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ABSTRACTMeiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes
can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated
within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be
studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the
evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister
species infecting wild grasses Z. ardabiliae. We specifically addressed whether recombination landscapes, including hotspot positions, are
conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a
detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequi-
librium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed
recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison
of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little
correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots
across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction
of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving
recombination in these species.
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MEIOTIC recombination is a fundamental process that, in
many eukaryotes, shapes genetic variation in popula-

tions and drives evolutionary changes. Studies based on
experimental and empirical data have demonstrated that

recombination in sexual organisms plays a crucial role in
defining genome-wide neutral and nonneutral nucleotide
variation patterns (Begun and Aquadro 1992; Spencer et al.
2006), rates of protein evolution (Betancourt et al. 2009),
transposable element (TE) distribution (Rizzon et al. 2002),
GC content (Meunier and Duret 2004), and codon-usage
bias (Marais et al. 2003). Despite the ubiquitous occurrence
of recombination, however, the mechanisms that determine
the genome-wide and temporal distribution of crossover
events are still poorly understood in most species.

Accurate genome-wide recombination maps are essential
for studying the genomics and genetics of recombination.
Recombination rates have been recorded in many species
by direct observations of meiotic events using genetic crosses
or pedigrees (for example Broman et al. 1998; Jeffreys et al.
1998; McMullen et al. 2009). Pedigree studies, however, rely
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on large numbers of individuals and produce only low-reso-
lution rate estimates because of the relatively low number of
meiotic events that can practically be observed (Stumpf and
McVean 2003). Furthermore, manymicrobial eukaryotic spe-
cies, including important pathogens, are difficult or even im-
possible to cross under laboratory conditions (Taylor et al.
2015). While experimental measures of recombination rate
can be challenging in many species, advances in statistical
analyses provide powerful tools to generate fine-scale recom-
bination maps using population genomic data (e.g., Myers
et al. 2005; Chan et al. 2012; Wang and Rannala 2014).
These methods are based on genome-wide patterns of link-
age disequilibrium (LD) among single nucleotide polymor-
phisms (SNPs) and have the potential to capture the history
of recombination events in a population sample. Thus, re-
combination studies based on population genomic data have
provided detailed insights into the genomics of recombina-
tion in a range of species (Winckler et al. 2005; Horton et al.
2012; Singhal et al. 2015; Hunter et al. 2016). In many or-
ganisms, but not all, the majority of recombination events
tend to concentrate in short segments termed recombination
hotspots (Petes 2001; Chan et al. 2012). In the human
genome, .25,000 recombination hotspots have been identi-
fied, with a number of them showing a.100-fold increase in
recombination rates and exhibiting a strong impact on the
overall recombination landscape and genome evolution in
general (Myers et al. 2005; Winckler et al. 2005; Jeffreys
and Neumann 2009).

Comparative analyses of recombination maps between
closely related species have shed light on the dynamics of
recombination landscapes in different taxa. A comparative
analysis of recombination landscapes of chimpanzees and
humans found a strong correlation of recombination rates at
broad scales (whole-chromosome and megabase scale),
whereas fine-scale recombination rates were considerably
less conserved because of nonoverlapping recombination
hotspots (Auton et al. 2012). The localization of recombi-
nation hotspots in primates and mice is in large part deter-
mined by PRDM9, a histone methyltransferase with an array
of DNA-binding, Zn-finger domains (Myers et al. 2010). In
some species—including species without PRDM9 such as
yeast, plants, birds, and some mammals—recombination
hotspots associate with particular functional features such
as transcription start and stop sites as well as CpG islands
(Horton et al. 2012; Choi et al. 2013; Lam and Keeney 2015;
Singhal et al. 2015; Smeds et al. 2016). A model developed
to explain the association of recombination hotspots and
functional elements proposes that a depletion of nucleo-
some occupancy at these sites increases the accessibility of
the recombination machinery (Kaplan et al. 2009; de Castro
et al. 2012). Indeed, in the fission yeast Schizosaccharomyces
pombe and the Brassicaceae plant Arabidopsis thaliana, mei-
otic recombination hotspots were shown to colocalize with
nucleosome‐depleted regions, supporting a link between
chromatin structure and recombination in these species
(de Castro et al. 2012; Wijnker et al. 2013).

Although many pathogens and parasites are sexual, the
impact of recombination on the evolution of their genomes
has been rarely addressed (Awadalla 2003). Genome
studies have revealed exceptionally high rates of se-
quence evolution in some filamentous pathogens, includ-
ing oomycetes and fungi (Raffaele and Kamoun 2012;
Möller and Stukenbrock 2017). TEs, in particular, have
been shown to play an important role in shaping the ar-
chitecture and size of these pathogen genomes. TEs have
often been found to be enriched in specific genomic com-
partments such as accessory chromosomes and repeat-
rich regions that further encode virulence-related genes
(reviewed in Möller and Stukenbrock 2017). Increased
mutation rates in TE-rich regions have been shown to
contribute to the rapid evolution of new virulence speci-
ficities in pathogens and can contribute to the rapid gen-
eration of new genetic variation in pathogen genomes in
the absence of sexual recombination (Daverdin et al.
2012; de Jonge et al. 2013; Dutheil et al. 2016). While
TEs may contribute to the rapid evolution of specific ge-
nome compartments there are few population genetic stud-
ies of genome evolution, genome evolution in eukaryotic
pathogens. As recombination can be an important driver
of overall genome evolution in pathogen species, we set
out to investigate patterns of recombination in plant path-
ogenic fungi. We focused on the economically important
wheat pathogen Zymoseptoria tritici, which causes septoria
leaf blotch on wheat. Z. tritici originated in the Middle East
during the Neolithic revolution and has coevolved and
dispersed with its host since early wheat domestication
(Stukenbrock et al. 2007). A close relative of Z. tritici,
Z. ardabiliae, has been isolated from wild grass species in
the Middle East (Stukenbrock et al. 2012). The two patho-
gen species diverged recently but have nonoverlapping host
ranges and show some differences in morphology and host
infection patterns (Stukenbrock et al. 2011, 2012). Both
species undergo frequent sexual recombination, which re-
sults in the formation of ascospores that serve as a means of
long distance wind dispersal and primary infection of new
hosts (Stukenbrock et al. 2011). The colinear genomes of
Z. tritici and Z. ardabiliae share 90% nucleotide similarity on
average, thus providing an excellent resource for compara-
tive analyses of genome evolution (Stukenbrock et al.
2011). The 40-Mb haploid genome of the reference Z. tritici
isolate comprises 21 chromosomes, of which 8 are accessory
chromosomes (Goodwin et al. 2011). These highly variable
chromosomes are characterized by presence/absence varia-
tion, structural variation, high repeat content, and low gene
densities (Goodwin et al. 2011; Grandaubert et al. 2015).
Interestingly, the accessory chromosomes are partly con-
served among several species in the genus Zymoseptoria,
suggesting that these small chromosomes have been main-
tained over long evolutionary times, predating the diver-
gence of species (Stukenbrock et al. 2011).

