSAR 

models, with a 2% of increase in CCR, SE, and SP when compared with the best individual 

model (Morgan–RF).

In addition, the most rigorous consensus model (consensus rigor)46 was built by combining 

five individual models with more restrictive conditions. A consensus rigor model only 

considers the outcome to be reliable when a compound was inside the applicability domain 

(AD) for the five models. If the compound was outside the AD for any model, then the 

outcome was specified as unreliable. Expectedly, the combination of Morgan–RF, MACCS–

RF, AtomPair–SVM, Dragon–SVM, and CDK–SVM models (Tables 1 and Supporting 

Information, Table S5) also showed the best performance among all built consensus rigor 

models (CCR = 0.91, SE = 0.96, and SP = 0.87). In summary, the best consensus rigor 

model demonstrated better statistical results, with a 5% of increase in CCR, and 11% of 

increase in SE when compared with the best individual model (Morgan–RF). Although the 

AD of consensus rigor is limited only for certain chemical classes (coverage of 0.38), it has 

very high predictive power (CCR = 0.91).

Model Interpretation

The Morgan–RF model exhibited the best predictive performance, and, consequently, it 

possesses the features that are best correlated with SmTGR inhibition activity. Therefore, we 

translated its features (fingerprints) into predicted probability maps (PPMs) and visualized 

the atomic and fragment contributions predicted by the QSAR model (Figures 1 and 2). 

Atoms and fragments promoting the inhibition are highlighted by green (Figure 1), atoms 

and fragments decreasing the inhibitory potential are highlighted by purple (Figure 2), and 
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gray lines (Figures 1 and 2) delimit the region of split between the favorable and the 

unfavorable contributions.50

Analyzing the fragments with favorable contributions highlighted by PPMs, we noticed that 

14 fragments were more frequent in the inhibitors set and absent in the noninhibitors set 

(Figure 1). Examples of favorable fragments for SmTGR inhibition activity are nitrofuran, 2-

ethenylfuran, (ethanesulfonyl) benzene, 2-(sulfonylmethyl) furan, carbonyl thiourea, and 4-

methanesulfonyl-1,3-oxazole. By analyzing the fragments with unfavorable contribution into 

SmTGR inhibition activity (Figure 2), several fragments, such as benzylsulfonamide, 

methylurea, morpholine-4-carbonyl, piperidine-4-carboxamide, 1-

methanesulfonylpiperidine, and cyclohexanecarbonyl, were more frequent in the 

noninhibitors set. Compounds that contain these fragments may show a decreased SmTGR 

inhibitory activity. This information could be useful for designing or optimizing new 

SmTGR inhibitors by replacing unfavorable fragments by favorable fragments.

Reaction Mechanism of SmTGR Inhibition

Although the inhibition mechanisms of most of the SmTGR inhibitors are not well 

understood at the molecular level, the reaction mechanisms by which oxadiazole-2-oxides 

and cephalosporins operate could be identified according to a graphical interpretation of 

PPMs. However, for the best understanding of molecular inhibition mechanisms, it is 

important to highlight that the active site of SmTGR is composed by a cysteine pair (Cys28/

Cys31) in the glutharedoxin domain, a cysteine pair (Cys154/Cys159) in the thioredoxin 

domain, and a redox-active cysteine/selenocysteine pair (Cys596/Sec597) in the C-terminal 

tail. The latter should be highly mobile to accept electrons from the Cys154/Cys159 pair and 

to donate electron pairs to Cys28/Cys31 pair.24 These amino acids provide the perfect 

chemical environment for covalent inhibition. The higher nucleophilicity and low pKa of the 

selenol group of Sec are thought to confer Sec a catalytic advantage over Cys at the 

attacking position.51–53 Nonetheless, the thioredoxin domain contains His571 and Glu576, a 

catalytic dyad that can facilitate proton abstraction of Cys159, thus impacting the catalytic 

efficiency of the thioredoxin domain of SmTGR.24

We observed that the carbons 3 and 4 of the oxadiazole-2-oxide core presented the most 

important contributions for SmTGR inhibition activity (Figure 3A–C). With PPMs 

information for this chemotype, a mechanistic rationale for inhibition was initiated through 

nucleophilic attack (presumably by a thiolate or selenoate of Cys or Sec, respectively) at 

either the position 3 or 4 of the oxadiazole ring and subsequent rearrangement of the 

heterocycle in a manner that allows release of the nitroxyl anion. An enzymatic oxidation is 

posited to transform this agent to nitric oxide (Figure 3D). These pieces of information 

corroborate with mechanism of inhibition proposed by Rai and colleagues54 and mechanism 

of nitric oxide release in physiological solution under the action of thiols studied by Gasco 

and colleagues55 In addition, PPMs indicated that the presence of amine-oxide group in core 

and electron-withdrawing substituents, such as carbonyl, at R1 and R2 positions are 

favorable for SmTGR inhibition (Figure 3A), while removal of the amine-oxide group 