In a previous study, we applied a whole-genome coales-
cence approach to generate a map of incomplete lineage
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sorting of the ancestral species of Z. tritici and another
closely related species, Z. pseudotritici (Stukenbrock
et al. 2011). We found evidence of a high recombination
rate in the ancestral species (genome average 46 cM/Mb)
and showed a significantly higher proportion of sites
showing incomplete lineage sorting in regions with high
recombination rate. The existence of high recombination
rates in the genus Zymoseptoria was recently supported by
experimental data. Croll et al. (2015) generated a linkage
map of Z. tritici from two independent crosses of Swiss
field isolates. This map, based on actual crossover events
along the 40-Mb genome, confirms the high recombination
rates (genome average 66 cM/Mb, measured in windows
of 20 kb) in the present-day pathogen species. Interest-
ingly, the study also reported large differences between
the two independent crosses of Z. tritici, suggesting that
the recombination landscape is highly dynamic in this
pathogen (Croll et al. 2015).

In this study, we addressed the evolution of recombina-
tion rate in fungal pathogens. We applied a population
genomics approach to generate a fine-scale recombination
map of the two recently diverged species Z. tritici and
Z. ardabiliae. This allowed us to infer and compare fine-
scale, genome-wide patterns of recombination rates in
the two species and investigate the evolution of recom-
bination landscapes. We first confirm the exceptionally
high recombination rates, as also observed in a previous
coalescence-based genome analysis and as shown by ex-
perimental crosses (Stukenbrock et al. 2011; Croll et al.
2015). Furthermore, we identify 2578 and 862 recombina-
tion hotspots in Z. tritici and Z. ardabiliae, respectively.
Intriguingly, detailed analyses of the recombination hot-
spots show not only a comparatively higher hotspot fre-
quency in the wheat pathogen but also the occurrence of
stronger hotspots in Z. tritici. Our findings confirm that
recombination rate landscapes are highly dynamic across
time in the two fungal pathogens. Furthermore, the prom-
inence of dynamic recombination hotspots in genes sug-
gests a high impact on gene evolution; a finding that is
unprecedented in other species.

Materials and Methods

Genome data

The life cycle of Z. tritici is predominantly haploid and the
genome analyses conducted here thus rely on haploid ge-
nome data. The 40-Mb reference genome of the Z. tritici
isolate IPO323 was sequenced at the Joint Genome Institute
using Sanger sequencing (Goodwin et al. 2011). Two Iranian
Z. tritici isolates and four Iranian Z. ardabiliae isolates were
sequenced in a previous study using Illumina sequencing
(Supplemental Material, Table S1) (Stukenbrock et al. 2011).
We used genome data from an additional 10 isolates of Z. tritici
that originate from wheat fields in Denmark, France, and
Germany (Grandaubert et al. 2017). In this study, we report

the genome sequences of 13 isolates of Z. ardabiliae that orig-
inate from wild grasses collected in the province of Ardabil in
Iran (Table S1). DNA extraction was performed as previously
described (Stukenbrock et al. 2011). Library preparation and
paired-end sequencing using an Illumina HiSeq2000 platform
were conducted at Aros, Skejby, Denmark.

The 13 resequenced Z. ardabiliae genomes were assembled
from 100-bp, paired-end reads using the de novo assembly
algorithm of the CLC Genomics Workbench version 5.5
(QIAGEN, Aarhus, Denmark). The assemblies were created
using standard settings for paired-end reads. We used a
previously published RNA-sequencing-based annotation
to distinguish the parameter estimates for coding and
noncoding sequences (Grandaubert et al. 2015). To pre-
dict the genes that encode effectors, we used the software
EffectorP (Sperschneider et al. 2016), with default set-
tings, on genes predicted by SignalP (Petersen et al. 2011)
to encode a secreted protein.

Genome alignment and SNP calling

Genome alignments were separately created for each pop-
ulation using the MultiZ program from the TBA package
(Blanchette et al. 2004). Default parameters were used,
although LastZ was used instead of BlastZ for pairwise
alignments. Genome alignments were projected against
the two reference genomes of each species: IPO323 for
Z. tritici and STO4IR-1.1.1 for Z. ardabiliae (Goodwin
et al. 2011; Stukenbrock et al. 2011). The projected align-
ments in MAF format were filtered using the MafFilter
program (Dutheil et al. 2014) with the following filters:
(1) each syntenic block was realigned using MAFFT
(Katoh et al. 2009), and blocks with .10 kb were split
for computational efficiency; (2) only blocks where all
individuals were present were retained (13 Z. tritici and
17 Z. ardabiliae); (3) a window of 10 bp was slid by 1 bp,
and windows containing at least two indel events were
discarded and the containing blocks were split; (4) a win-
dow of 10 bp was slid by 1 bp, and windows with a total
of.100 gap characters were discarded and the containing
blocks were split; and (5) all blocks were merged accord-
ing to the reference genome with empty positions filled by
“N,” which resulted in one masked alignment per chromo-
some for Z. tritici and one masked alignment per contig for
Z. ardabiliae. The chromosome and contig alignments
were further divided into nonoverlapping windows of
1 Mb (data set 1) or 100 kb (data set 2). The MafFilter
program was further used to estimate statistics on the
alignments at each filtering step, and to compute the nu-
cleotide diversity (Watterson’s u) from the final filtered
genome alignments.

Estimating recombination

Filtered alignments (1-Mbwindows, data set 1)were exported
as fasta files for the LDhat and LDhelmet packages. The pro-
gram “convert” from the LDhat package was used to convert
fasta files into input loci files for the program “interval” (Auton
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andMcVean 2007). Only fully resolved biallelic positions were
exported (see Table 1 for the details of SNP numbers). Likeli-
hood tables were generated for u values of 0.0005, 0.005, and
0.05. The interval programwas runwith 10,000,000 iterations
and sampled every 5000 iterations with a burn-in of 100,000
iterations. LDhelmetwas runwith the parameters suggested in
the user manual (Chan et al. 2012; https://sourceforge.net/
projects/ldhelmet/). Comparison of recombination maps on
the same set of SNPs was performed using standard principal
component analysis, as implemented in the R package ade4
(Dray and Dufour 2007). A table was computed with one col-
umn per method (LDhat and LDhelmet, each with u set to
0.0005, 0.005, or 0.05) and one line per analyzed SNP pair,
and the two first principal components were kept to plot a
correlation circle (Figure 1A).

To assess the robustness of the recombination maps, alter-
native maps for Z. triticiwere constructed using the same pro-
tocol (1) after discarding all singletons, and (2) after removing
five individuals to ensure absence of population structure. All
maps were compared to the previously published genetic map
of Croll et al. (2015) in windows of 20 kb. Correlations were
assessed using Kendall’s rank correlation test, and confidence
intervals were obtained by bootstrapping windows.

We calculated average recombination rates in windows
and regions by taking the average of recombination estimates

between every pair of SNPs,weighted by the physical distance
between the SNPs. Pairs of SNPs for which the confidence
interval of the recombination estimate was higher than two
times the mean were discarded and therefore not used in the
average computation. Using the gene annotations available
for the two reference species (Grandaubert et al. 2015), we
calculated the following information for each gene: (1) the
average recombination rate in exons, (2) the average recom-
bination rate in introns, (3) the average recombination rate
in the 500 bp flanking the 59 region, and (4) in the 500 bp
flanking the 39 region. We also calculated the average recom-
bination rate for each intergenic region (500 bp from/to
genes). GFF3 files from Grandaubert et al. (2015) were re-
trieved and processed using the GenomeTools package to
add intron annotations (Gremme et al. 2013). The resulting
gene annotations were analyzed in R together with recombi-
nation maps (R Core Team 2013).

Assessment of LD-based recombination estimates
by simulation

We used the SCRM coalescent simulator (Staab et al. 2015)
to simulate polymorphism data with a constant mutation
rate but variable recombination rate. Recombination rates
were drawn randomly from an exponential distribution
with a mean of 0.02. Segments with a piecewise constant

Table 1 Summary of genome alignment processing and whole-genome SNP analyses for Z. tritici and Z. ardabiliae

Z. tritici Z. ardabiliae

Size of sequenced reference genome (bp) 39,686,251 31,546,591
Number of exonic sites in reference

genome (bp)
17,296,247 (43.6%) 15,570,421 (49.4%)

Number of haplotypes 13 17
Summary genome alignment Total alignment

length (Mb)
Number of alignment

blocks
Total alignment
length (Mb)

Number of alignment
blocks

MultiZ alignment 40.8 21,500 32.4 22,296
Splitting in maximum 10 kb 40.8 21,904 32.4 23,001
MAFFT realignment 40.5 21,904 32.2 23,001
Keep blocks with all strains 27.7 6,445 28.2 7,117
Filter 1 27.5 15,703 28.0 18,402
Filter 2 27.3 18,785 27.7 26,074

Percentage of repeated sequences in
initial alignment (%)

19.74 3.36

Percentage of repeated sequences in
final alignment (%)

0.93 1.38

Total number of SNPs 1,483,950 1,069,014
Total number of analyzed SNPs

(biallelic, no unresolved state)
and percent of total SNPs

1,438,385 (96.9%) 1,035,158 (96.8%)

Total number of SNPs in exons and
percent of total SNPs

713,733 (48.1%) 403,895 (37.8%)

Total number of analyzed SNPs in exons
(biallelic, no unresolved
state), and percent of total analyzed
SNPs in exons

690,096 (96.7%) 396,247 (98.1%)

Summary SNP analyses 1-Mb windows 100-kb windows 1-Mb windows 100-kb windows
Minimum number of SNPs 143 0 0 0
Median number of SNPs 43,680 3,556 1,598 634
Maximum number of SNPs 1,02,400 15,170 33,680 20,110

Diversity (median of Watterson’s u in
windows of 10 kb)

0.0139 0.008663
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recombination rate were taken randomly from an exponen-
tial distribution with a mean of 100 kb. Sample sizes of 10,
30, and 100 individuals were tested for comparison with a
population mutation rate equal to 0.05, 0.005, 0.0005, and
0.00005. We generated a locus of 10 Mb for simulations
with u equal to 0.005, 0.0005, and 0.00005; but only
1 Mb for simulations with u equal to 0.05, as the resulting
output file from LDhat would otherwise become excessively
large due to the high number of SNPs. The true recombina-
tion rate used at each position of the alignment was
recorded for later comparison. The output of SCRM was
converted to LDhat input format using Python scripts. Recom-
bination rates were estimated using the interval program from
the LDhat package (Auton andMcVean 2007). For simulations
with u = 0.05 and 0.005, a likelihood lookup table with u =
0.01 was used; whereas a lookup table with u = 0.001 was
used for simulations with u = 0.0005 and 0.00005. The
inferred recombination rate at each position was then com-
pared to the true rate. A variant of this simulation procedure
was used to assess the impact of population structure on the
inference of recombination rate. The SCRM coalescent simu-
lator was used with a five-islands populationmodel, with sam-
ple sizes of 2, 3, 4, 5, and 6 per deme, resulting in a total of
20 individuals.Migration rateswere assumed to be all identical
between demes, and values of M = 4Ne 3 m = 1, 10, and
100 were tested. Regions of 1 Mb were simulated with u =
0.005 for each migration rate.

Reference species alignment and comparison

The two reference strains IPO323 (Z. tritici) and ST11IR-
11.4.1 (Z. ardabiliae) were aligned using LastZ (Blanchette

et al. 2004). The resulting genome alignment was used to
map the coordinates of Z. ardabiliae SNPs to the Z. tritici
genome, using the MafFilters LiftOver filter (Dutheil et al.
2014). A total of 893,171 (86%) positions could be mapped
from Z. ardabiliae to Z. tritici andwere used for further analyses.
Nonoverlappingwindows containing at least 100 analyzed SNPs
in each species were generated for the comparison of recombi-
nation rates between the two species.

Multi-scale correlations

We calculated the average recombination rates in windows of
varying sizes and retained only windows that contained at
least 1% of the polymorphic positions. To enforce a similar
statistical power among different window sizes, a number
of windows were chosen randomly. The same number of
randomly chosen windows was used for the distinct com-
parisons. To assess the sampling variance, 1000 indepen-
dent samplings (with replacement) were performed for
each window size. Window sizes of 0.5, 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, and 1024 kb were tested, with 27 win-
dows sampled in each case. We measured correlation co-
efficients using the Spearman, Kendall, and Pearson’s
correlation coefficients. Spearman and Kendall’s coeffi-
cients are ranked based; therefore they do not assume
binormality as Pearson’s coefficient does. Because recom-
bination rates are typically exponentially distributed, Pear-
son’s coefficient was measured for the log rates instead of
the raw r rates. Spearman’s coefficient assumes that the
variables are continuously distributed; therefore it does
not resolve ties. Thus “jittering” was used to randomly re-
solve ties in the input variables (R function jitter, with

Figure 1 Correlations among recombination maps in Z. tritici show highly correlated estimates from two composite likelihood methods. (A) Correlation
circle of the six population genomic recombination maps based on the two first factors of a principal component (PC) analysis. The programs LDhat
interval (Auton and McVean 2007) and LDhelmet (Chan et al. 2012) were used with three distinct input-scaled effective population sizes (u) of 0.0005,
0.005, and 0.05. (B) Correlation of the LDhat and LDhelmet maps with u = 0.005. The LDhat map was discretized into 10 categories with equal numbers
of points. The points and error bars represent the median and first and third quartile of the distribution for each category. (C) To assess the quality of the
inferred recombination maps, genome-wide estimates of recombination were correlated with a genetic map obtained by experimental crossing of
Z. tritici isolates. y-Axis: Population genomic maps were obtained by LDhat and LDhelmet with a scaled population size of 0.005. x-Axis: average
recombination map from two independent crosses (Croll et al. 2015). Points and error bars represent the median and first and third quartile of the
distribution for each category, obtained as in (B).
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default parameters). Conversely, Kendall’s coefficient as-
sumes ordinal input variables. Therefore, using the three
correlation measures allows assessing the robustness of
the correlation signal. A graphical representation was
performed using the ggplot2 package for R, which per-
formed local polynomial regression fitting for the curves
(Wickham 2016).