(Figure 3B) and presence of electron deficient substituents at R1 and R2 positions (Figure 

Neves et al. Page 6

J Med Chem. Author manuscript; available in PMC 2018 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3C) leads to modest potencies in terms of SmTGR inhibition. These pieces of information 

corroborate with structure–activity relationships rules established by Rai and colleagues.54

The reaction mechanism by which cephalosporins exert their SmTGR inhibition activity was 

also proposed using the PPMs information (Supporting Information, Figure S2A). For both 

compounds, the PPMs picked up the positive contributions of the basic core structure of 

cephalosporines, more specifically carbon 8 and nitrogen 5 of β-lactam ring, and partially 

positive contribution of 1-methyl-5-tetrazolethione core for inhibition of SmTGR. On the 

basis of these results, we suggest that inhibition of SmTGR by cephalosporins may occur via 

a mechanism similar to proposed by Triboulet and colleagues,56 i.e., a nucleophilic attack of 

Cys or Sec on β-lactam carbonyl carbon, with formation of a tetrahedral intermediate, which 

collapses with β-lactam ring opening by N5–C8 bond fission. Then, the acyl-enzyme 

intermediate could hydrolyze or react further, with expulsion of the 1-methyl-5-

tetrazolethione from carbon 3 generating a reactive methylene that could be trapped by other 

thiolate or selenoate (Supporting Information, Figure S2B).

QSAR-Based Virtual Screening

The QSAR-based VS was carried out following the workflow presented in Figure 4. 

Initially, 150000 compounds available on PremiumSet, DIVERSet-CL, and DIVERSet-EXP 

libraries of ChemBridge were downloaded and prepared for VS. As drug-like ligands are 

highly desirable for the development of new leads with good oral bioavailability, we first 

filtered these libraries and excluded 1285 compounds that violated Veber57 and Lipinski’s 

rules.58 The remaining compounds were predicted by the consensus and consensus rigor 

models. To narrow down the compounds list and to obtain the highest level of confidence for 

each prediction, we took both the consensus score (average class prediction) and consensus 

model coverage into consideration. Consensus model coverage was defined as a fraction of 

individual models for which a compound was found to fall within the respective ADs. In that 

sense, introducing probability cutoffs can lead to predictions with higher confidence. 

Therefore, only putative hits with an average class number prediction of 1.0 and consensus 

model coverage over 50% were selected (470 putative hits). In addition, we removed 

compounds with previous bioactivity data reported against SmTGR or S. mansoni and pan-

assay interference compounds (PAINs)59,60 so that selected compounds would be novel 

SmTGR inhibitors and contain no PAINs structures. Finally, the compounds were evaluated 

by predicting a panel of properties including high aqueous solubility (CIQPlogS),61 

acceptable binding to human serum albumin (QPlogKhsa),61 acceptable brain/blood 

partition coefficient (QPlogBB),61 nonblocking or weak blocking of hERG channel,46,47 and 

absence of carcinogenicity and hepatotoxicity.32 At the end of the VS workflow, 29 putative 

hits were visually inspected and acquired for biological evaluation (Supporting Information, 

Table S6).

Ex Vivo Activity Against Schistosomula

Compared to target-based VS approaches, the traditional whole-organism schistosome 

screening approach (phenotypic screening) is an old but indispensable method to discover 

new antischistosomal agents. This phenotypic approach may be used to validate if the 

predicted SmTGR-inhibitor interaction has antischistosomal activity. Moreover, a validated 

Neves et al. Page 7

J Med Chem. Author manuscript; available in PMC 2018 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compound from a phenotypic assay must have been able to reach its target within the 

assayed organism only after crossing several biological membranes and resisting degradation 

by detoxification enzymes. Hence, a hit coming from a phenotypic screen has much more 

biological value than one coming from a simple biochemical assay. Advances in automated 

microscopes, liquid handling systems, and computer-based image analysis programs have 

enabled the development of high-throughput phenotypic assays with cells or small whole 

organisms, a technique known as high-content screening (HCS).62,63 HCS microscopes are 

able to capture high resolution images of live organisms in quick succession, a feature that 

has been explored to evaluate phenotypic and motility changes in schistosomula64 or adult 

worms.65,66

Therefore, we employed a HCS assay to evaluate the biological activity of the selected 

compounds from virtual screening against the S. mansoni schistosomula. Assaying against 

this larval stage is commonly used as an initial screening step in antischistosomal drug 

discovery campaigns67–72 because schistosomula are easier to obtain in larger numbers than 

adult worms. Of the 29 compounds tested against schistosomula, six were declared 

confirmed actives based on motility and phenotype scores at 20 μM after 48 h of exposure 

(Supporting Information, Table S6). The chemical structures of the six primary hits are 

shown in Figure 5.

Following the initial screening on schistosomula, the six primary hits were selected for 

determining half-maximal motility concentration (EC50) at 0.31–20 μM range (Table 2 and 

Supporting Information, Figure S3). Among primary hits, 1,2-dimethoxy-4-(2-

nitrovinyl)benzene (1), 1-(4-iodophenyl)-3-(4H-1,2,4-triazol-3-ylthio)-2,5-pyrrolidinedione 

(2), 3-[(4-acetylphenyl)amino]-1-(2-thienyl)-1-propanone (5), and 3-(2-furyl)-1-phenyl-1H-

pyrazole-4-carbonitrile (6) only showed inhibition activity at the highest tested concentration 

(>20 μM). On the other hand, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)-vinyl]pyridine (3) and 2-

(benzylsulfonyl)-1,3-benzothiazole (4) showed efficacy in the same range of activity of the 

reference drug PZQ (EC50 = 1.90 μM), with EC50 values of 3.23 and 2.62 μM, respectively. 

This is an important feature for a new antischistosomal drug because modern lead discovery 

pipelines prioritize compounds that possess bioactivity across the entire developmental cycle 

of the parasite in the mammalian host.73,74

Analysis of Phenotypic Profile

Compounds 3 and 4 promoted the internal disruption of larvae as evidenced by the 

appearance of multiple vacuoles as well as the rounding and darkening of the schistosomula 

(Figure 6). To evaluate if schistosomula response profiles toward hits resemble those 

observed in the presence of known antischistosomal drugs (OLT, PZQ, dihydro-artemisinin, 

methylclonazepam, Ro15-5458, and oxamniquine), we applied a Bayesian treatment class 

model using phenotype scores.64 This analysis indicated a shared target and/or mechanism 

of action between OLT and hits, and therefore, all six hits were classified as OLT-like 

compounds. At least in part, these results could be related to SmTGR inhibition because 

OLT has already been identified as a noncompetitive inhibitor of this enzyme. It is also 

important to note that these phenotypic profile has been also observed after SmTGR gene 

knockout.18
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Ex Vivo Activity on Adult Worms

Our next step was to investigate if the compounds identified as hits for schistosomula also 

had an effect on adult S. mansoni worms.65,66 Therefore, we employed a new HCS platform 

recently developed by our group that allows for systematic evaluation of gender-, dose-, and 

time-dependent drug effects on individual male and female parasites by measuring over 100 

image features related to worm motility and morphology. Previously, we have demonstrated 

the successful application of this platform in identification of potent antischistosomal hit 

compounds.65,66 In this study, four compounds (1–4) were screened at 0.1–100 μM 

concentrations for incubation times varying from 0 h (immediately after compound addition 

to culture medium) to 72 h.

Inspection of the measured features suggested that at least three features were able to 

distinguish active from inactive compound concentrations or the DMSO control: the 

Overlap_RandIndex feature, which is related to motility, the intensity, and the area of the 

identified worm object. Figure 7 shows a 3D plot of these relevant features for individual 

female worms exposed to the investigated compounds at 20 μM concentration as well as for 

the PZQ and negative control (treated with 0.1% DMSO) after 48 h incubation. The sample 

images are shown to exemplify the phenotypes that can be captured by these features. In 

general, the feature most correlated to the antischistosomal activity of these compounds was 

the Overlap_RandIndex, which roughly measures the difference in worm position from one 

time-lapse frame to the next and is inversely proportional to worm motility in a scale varying 

from 0 to 1. For simplicity, we hereafter refer to this feature as the “motility score”.

To determine the potency of the hit compounds against adult worms with the reference drug 

PZQ, we have determined EC50 values from dose response curves against male and female 

worms with varying incubation times (Supporting Information, Table S7 and Figure S7). 

Compounds showed motility inhibition potencies against adult worms ranging from 4.91 to 

35 μM, depending on incubation time and gender (Table 2). Overall, inhibition was fully 

achieved after 48 h of incubation (Table 2). Compound 3 was the most active, with EC50 

around 6.00 μM for both genders. Compounds 1 and 4 showed satisfactory potencies (<10 

μM) for female worms, with EC50 = 5.77 and 4.91 μM, respectively, but not for male worms. 