Mapping of hotspots

Hotspotswere detected using the LDhot program(Auton et al.
2014). For computational efficiency, LDhot was run on the
100-kb alignments (data set 2). A background recombination
map was first estimated for each alignment using the interval
program of LDhat with a u value of 0.005 (Auton andMcVean
2007). The resulting maps were highly correlated with the
maps based on 1-Mb alignments, and showed little effect of
the discretization scheme. The background recombination
map was used as input to LDhot with default parameter val-
ues and 1000 simulations.

Significant hotspots were filtered for further analysis.
First, only the hotspots with a value of r between 5 and
100 across the hotspot coordinates were selected, because
higher values are most likely artifacts and the performance
of LDhot is low for weak hotspots (Auton et al. 2014). A few
hotspots with extremely large sizes (.2 kb) were further
discarded. This process identified 9133 hotspots in Z. tritici
and 1287 hotspots in Z. ardabiliae. We calculated the mean
background rate in each detected hotspot and in the two
20-kb flanking regions. We further selected hotspots for
which the within-hotspot rate was at least 10 times higher
than the flanking regions. Thus 2578 and 862 hotspots
were identified in Z. tritici and Z. ardabiliae, respectively.
The Z. ardabiliae hotspots were mapped onto the Z. tritici
genome using MafFilter’s LiftOver function (Dutheil et al.
2014). We considered a hotspot in Z. tritici as colocalizing
with a hotspot in Z. ardabiliae if the distance between
them was ,1 kb, and if no other hotspot was found be-
tween the two. We compared statistics on the distribution
of hotspots by randomizing the hotspot positions while
keeping their original size, for each chromosome indepen-
dently. To do so, we used the following procedure:

1. Compute the total “interhotspots” distance, L, as the sum
of all distances between consecutive hotspots.

2. Draw random distinct positions uniformly in [1, L]. These
positions are the starting positions of each randomized
interval.

3. Order and then expand each interval to match its original
size and compute the corresponding end positions. Cor-
rect the coordinates to account for previous intervals.

To account for variable coverage along the genome, we
also simulated intervals corresponding to chromosome
regions that were not included in our analysis, using the
same procedure as for hotspot randomization. Each ran-
domized set of hotspots therefore contains the same amount
of callable sites as the actual analysis. We assessed the

significance of the number of colocalizing hotspots using
10,000 permutations.

Models of GC-content evolution

The two reference strains IPO323 (Z. tritici) and ST11IR-
11.4.1 (Z. ardabiliae) were aligned using LastZ (Blanchette
et al. 2004). Several filtering steps were further applied to
the alignment. First, each synteny block was realigned us-
ing the MAFFT aligner (Katoh et al. 2009) after splitting
blocks.10 kb for computational efficiency, which resulted
in an alignment of 27,918,318 bp that included both spe-
cies. Second, a window of 30 bp was slid by 1 bp along the
alignment. Windows with .29 gaps in total between the
two species were further discarded, which resulted in
27,237,601 filtered positions. To minimize the effect of
selection on GC patterns, we further discarded regions in
the alignment that were annotated as protein-coding
genes in one or both species. This resulted in a total align-
ment of 9,143,114 bp. The alignment was further divided
into windows ranging from 1 to 4 kb and only data from
the essential chromosomes (Z. tritici chromosomes 1–13)
were retained. The final alignment contained 2052 cleaned
windows containing sequences for both species with no syn-
teny break, and it encompassed 3,179,581 bp. A model of
sequence evolution was independently fitted on each win-
dow using maximum likelihood (Dutheil and Boussau 2008).
The HKY85model was used as a basis allowing three frequency
parameters [(G + C)/(A + C + G + T), A/(A + T), and
G/(G + C)] in addition to the transition over transversion
ratio (Hasegawa et al. 1985). We fitted a nonhomogeneous,
nonstationary model of substitution, allowing us to estimate
three distinct GC contents for Z. tritici, Z. ardabiliae and
their common ancestor. Other parameters were considered
constant between species and their ancestor. A molecular
clock was assumed (so that the two branches leading to
Z. tritici and Z. ardabiliae were equal in length) and a
four-class gamma distribution of rates with a shape pa-
rameter fixed to 0.5 was used. We further calculated the
observed GC content in each species for each window. The
average recombination rate was calculated for each win-
dow containing at least 1% polymorphic positions (leav-
ing 1642 windows).

A similar analysis was conducted using recombination rate
estimated from Croll et al. (2015), which was calculated in
20 kb windows. The corresponding pairwise alignment re-
gions were extracted and filtered, and coding regions from
both species were discarded; resulting in 1948 windows of at
least 1 kb where a nonhomogeneous, nonstationary model of
substitution could be fitted.

Data availability

Sequence data has been deposited under the National Center
for Biotechnology Information (NCBI) Illumina reads for
Z. ardabiliae are available from NCBI under the Biosample
accession numbers SAMN05818736–SAMN05818752. Illu-
mina reads for Z. tritici are available from NCBI under the
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BioProject accession number PRJNA312067. All scripts and
data sets necessary to reproduce the analyses and figures in
this manuscript may be accessed on FigShare under https://
doi.org/10.6084/m9.figshare.3806244.v1.

Results and Discussion

Genome alignments and SNP calling

A total of 30 whole haploid genome sequences was used
to infer the recombination landscapes of the two species
Z. tritici and Z. ardabiliae. First, we generated de novo genome
assemblies of 10 Z. tritici and 13 Z. ardabiliae isolates pre-
viously not studied (Table S1). The haploid genomes, in-
cluding an additional three Z. tritici and four Z. ardabiliae
genomes already published (Stukenbrock et al. 2011), were
aligned for each species; resulting in multiple genome align-
ments of 40.8 Mb for Z. tritici and 32.4 Mb for Z. ardabiliae.
(Table 1)

Recombination analyses rely on SNP data. However,
erroneously called SNPs or alignment errors can greatly
bias LD inference. To generate high-quality SNP data sets,
we therefore filtered the genome alignments (seeMaterials
and Methods) to retain only the alignment blocks in which
all isolates were represented. This filtering yielded ge-
nome alignments of 27.7 and 28.2 Mb for Z. tritici and
Z. ardabiliae, respectively (Table 1). We further filtered
the alignments to mask ambiguously aligned positions,
leading to a final alignment size of 27.3 Mb for Z. tritici
and 27.7 Mb for Z. ardabiliae. Less than 2% of the final
alignment contained repetitive sequences, including TEs.
In the case of Z. tritici, repeat regions have been filtered
out during the alignment quality checking; while in the case of
Z. ardabiliae, for which no telomere-to-telomere sequencing is
available, most repeats were poorly assembled and there-
fore virtually absent from the original alignment (Table 1).
After filtering we identified 1.48 million SNPs in Z. tritici
and 1.07 million SNPs in Z. ardabiliae, which corresponds to
the nucleotide diversities, measured as Watterson’s u, of
0.0139 in Z. tritici and 0.0087 in Z. ardabiliae (Table 1).
Thus, despite the larger sample size, Z. ardabiliae shows a
much lower SNP density and sequence diversity than the
wheat pathogen Z. tritici.