Compound 2 was the less potent, with EC50 values of 10.2 and 17.9 for male and female, 

respectively. Despite the satisfactory potencies displayed, all compounds had a less 

pronounced effect on adult worms than PZQ at all incubation times (EC50 values ≤0.66 μM, 

see Supporting Information, Table S2). Results also indicated that female worms and 

schistosomula are slightly more sensitive to compounds action because they showed EC50 

values up to 5–8 times lower than those determined in males. In part, this could be due to a 

gender-specific expression pattern of SmTGR and immature antioxidant system of the 

schistosomula. In fact, schistosomula express lower levels of SmTGR than adults, which 

make them more susceptible to oxidative damage caused by inhibitors.75,76

Cytotoxicity Against Human Cells

Compounds 1–4 and PZQ were further evaluated for its cytotoxicity against human 

epithelial cells (WSS-1) from human kidney using a resazurin-based viability assay (Table 

2). PZQ showed the lowest cytotoxicity, exhibiting half-maximal cytotoxic concentration 
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(CC50) above 400 μM. Compounds 2, 3, and 4 only were cytotoxic in concentrations higher 

than those necessary for antischistosomal activity. Compound 2 was the least cytotoxic 

compound (CC50 = 133.40 μM), followed by 4 (CC50 = 28.49 μM), 1 (CC50 = 17.48 μM), 

and 3 (CC50 = 16.38 μM).

Controls for Nonspecific Inhibition and Off-Target Effects

Colloidal aggregates have long plagued early drug discovery. When a colloid is formed, 

membrane and soluble proteins adsorb to its surface and are partially denatured, leading to 

nonspecific inhibition and occasionally activation.77,78 Therefore, adult worms were 

coincubated with investigated compounds (at 20 and 100 μM) and detergent Triton X-100 

(0.01%) and their antischistosomal effect was compared with activities obtained without 

detergent for excluding a possible promiscuous colloidal aggregate effect. No significant 

differences were observed after comparison of inhibition activities of both groups, showing 

that antischistosomal activity of the hit compounds is related to specific inhibition 

(Supporting Information, Figure S5). Further, we also investigated possible off-target effects 

of the hit compounds toward nucleophilic thiols in a papain inhibition assay. Again, none of 

the antischistosomal hits showed significant inhibition of papain at 100 μM while positive 

control E-64 fully inhibits this enzyme at 20 μM concentration (Table 2 and Supporting 

Information, Figure S6).

CONCLUSIONS

To the best of our knowledge, this is the first study integrating QSAR-based VS and HCS 

methods to discover new antischistosomal agents. We have developed robust and predictive 

QSAR models for antischistosomal activity. Developed models were used in the most 

conservative way, i.e., in consensus fashion with the strictest AD criteria, for VS of three 

ChemBrigde data sets: DIVERSet-CL, DIVERSet-EXP, and PremiumSet. As a result, 470 

putative SmTGR inhibitors were identified. Then, 29 compounds were selected and tested 

against S. mansoni schistosomula using a HCS platform and six of them showed significant 

inhibition activities at 20 μM. Among them, compounds 3 and 4 showed inhibitory effect 

equivalent to PZQ, with EC50 values around 2.50 μM. Both hits were also classified as OLT-

like compounds, indicating a shared target with OLT, which has already been identified as an 

inhibitor of SmTGR.79 The results of gender-, dose-, and time-dependent inhibitory effect 

indicated that adult female worms of S. mansoni are slightly more sensitive than males to 

compounds action. Compounds 3 and 4 showed satisfactory potencies for female worms, 

with EC50 values around 6.00 μM. Both compounds also demonstrated low cytotoxicity to 

WSS-1 mammalian cells (CC50 > 16 μM) and inhibition of papain only in concentrations 

>100 μM. Finally, both compounds represent new chemical scaffolds which are structurally 

dissimilar to known inhibitors of S. mansoni and thus can be considered as new hit 

compounds for further chemical optimization.
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EXPERIMENTAL SECTION

Computational

Data Set—The QSAR models were developed according to best practices of predictive 

QSAR modeling,80,81 which is fully compliant to Organization for Economic Co-operation 

and Development (OECD) guidance on development and validation of QSAR models such 

as (i) a defined end point, (ii) an unambiguous algorithm, (iii) a defined domain of 

applicability, (iv) appropriate measures of goodness-of-fit, robustness, and predictivity, and 

(v) mechanistic interpretation.82 All in silico steps developed in this study were 

implemented in a publicly available KSAR workflow (http://labmol.farmacia.ufg.br/ksar). 

The KSAR workflow is tightly integrated with R and KNIME and includes many modules 

such as the module for preparing the data, PCA, building of QSAR models, and VS.46,83 We 

first retrieved 359841 compounds containing half-maximal inhibitory concentration (IC50) 

data for the SmTGR enzyme from the PubChem BioAssay database (AID: 485364). 