Inference of fine-scale recombination maps

We estimated and compared the local recombination rates in
Z. tritici and Z. ardabiliae using two methods implemented in
the LDhat (Auton and McVean 2007) and LDhelmet (Chan
et al. 2012) packages. Both methods estimate the local pop-
ulation recombination rates based on the LD between SNPs
in a given genome data set using a composite likelihood
method. The methods infer the population-scaled recombi-
nation rate r across the genome, based on an a priori spec-
ified population mutation rate u. The parameter r relates to
the actual recombination frequency by the equation r =
2Ne 3 r for haploid individuals, where Ne is the effective
population size and r is the per site rate of recombination

per generation across the region. Inferring r from r there-
fore requires knowledge of Ne. Furthermore, in Zymosep-
toria species, sexual reproduction is not obligatory and
may vary from year to year with environmental condi-
tions and the availability of compatible hosts and mating
partners, rendering the estimation of r very difficult with-
out any additional knowledge of the amount of clonal
reproduction. To avoid the bias of incorrect assumptions,
we therefore further analyzed and compared the recom-
bination maps of Z. tritici and Z. ardabiliae based on the
parameter r.

As u substantially varies along genomes and between spe-
cies, we generated recombination maps using three scaled
effective population size values as inputs (u = 0.05, 0.005,
and 0.0005). For both LDhat and LDhelmet, we find that the
three different input u values only have a marginal influence
on the recombination rate estimates obtained (Figure 1A).
We therefore proceeded with the recombination map esti-
mated using a u of 0.005, similar to the median of u values
estimated in 10-kb windows in Z. tritici (u = 0.0139) and in
Z. ardabiliae (u = 0.0087) (Table 1).

To assess the performance of the two methods and
input parameters for the fungal data sets, we first com-
pared the inferred recombination maps of Z. tritici with
data from previously published genetic maps (Croll et al.
2015). We compared both the LDhat and LDhelmet re-
combination maps with the genetic maps created from
two sexual crosses of Swiss Z. tritici isolates, 3D733D1
and SW53SW39 (Croll et al. 2015). The recombination
maps estimated by LDhat and LDhelmet from SNP data
both correlate with the genetic maps, confirming that the
composite likelihood methods allow us to assess the re-
combination landscapes in the fungal pathogens (Figure
1B and Table 2). We find a significant correlation between
the LDhat map and the two genetic maps (3D733D1:
Kendall’s rank correlation test, t = 0.27, and P , 2.2e216;
SW53SW39: Kendall’s rank correlation test, t = 0.23, and
P , 2.2e216). Using an average recombination rate of the
3D733D1 and SW53SW39 crosses, the correlation further
increases (Kendall’s rank correlation test, t = 0.29, P ,
2.2e216) (Figure 1B and Table 2). While correlated, the
new recombination maps of Z. tritici encompasses .1 mil-
lion SNPs and thereby provides a considerably finer resolu-
tion of the recombination landscape in Z. tritici than
previously obtained from experimental crosses (based on
�23,000 SNPs) (Croll et al. 2015). The same correlation
analyses using the LDhelmet map show consistent results
with slightly lower correlations (Kendall’s rank correlation
test, t = 0.24 for the cross 3D733D1, 0.20 for the cross
SW53SW39, and 0.25 using the average of the two crosses;
all P , 2.2e216) (Table 2). These correlations, although
highly significant, have relatively small size effects. How-
ever, it is also noteworthy that the correlation between the
two Swiss crosses 3D733D1 and SW53SW39 is only 0.43
(Kendall’s rank correlation test, P , 2.2e216), supporting a
high variability in recombination even between individual
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crosses of Z. tritici (Table 2). Based on the comparison of the
outputs of LDhat and LDhelmet, we decided to use the
LDhat map as our reference population map for the remain-
der of this study. We next investigated the impact of possible
confounding factors on the recombination rate estimates,
including SNP densities, possible sequencing errors, popu-
lation structure, and natural selection.

SNP density and filtering based on confidence intervals:
LDhat and LDhelmet have been developed for recombina-
tion analyses in animals (Auton and McVean 2007; Auton
et al. 2012; Chan et al. 2012), and their performance on
data from haploid eukaryotes with high recombination
rates has not been tested. Therefore, we next assessed
the robustness of the composite likelihood approach using
simulations with distinct sample sizes and SNP densities.
We report that the interval program infers recombination
rate with the highest reliability for intermediate diversity
levels (u = 0.0005 or 0.005). Furthermore, while larger
sample sizes decrease the variance in the estimate, we
show that LDhat reliably infers recombination when as
few as 10 haploid genomes are used (Figure 2). We ob-
serve that r generally tends to be underestimated, and its
estimation variance is larger for small sample sizes. How-
ever, better estimates can be obtained by discarding all
estimates where the width of the 95% confidence interval
is larger than or equal to two times the mean. Interestingly,
this filtering has the strongest effect for highly diverse
regions (u = 0.05), where the raw estimates of LDhat ap-
pear to be highly underestimated even for large sample
sizes (n = 100). Discarding estimates with large confi-
dence intervals efficiently suppresses this bias (Figure
2). We also note that the inference bias is stronger for
low recombination rates, and that this effect is independent
of the sample size (Figure 2). Based on these simulation
results, we similarly filtered our recombination estimates
based on the 95% confidence interval reported by LDhat.

This filtering discards 49 and 20% of all SNP pairs for
Z. tritici and Z. ardabiliae, respectively. The large difference
between the two data sets is imputable to the much higher
nucleotide diversity of Z. tritici. When compared with the
genetic map (Croll et al. 2015), the filtered map of Z. tritici
shows a correlation of 0.34 (Kendall’s rank correlation test,
P , 2.2e216; Table 2). Interestingly, correlations between
the genetic map and the LD map inferred with LDhat in-
crease with increased window size: using 500-kb windows,
the correlation becomes 0.43 (Kendall’s t, P = 0.000206).

Putative sequencing errors: Sequencing errors can affect
LD estimates as they appear as unlinked singletons in
population genomic data sets. Such potential effects are
partially accounted for at two levels in our analyses. First,
our data sets are based on de novo assembly of each indi-
vidual genome, which already corrects for putative se-
quencing errors in the sequencing read outs. Second,
many of the SNPs discarded for having a large confidence
interval in the estimation of recombination rates by LDhat
are singletons. To further assess the potential impact of
putative sequencing errors, we ran LDhat on the Z. tritici
data set after discarding all singletons and filtering for
confidence interval as described above. The resulting re-
combination map appeared to be highly correlated to the
map including all singletons (Figure S1 and Table 2), and
the correlation of the filtered map with the crossover map
was significant, but weaker than when including them
(Kendall’s t = 0.3083, P , 2.2e216) (Table 2). We there-
fore conclude that putative sequencing errors have no sig-
nificant impact on our inferred recombination maps.