Compounds with inconclusive IC50 results were considered experimental errors and thus 

were not included in this study to avoid noise in model building. A total of 2854 out of these 

359841 compounds had reproducible potency (IC50 ≤ 10 μM) and were considered as 

inhibitors, whereas the remaining 356987 compounds were considered as noninhibitors.

Data Set Curation—Each compound of data set was carefully standardized according to 

the protocol proposed by Fourches and colleagues.84,85 Briefly, explicit hydrogens were 

added and salts were removed, whereas specific chemotypes such as aromatic and nitro 

groups were normalized using ChemAxon Standardizer (v.6.1.2, ChemAxon, Budapest, 

Hungary, http://www.chemaxon.com). Polymers, inorganic salts, organometallic 

compounds, and mixtures were also removed. In addition, 4437 compounds with multiple 

SmTGR measurements were identified during analyses of duplicates. Further analysis 

showed high concordance (99.9%) of duplicated records. In addition, 345 compounds with 

molecular weight greater than 700 Da were removed. In the end, the prepared data set 

contained 2854 inhibitors and 337327 noninhibitors.

Molecular Fingerprints and Descriptors—Three different types of fingerprints were 

used in this study: the Morgan fingerprint, a RDKit implementation38 of the extended-

connectivity fingerprints,42 with radius of 2 and bit vector of 1024 bits; the MACCS 

structural key fingerprints;39–41 and the AtomPair fingerprints (RDKit implementation38 of 

the Carhart’s atom pairs)37 with bit vector of 1024 bits. All the fingerprints were calculated 

by the open-source cheminformatics toolkit RDKit v.2.4.0.86 A brief description of Morgan, 

AtomPair, and MACCS fingerprints is available in Supporting Information.

The Chemistry Development Kit (CDK, v.1.4.19, GNU Lesser General Public License) 

descriptors and 0–2D descriptors were calculated using the PaDEL-Descriptor program43 

and DRAGON (v.5.5, Talete SRL, Milan, Italy), respectively. The complete list of CDK 

descriptors and a detailed discussion for DRAGON descriptors can be found elsewhere.44,45 

The descriptors matrix was then normalized and constant/near constant and highly correlated 

(r ≥ 0.9) descriptors were removed.
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Data Set Analysis and Undersampling—Because the original library was highly 

unbalanced (2854 inhibitors and 337327 non-inhibitors), it is not recommended for building 

binary QSAR models for the entire data set. Thus, we decided to balance the data set. Unlike 

the traditional undersampling methods which randomly balance the data set, our linear 

undersampling strategy retains most of the representative structures of the noninhibitors set, 

thus ensuring as high as possible coverage of original chemical space. The basic principle 

here is to measure the whole inhibitors matrix represented by the MACCS key fingerprints 

evaluating the Euclidean distance to the MACCS key fingerprints of each noninhibitor using 

a kNN method,87 implemented in R software v.3.0.3.88 Then, the samples on noninhibitors 

set were linearly extracted over the whole set by using k-distances and were used to generate 

balanced and partially balanced data sets. Finally, we generated three undersampled data sets 

with inhibitor-to-noninhibitor ratios of 1:1 (2854 inhibitors and 2854 noninhibitors), 1:2 

(2854 inhibitors and 5705 noninhibitors), and 1:3 (2854 inhibitors and 8562 noninhibitors).

Machine Learning Implementation—The building and optimization of statistically 

acceptable QSAR models requires a close combination between chemical information (i.e., 

fingerprints or descriptors) and several machine learning classifiers. For this reason, eight 

different machine learning classifiers, including the SVM with the radial basis Kernel 

function,89 the RF,90 GBM,91 and partial least-squares discriminant analysis (PLS-DA)92 

approaches, classification and regression trees (CART),93 kNN with Euclidean distance,87 

multilayer perceptron (MLP),94 and multivariate adaptive regression splines (MARS)95 were 

used. All machine learning classifiers were implemented using the R v.3.0.3.88 A brief 

description about the theory of each machine learning method is described in Supporting 

Information.

5-Fold External Cross-Validation—The full data set of compounds with known 

inhibition activities is randomly divided into five subsets of equal size; then one of these 

subsets (20% of all compounds) is set aside as an external validation set and the remaining 

four sets together form the modeling set (80% of the full set). This procedure is repeated five 

times, allowing each of the five subsets to be used as external validation set. Models are built 

using the modeling set only, and it is important to emphasize that the compounds in 

momentary external set (fold) are not employed either to build or select the models.

Applicability Domain—The AD for each descriptor or fingerprint type was estimated 

based on the Euclidean distances among the training set of each QSAR model generated in 

the external 5-fold cross-validation procedure. The distance of a test compound to its nearest 

neighbor in the training set was compared to the predefined AD threshold level. If the 

distance was greater than this threshold level, the prediction was considered to be less 

trustworthy.96 In this study, we defined AD as a distance threshold DT between a compound 

under prediction and its closest nearest neighbors of the training set. It was calculated as 

follows:

(1)
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Here, ȳ is the average Euclidean distance of the k nearest neighbors of each compound 

within the training set, σ is the standard deviation of these Euclidean distances, and Z is an 

arbitrary parameter to control the significance level. We set the default value of this 

parameter Z at 0.5. Thus, if the distance of the external compound from all of its nearest 

neighbors in the training set exceeds this threshold, the prediction is considered unreliable.

Evaluation of Performance and Robustness—To access the predictive performance 

of the binary QSAR models, SE, SP, and CCR were used. These statistic metrics are 

calculated by the following equations:

(2)

(3)

(4)

Here, TP and TN represent the number of true positives (correct classifications of 

inhibitors), and true negatives (correct classifications of noninhibitors), respectively, while 

FP and FN represent the number of false positives (incorrect classifications of inhibitors) 

and false negatives (incorrect classifications of noninhibitors), respectively.

In addition to the above model evaluation metrics, Cohen’s κ (k) was used to measure the 

agreement between model predictions and experimental data.97 This statistical parameter is 

calculated by the following equations:

(5)

(6)

(7)

Here, N denotes the total number of compounds, Pr(a) represents the relative observed 

agreement between the predicted classification of the model and the known classification, 
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and Pr(e) is the hypothetical probability of chance agreement. In the end, k analysis returns 

values between −1.0 (no agreement) and 1.0 (complete agreement), but values between 0.6 

and 1.0 denote that the model is predictive. Finally, to further ensure that the robustness of 

the models was not due to chance correlation, 10 rounds of Y-randomization were performed 

for each constructed model.

Consensus Modeling—After the building of QSAR models using all pairwise 

combinations of different types of chemical descriptors/fingerprints and various machine 

learning methods, the best models were used for consensus modeling, which can be derived 

by calculating an average for individual models. In consensus modeling, the final predicted 

value for each compound is estimated by including an average of the predicted values from 

the set of QSAR models. Thus, the averaged predicted activity for each compound is in the 

[0, 1] range. Formally, compounds with the predicted activity higher than 0.5 are classified 

as inhibitors, and those with the predicted activity lower than 0.5 are classified as 

noninhibitors. Obviously, the closer the average predicted value is to 1 or 0, the higher the 

concordance among all models and the higher our confidence is in the classification of 

compounds as inhibitors or noninhibitors, respectively.

Mechanistic Interpretation—To explore favorable or unfavorable structural fragments 

for SmTGR inhibition, the PPMs were generated to visualize the atomic and fragment 

contributions predicted by the best QSAR model.50

Virtual Screening—The purpose of VS is to identify in a library of chemicals a subset of 

compounds with the desired properties based on computational calculations. Here the 

DIVERSet-CL, DIVERSet-EXP, and PremiumSet diversity data sets taken from the 

ChemBridge database were screened to identify inhibitors of SmTGR. Prior to screening, 

the data sets were curated in the same way as modeling set (see Data Set Curation section) 

and filtered using the Veber57 and Lipinski’s rules58 to obtain drug-like compounds. 

Fingerprints and molecular descriptors were generated for all compounds and normalized 

(except fingerprints) based on the minimum and maximum values of each descriptor of the 

modeling set. Then, best consensus and consensus rigor models were used to predict the 

SmTGR inhibition activity of compounds. The prediction results were accepted only when 

the compound was found within the applicability domains of more than 50% of all models 

used in consensus prediction. In addition, to estimate the structural novelty of putative hits, 

we calculated the pairwise Tanimoto coefficients (using MACCS key fingerprints) between 

each screened putative hit and compounds in the full data set of SmTGR inhibitors. Then, 

putative hits with previous bioactivity data against SmTGR or S. mansoni were identified 

and PAINS were removed using a workflow developed by Saubern and colleagues.98 Finally, 

hits were imported into Maestro workspace v.9.3 and their aqueous solubility (CIQPlogS), 

binding to human serum albumin (QPlogKhsa), and brain/blood partition coefficient 

(QPlogBB) properties were predicted using QikProp v.3.4,61 and hERG inhibition, 

carcinogenicity, and hepatotoxicity were predicted using the Pred-hERG server,46,47,99 

admetSAR server,100,101 and PaDEL-DDPredictor program,102,103 respectively.
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Experimental

Materials—Investigated compounds were purchased from ChemBridge (San Diego-CA, 

USA), resuspended in 100% DMSO, and used immediately in the assays. It is important to 

mention that all chemical structures were confirmed using proton (1H) NMR spectra at 

300/400 MHz and liquid chromatography–mass spectrometry (LC-MS) analysis with 

evaporative light scattering and ultraviolet detectors confirmed a minimum purity of 95% for 

all compounds (spectra of compounds are listed in Supporting Information). DMEM and 

M169 media were purchased from Vitrocell Embriolife (Campinas-SP, Brazil). All other 

reagents were purchased from Sigma-Aldrich (St. Louis-MO, USA).