Effect of population structure: Previous studies reported
that Z. tritici strains are sampled from a globally panmictic
population (Linde et al. 2002; Zhan et al. 2003). However,
in a recent study based on whole-genome data, we report
evidence for slight population structure, notably between

Table 2 Robustness of the population recombination map and correlation with crossover maps

Data Map

3D733D1 SW53SW39 Average

Correlation P-value C.I. Correlation P-value C.I. Correlation P-value C.I.

Unfiltered LDhat 0.27 2.22e260 [0.24, 0.30] 0.23 5.11e244 [0.20, 0.26] 0.29 4.61e269 [0.26, 0.32]
LDhelmet 0.24 1.68e247 [0.21, 0.27] 0.20 8.18e233 [0.17, 0.23] 0.25 1.11e252 [0.22, 0.28]
Average 0.26 2.59e256 [0.23, 0.29] 0.22 9.81e240 [0.19, 0.25] 0.27 4.71e263 [0.24, 0.30]
LDhat intergenic 0.20 9.54e232 [0.17, 0.24] 0.18 9.54e225 [0.15, 0.21] 0.22 2.65e237 [0.19, 0.25]
LDhelmet intergenic 0.22 9.73e237 [0.19, 0.25] 0.19 1.89e228 [0.16, 0.23] 0.23 1.79e242 [0.20, 0.27]
LDhat no singleton 0.21 1.18e236 [0.18, 0.24] 0.17 1.81e224 [0.14, 0.20] 0.21 6.88e239 [0.18, 0.24]
LDhat no structure 0.25 7.77e254 [0.22, 0.29] 0.23 7.90e243 [0.19, 0.26] 0.26 1.48e259 [0.23, 0.29]

Filtered LDhat 0.31 3.36e276 [0.27, 0.33] 0.28 1.94e264 [0.25, 0.31] 0.34 2.10e296 [0.31, 0.37]
LDhelmet 0.26 4.45e257 [0.23, 0.29] 0.22 3.35e240 [0.19, 0.25] 0.28 1.34e264 [0.25, 0.31]
Average 0.29 9.54e269 [0.26, 0.32] 0.25 2.62e251 [0.22, 0.28] 0.31 5.65e280 [0.28, 0.34]
LDhat intergenic 0.20 5.39e230 [0.17, 0.23] 0.18 3.70e224 [0.15, 0.21] 0.22 1.90e236 [0.19, 0.25]
LDhelmet intergenic 0.23 1.81e237 [0.19, 0.26] 0.19 5.06e226 [0.15, 0.22] 0.24 6.40e242 [0.20, 0.27]
LDhat no singleton 0.29 6.92e266 [0.25, 0.32] 0.25 6.22e252 [0.22, 0.28] 0.31 8.55e279 [0.28, 0.34]
LDhat no structure 0.29 1.24e271 [0.26, 0.32] 0.29 2.58e267 [0.26, 0.32] 0.32 3.66e288 [0.29, 0.35]

Correlation values are Kendall’s t. SW53SW39 and 3D733D1 correspond to crosses in Croll et al. (2015). C.I., 95% confidence interval obtained by 10,000 bootstraps.
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Iranian isolates vs. European isolates (Grandaubert et al.
2017). To assess whether this structure could bias our re-
combination estimates, we generated a new recombina-
tion map using LDhat on a reduced sample of eight
strains of Z. tritici. We excluded the two Iranian isolates
in our data set as well as three German isolates forming a
separate, yet nonsignificant, cluster. We report that the
resulting map is highly correlated to our recombination
map (Figure S1) as well as to the previously published
genetic map (Kendall’s t = 0.3237, P , 2.2e216) (Table
2), suggesting that population structure has little effect on
our inference of recombination rate. Because the resulting
correlation with the crossover map was slightly lower than
when using the complete data set, we use the complete
data set for the further analyses.

As little is known about the population structure of
Z. ardabiliae, we conducted additional simulations to assess
the putative impact of structure on the inference of recom-
bination rate. We used a five-islands structure model, with
sample sizes equal to 2, 3, 4, 5, and 6 in each deme, with a
total sample size of 20; which is comparable to the 17 ge-
nomes of the Z. ardabiliae data set analyzed here. Migration
rates between demes were symmetrical and all equal, and
we tested several rates. We find that while r is systemati-
cally overestimated in the presence of population structure,

it is remarkably proportional to the true value, in particular
after filtering on the confidence intervals (Figure S2). Pop-
ulation structure, if any, is therefore not expected to bias our
comparison of recombination rates along the genome. In
addition, these results suggest that the true recombination
rate in Z. ardabiliae is potentially even lower than the value
reported here.

Coding sequences: Recombination inference based on pat-
terns of LD is affected by various patterns of selection. The
genomes of Z. tritici and Z. ardabiliae are gene dense and
protein-coding genes occupy nearly 50% of the sequences.
We therefore considered the impact of selection on our
recombination inference in the two species, assuming
lower selection in noncoding regions. To this end, we com-
pared the previously published crossover map with esti-
mates of r exclusively in the intergenic regions, excluding
coding sequences and 500 bp up- and downstream of the
annotated genes (Figure S1 and Table 2). These analyses
based on noncoding sequences and filtering of SNPs based
on the confidence interval of recombination rate estimates
resulted in correlations of 0.22 for the LDhat map and the
average of the two genetic crosses (Kendall’s rank corre-
lation test, P , 2.2e216) and 0.24 for the LDhelmet map
(Kendall’s rank correlation test, P , 2.2e216). Thus, the

Figure 2 Effect of sample size and diversity on the estimation of recombination rate by LDhat. Regions of 10 Mb (1 Mb for regions with u = 0.05)
were simulated using a coalescent model with variable recombination rate: random segments were generated by sampling lengths from an
exponential distribution and rates from the observed distribution of recombination rates. (A) Example of a 500-kb region, with variable re-
combination rate (red line), LDhat estimates between pairs of SNPs (middle panel), and median (with first and third quartiles as error bars) for
each segment of uniform recombination (bottom panel). (B) Inferred vs. true recombination rate for different nucleotide diversity values (u = 2Ne

r) and sample sizes. Each • corresponds to a region with constant recombination rate in the simulated alignment, as shown in (A). Bars indicate
the first and third quartiles of LDhat estimates for the region. Gray points are raw estimates; black points are computed from filtered estimates
(see Materials and Methods). The red diagonal line shows the 1:1 ratio. Columns indicate distinct population mutation rates and rows distinct
sample sizes (number of haploid genomes).
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best correlations of LD based on the recombination maps
and genetic crosses are obtained when coding regions
are included (Table 2). The finding suggests that the com-
posite likelihood method provides robust estimates of re-
combination, even in regions likely to deviate from purely
neutral evolution. Based on these simulation results, we chose
to use the LDhat-inferred recombination rates on the full ge-
nome, with an input u of 0.005 and filtered according to con-
fidence intervals for both Z. tritici and Z. ardabiliae.