Automated ex Vivo Larval S. mansoni HCS Assay—Cercarie (S. mansoni, BH 

strain) were vortexed at maximum speed for 5 min for tail shedding and transformation into 

schistosomula by an adapted method from literature.104,105 Briefly, schistosomula were 

resuspended in Medium 169, placed in 384-well plates (120 per well), and maintained in an 

incubator with 5% CO2 overnight before compound addition. The worms were then 

incubated with investigated compounds and PZQ at 0.31–20 μM concentrations or DMSO 

(0.625%). The effect of the compounds on schistosomula motility and phenotypes was 

assessed at 48 h after compound addition using an automated bright-field 

ImageXpressMicro HCS microscope (IXM; Molecular Devices, Wokingham, UK). For 

motility analysis 5 × 11 s interval time-lapse images were collected using a 4× objective. For 

detailed morphology, a 10× objective was used to collect four adjacent images fields from 

within a well in order to increase the number of schistosomula for phenotype analysis. 

Analysis of both the larval phenotype and motility was then carried out in Pipeline Pilot 9 as 

described by Paveley and colleagues.64 Phenotype analysis of individual parasites was 

carried out by a two class Laplacian-modified Bayesian categorization analysis of 80 image 

descriptors which constituted shape, size, image intensity, and texture statistics and 

compared to a training set of data comprising 20000 parasites. Motility analysis of 

individual parasites was also carried out by the average object displacement from the origin 

point in subsequent 4× image across the time frame series. Both the Bayesian phenotype and 

motility scores were subsequently adjusted to the control wells (DMSO treated) on each 

plate.64

Automated ex Vivo Adult S. mansoni HCS Assay—After 42–49 days post 

percutaneously infection of infant Swiss mice with 150 ± 10 S. mansoni cercariae (BH 

strain), animals were euthanized, and worms perfused from portal hepatic and mesenteric 

veins. Male and female parasites were rinsed and individually transferred into 96-well plates 

with complete DMEM media (i.e., DMEM plus 10% fetal calf serum, 2 mM L-glutamine, 

100 μM/mL penicillin, 100 μg/mL streptomycin). The plates were maintained overnight at 

37 °C in a humidified atmosphere of 5% CO2. Further, worms were then incubated up to 72 

h with 0.10–100 μM of selected compounds and PZQ or negative control DMSO at 0.1%. 

The effect of the compounds on adult worm motility or phenotype was assessed either 

immediately 24, 48, or 72 h after compound addition using a newly developed HCS assay. 

Our method uses 100 time-lapse images captured every 250–300 ms with an automated 

bright-field microscope using a 2× objective lens (ImageXpress Micro XLS, Molecular 

Devices, CA). Subsequent quantitative image analysis used a custom-developed pipeline for 
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detecting changes in parasite motility and morphology using the open-source CellProfiler 

software v. 2.1.2.106 The pipeline along with its validation will be thoroughly described in a 

subsequent publication, and the pipeline itself is freely available (www.cellprofiler.org/

published_pipelines.shtml). Briefly, our strategy for motility measurement was based on 

sequential pairwise comparison of the 100 captured time-lapse images. The motility 

measurement called “AdjustedRandIndex” is calculated by comparing worm objects 

identified on images captured at times tn and tn−1 with CellProfiler’s CalculateImageOverlap 

module. This measure ranges from 0 to 1, with 1 meaning two objects are perfectly aligned 

(no movement). In addition to the “Overlap” mobility score, over 100 features related to 

size, shape, intensity, texture, and granularity are calculated for worm objects identified in 

the image analysis pipeline and saved in a database. These features are expected to describe 

different parasite phenotypes in response to drug exposure.

Cytotoxicity Assay—WSS-1 [WS-1](ATCCCRL-2029) epithelial cells derived from 

human kidney were grown in DMEM medium, supplemented with 4.5 g/L glucose, 50 

μg/mL gentamicin, and 10% fetal bovine serum, and seeded into 96-well microplates at 5 × 

104 cells/mL. Twenty hours later, cells were exposed to 0.2–400 μM of PZQ, OLT, and 

LabMol compounds and kept under a humidified atmosphere (37 °C, 5% CO2) for 48 h. To 

evaluate the cytotoxic effects of the compounds, the fluorescent viability dye resazurin was 

added to each well at a final concentration of 0.01 mg/mL 4 h before the end of the 

incubation. Resorufin fluorescence readings (λex = 560 nm, λem = 590 nm) were performed 

immediately and 4 h after resazurin addition in a FlexStation 3 Benchtop multi-mode 

microplate reader (Molecular Devices, Sunnyvale, CA). The percentage of viable cell was 

calculated using cells treated only with DMSO (0.2–0.8%) as controls.

Colloidal Aggregation Assay—Adult worms were coincubated with compounds (at 20 

and 100 μM) and detergent Triton X-100 (0.01%). The, motility measurements were 

performed after 48 h and 72 h, and their antischistosomal effect was compared with 

activities obtained without detergent.

Papain Inhibition Assay—Enzymatic assay was performed at 37 °C in 100 mM sodium 

acetate buffer, pH 3.5. Positive control E-64 and compounds were incubated at 20 and 100 

μM concentrations for 5 min with papain (5 μg/mL), and the reaction was initiated with the 

addition of 50 μM Z-FR-AMC fluorogenic peptide substrate.

Statistical Analysis—One-way ANOVA followed by Tukey’s multiple comparisons test 

was performed using GraphPad Prism v.5.00 (GraphPad Software, La Jolla California USA, 

www.graphpad.com). The EC50 and CC50 values were determined by four-parameter logist 

curve function using the same software. EC50 values obtained for adult worms were 

calculated using TIBCO Spotfire software (Boston, MA).

Ethics Statement—Animal’s maintenance and experiments were carried out in 

accordance with the Institutional Ethics Committee for Laboratory Animal Use at the 

Oswaldo Cruz Foundation (CEUA/FIOCRUZ, Brazil; license no. L-044/15).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS USED

AD applicability domain

CART classification and regression trees

CC50 half-maximal cytotoxic concentration

CDK chemistry development kit

EC50 half-maximal motility concentration

FN false negatives

FP false positives

GBM gradient boosting machine

GR glutathione reductase

GSH glutathione

GSSG glutathione disulflde

HCS high content screening

IC50 half-maximal inhibitory concentration

kNN k-nearest neighbors

MACCS Molecular ACCess System (MACCS) keys

MARS multivariate adaptive regression splines

MLP multilayer perceptron

NADPH nicotinamide adenine dinucleotide phosphate

Neves et al. Page 17

J Med Chem. Author manuscript; available in PMC 2018 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



OECD Organization for Economic Cooperation and Development

OLT oltipraz

PCA principal component analysis

PLS-DA partial least-squares discriminant analysis

PPMs predicted probability maps

PZQ praziquantel

QSAR quantitative structure–activity relationships

RF random forest

S. mansoni Schistosoma mansoni

SAR structure–activity relationships

SE sensitivity

SMARTS SMILES arbitrary target specification

SmTGR S. mansoni TGR

SP specificity

SVM support vector machine

TGR thioredoxin glutathione reductase

TN true negatives

TP true positives

TR thioredoxin reductase

Trx thioredoxin

VS virtual screening
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Figure 1. 
Favorable fragments (green) for SmTGR inhibition predicted by the best individual QSAR 

model and their respective frequencies in inhibitors and noninhibitors sets.
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Figure 2. 
Unfavorable fragments (purple) for SmTGR inhibition predicted by the best individual 

QSAR model and their respective frequencies in inhibitors and noninhibitors sets.
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Figure 3. 
Predicted probability maps generated for oxadiazoles (A, B, and C) and their proposed 

reaction mechanism in the SmTGR active site (D).
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Figure 4. 
QSAR-based VS workflow used for identifying new compounds active against S. mansoni.
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Figure 5. 
Chemical structures of six priority hits selected for further follow up.
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Figure 6. 
Phenotypes of schistosomula exposed for 48 h to 0.625% DMSO (control, A), 20 μM of 4 
(B), and 10 μM of PZQ (C) and OLT (D). The outlines represent the position of each 

parasite over 5 time points (11 s interval).
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Figure 7. 
3D scatter plot of the top three image features correlated to antischistosomal activity of the 

investigated compounds on female S. mansoni worms after 48 h drug exposure. Each point 

in the graph represents a well/condition in the assay. Sample images are shown for selected 

wells to illustrate the different phenotypes captured by these three parameters (OA, object 

area; MS, mobility score; PI, pixel intensity of the worm object). The green outlines 

represent the position of each parasite over five time points (3 s interval) overlaid on the 

initial position (red outline).
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