A fivefold higher population-scaled recombination rate
in Z. tritici

The inference of r across the genomes of Z. tritici and Z. ardabiliae
reveals highly heterogeneous recombination landscapes in both
species (Figure 3 and File S1). We find a fivefold higher recom-
bination rate in Z. tritici than in Z. ardabiliae: themean values of
r are 0.0217 and 0.0045 for Z. tritici and Z. ardabiliae, respec-
tively. As r = 2Ne 3 r, where r is the actual recombination rate

per generation per nucleotide and Ne is the effective population
size, this fivefold difference might reflect differences in r or
global differences inNe. Furthermore, the inferred parameter r
reflects the historical rates of recombination in the two species,
which may have varied according to different demographic
events since their divergence. Nonetheless, the nucleotide
diversity estimated by Watterson’s u is 1.6 times higher in
Z. tritici than in Z. ardabiliae, indicating that different popula-
tion sizes alone cannot explain the observed difference in recom-
bination rates, assuming that the two species have comparable
mutation rates. The higher value of r estimated in Z. tritici thus
likely reflects a higher actual recombination rate (in the past or
presently) in the wheat pathogen compared to Z. ardabiliae.

Recombination on small arms of acrocentric
chromosomes

Physical factors, such as chromosome length, centromere
position, or distance to the centromere, have been reported

Figure 3 Variation in recombination rate
across chromosomes. Based on the population
genomics data of Z. tritici and Z. ardabiliae,
genome-wide patterns of recombination are
estimated. Patterns of variation across chro-
mosome 1 of Z. tritici is shown as an example.
(Upper panel) SNP density in 10-kb windows
with corresponding smoothing curve. (Middle
panel) Distribution of called sites along the
chromosome in black, corresponding to the
regions that were included in the analyses.
(Lower panel) Estimates of the population re-
combination rate r show a highly heteroge-
neous, small-scale recombination landscape
across the chromosomes. (D) Observed GC con-
tent. The position of the centromere is marked
over the chromosome plots as a vertical stippled
line.
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to affect broadscale recombination patterns in eukaryotes
(Jensen-Seaman et al. 2004). To investigate the rate and
distribution of crossover events along the genomes of the
two Zymoseptoria species, we correlated the inferred recom-
bination maps with features of the well-characterized karyo-
type of Z. tritici. The reference genome sequence of Z. tritici
consists of 21 fully sequenced chromosomes, including 8 so-
called accessory chromosomes showing presence/absence
polymorphisms between individuals (Goodwin et al. 2011).
Furthermore, the exact positions of the centromeres for all
chromosomes have been characterized experimentally using
a chromatin immunoprecipitation assay targeting the centro-
mere-specific protein CenH3 (Schotanus et al. 2015). An in-
teresting finding is that the chromosomes in Z. tritici are
either acrocentric or near acrocentric, and every chromosome
consequently consists of one long and one short chromosome
arm (Schotanus et al. 2015). Because a complete chromo-
some assembly is not available for Z. ardabiliae, we mapped
the recombination estimates of Z. ardabiliae on the ge-
nome of Z. tritici to assess the impact of the karyotype
structure on recombination rate variation. Similar to find-
ings from other species (Jensen-Seaman et al. 2004;
Munch et al. 2014), we observe a negative correlation
between recombination rate and the size of the 13 core
chromosomes (Kendall’s t = 20.59 with P = 4.29e23 for
Z. tritici and t= 20.72 with P = 2.84e24 for Z. ardabiliae;
Figure 4A). This pattern is generally explained by the
necessity of one crossing over to occur per chromosome
or chromosome arm per generation, resulting in a higher

recombination rate on smaller chromosomes (e.g., Kong
et al. 2002; Smeds et al. 2016). The significant correlation
of the recombination map of Z. ardabiliae with the genome
structure of Z. tritici is an indication of a conserved karyo-
type of the ancestral species of Z. tritici and Z. ardabiliae.

Given the acrocentric nature of the Z. tritici chromosomes,
we considered to what extent recombination also occurs on
the short chromosome arms. If meiosis involves one crossover
event per chromosome, then the recombination rate should
be correlated with the chromosome size and not the chromo-
some arm length. However, if meiosis involves one crossover
event per chromosome arm, then a higher frequency of re-
combination should occur on shorter chromosome arms. Cor-
relations between recombination rates and chromosome arm
lengths also show negative values, yet they are only significant
in Z. ardabiliae (Kendall’s t = 20.14 with P = 0.3356 for
Z. tritici and t=20.42withP=2.16e23 forZ. ardabiliae; Figure
4B). The negative correlation observed at the chromosome-arm
level suggests that meiosis in the Zymoseptoria pathogens re-
quires at least one crossing over per chromosome arm and that
the small chromosome arms consequently also recombine. The
weaker correlations and lack of significance in Z. tritici could
be due to a fast evolution of centromere positions, erasing the
signal of arm-specific recombination rates.

Extremely weak or absent GC-biased gene conversion in
Z. tritici and Z. ardabiliae

In many species, recombination strongly affects evolution of
GC content by amechanism calledGC-biased gene conversion

Figure 4 Broadscaled patterns of recombination rate in Z. tritici and Z. ardabiliae demonstrate a strong effect of chromosome length and type. (A)
Mean recombination rate in Z. tritici and Z. ardabiliae per essential chromosome as a function of the chromosome length. (B) Mean recombination rate
per essential chromosome arm as a function of the arm length. (C) Distribution of mean recombination rate per chromosome in Z. tritici as a function of
type (essential or accessory). Za, Z. ardabiliae; Zt, Z. tritici.
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(gBGC) (Duret and Galtier 2009; Mugal et al. 2015). The effect
of gBGC has been demonstrated in mammals (Piganeau et al.
2002; Duret and Galtier 2009), birds (Weber et al. 2014),
plants (Serres-Giardi et al. 2012), and even bacteria
(Lassalle et al. 2015). However, gBGC has been poorly
addressed in fungal species beyond the yeast model, which
represents one of the rare organisms for which gBGC was
experimentally demonstrated (Mancera et al. 2008). To
study the possible occurrence and impact of gBGC in the
Z. tritici and Z. ardabiliae genomes, we studied the pat-
terns of GC content along the genomes of the two species.
We fitted a nonhomogeneous, nonstationary model of sub-
stitution in 10-kb windows in intergenic regions, allowing
us to estimate the equilibrium GC content (frequency of
GC toward which the sequences evolve) in the extant spe-
cies. We inferred the dynamics of GC content by compar-
ing the actual GC content of the sequence (observed GC
content) with the equilibrium GC content (Duret and
Arndt 2008). We find that both the observed and equilib-
rium GC are highly correlated between Z. tritici and
Z. ardabiliae (Kendall’s rank correlation test, t = 0.69
and 0.45, P , 2.2e216 for the observed and equilibrium
GC content, respectively, essential chromosomes only;
Figure S3). However, although both species show similar
observed GC content (median of 53.3% for Z. tritici and
53.6% for Z. ardabiliae) they also show contrasting pat-
terns, with the GC content found to be slightly increasing
in Z. ardabiliae (median equilibrium GC content on auto-
somes of 53.8, significantly higher that the observed GC
content, Wilcoxon paired rank test, P = 0.04712) while it
is decreasing in Z. tritici (median equilibrium GC content
of 51.6%, which is significantly lower than the observed
GC content, Wilcoxon paired rank test, P = 2.728e215).

To assess the impact of recombination on GC evolution,
we correlated the equilibrium GC content in Z. tritici and
Z. ardabiliae to the recombination maps in the two species.
We find overall negative, yet weak or nonsignificant, correla-
tions betweenGC content and recombination rate (Figure S3),
both for observed (Kendal’s t = 20.047, P = 0.04304 for
Z. tritici and t = 20.054, P = 0.02253 for Z. ardabiliae) and
equilibrium GC content (Kendal’s t = 20.02, P = 0.5082 for
Z. tritici and t = 0.01, P = 0.7128 for Z. ardabiliae). These
results do not support gBGC as amajormechanism shapingGC
content in the two fungal pathogen genomes. To test whether
this conclusion could be an artifact of recombination rates
estimated from population data, we also correlated the equi-
librium GC content with the two previously published genetic
maps (Croll et al. 2015). Consistent with our finding from the
LDhat-based recombination map, we confirm an absence of
correlation between the equilibriumGC content and the cross-
over rate and GC content in Z. tritici, (Kendall’s rank test, t =
0.006 and P= 0.7035 for observed GC; and t =20.024, P=
0.1149 for equilibrium GC content).

The absence of correlation between GC content and re-
combination could also be because of a lack of statistical
power due to the overall very homogeneous GC content and

large-scale recombination landscapes (recall Figure 3), and
the notable absence of isochores that characterize genome
composition in other organisms, e.g., in mammals (Galtier
et al. 2001). As a complementary line of evidence, we inves-
tigated the segregation patterns of AT and GC alleles at AT/
GC biallelic sites in intergenic regions of both Z. tritici and
Z. ardabiliae, as gBGC is expected to increase the frequency
of GC alleles (Escobar et al. 2011). We find that the frequency
of GC alleles is virtually identical to the frequency of AT alleles
in Z. tritici and only slightly higher in Z. ardabiliae (Table 3),
supporting an absence or only weak effect of gBGC in Z. tritici
and Z. ardabiliae, respectively.

No suppression of recombination in centromeres

Recombination is normally found to be absent in centromeric
regionswhere spindles attach during chromosome segregation
(see review by Petes 2001). A known exception is Drosophila
mauritiana, which, in contrast to D. melanogaster and
D. simulans, shows no suppression of recombination in cen-
tromeres (True et al. 1996). The centromeres of core and
accessory chromosomes in Z. tritici range from 5.5 to 14 kb
in size and do not locate in AT-rich regions (Schotanus et al.
2015) as is otherwise observed for centromeres of other
species such as Neurospora crassa (Smith et al. 2011). Cor-
relating the recombination map of Z. tritici with centromere
positions, we observe (as in D. mauritiana) no significant
suppression in recombination rate across the centromeric
chromosome regions (Wilcoxon signed rank test on 11 chro-
mosomes for which recombination rate in the centromeric
region could be inferred, P= 0.5771) (Figure 3 and Table 4).
The centromeres of Z. tritici exhibit several features com-
mon to neocentromeres such as a short length (�10,000 bp
in length), lack of enriched repetitive DNA, and weakly
transcribed genes (Schotanus et al. 2015). We hypothesize
that recombination in centromeric sequences has addi-
tional implications for evolution of the centromeres in these
fungi. A more detailed characterization of chromosome
structures and centromere locations in Z. ardabiliae is
necessary to better understand karyotype evolution in
these grass pathogens.

Absence of recombination on accessory chromosomes

The small accessory chromosomes have previously been well
characterized in Z. tritici (Goodwin et al. 2011). They differ
considerably from the core chromosomes as they display a
higher repeat content, lower gene density, overall lower tran-
scription rate, and are enriched with different chromatin
modifications (Stukenbrock et al. 2010; Kellner et al. 2014;

Table 3 Segregation patterns at AT/GC biallelic sites

Species

Frequency
of GC alleles

(%)

Number of
alleles with
GC >50%

Number of
alleles with
GC <50%

Ratio GC/
(AT + GC)

(%)

Z. tritici 50.41 2,74,517 2,68,589 50.55
Z. ardabiliae 51.86 2,61,777 2,36,232 52.56
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Grandaubert et al. 2015; Schotanus et al. 2015). Electropho-
retic separation of accessory chromosomes from several iso-
lates of Z. ardabiliae has shown that this species also comprises
accessory chromosomes (Stukenbrock et al. 2011). In this
study, we used sequence homology to define the accessory
components of the Z. ardabiliae genome. We find that the
aligned fragments of the accessory chromosomes show very
low recombination rates in both species (median r=0.0059 in
Z. tritici and median r= 0.0001 in Z. ardabiliae over 13 10-kb
windows where both genomes could be aligned, which is
25 and 2% of the autosomal rates, respectively) (Figure 4C).
The lower recombination rates reflect the lower effective pop-
ulation size of accessory chromosomes that are present at
lower frequencies in populations of Z. tritici and Z. ardabiliae
compared to the core chromosomes. Furthermore, we specu-
late that frequent structural rearrangements on accessory
chromosomes can prevent homologous chromosome pairings
and also contribute to the low recombination rates. Our find-
ings add further evidence to support different evolutionary
modes of the two sets of chromosomes (core and accessory
chromosomes) contained in the same genome. Suppression of
recombination is also found on mating-type chromosomes in
other fungi including species of Neurospora andMicrobotryum
(Whittle and Johannesson 2011; Petit et al. 2012; Hood et al.
2013). These regions are characterized by an increased accu-
mulation of TEs and structural variants as well as nonadaptive
mutations in coding sequences as a consequence of suppressed
recombination (Whittle and Johannesson 2011; Whittle et al.
2011; Badouin et al. 2015).

We also observe a remarkable drop in the recombination
rate on the right armof chromosome7 (File S1). The right arm
of chromosome 7 displays several similarities to the DNA of

the accessory chromosomes, including a lower gene density,
higher repeat content, and less gene transcription (Grandaubert
et al. 2015). Furthermore, the entire chromosome arm is
enriched with the heterochromatic mark H3K27me3, which
is similarly enriched on the accessory chromosomes (Schotanus
et al. 2015). We previously proposed that this particular
chromosome region represents a recent translocation of an
accessory chromosome to a core chromosome (Schotanus
et al. 2015). This hypothesis is consistent with the observa-
tion that the recombination rate of the chromosome arm
resembles the overall reduced recombination rate of the
accessory chromosomes (File S1).

High recombination rates in coding sequences of
Z. tritici

In primates and birds, recombination increases at CpG islands
and around transcription start and end sites (Auton et al.
2012; Singhal et al. 2015; Smeds et al. 2016). In the honey-
bee, recombination rates in introns and intergenic regions are
significantly higher than recombination rates in 39 and 59
UTRs and coding sequences (Wallberg et al. 2015). It has
been proposed that altered chromatin structures, such as
destabilized nucleosome occupancy at CpG islands and pro-
moters contribute to this fine-scale variation in recombina-
tion rate (Jones 2012). To determine whether specific
sequence features in the fungal pathogen genomes similarly
affect the overall recombination landscape, we inferred and
compared the mean recombination rates in exons, introns,
intergenic regions, and 59 and 39 flanking regions (500-bp
upstream and downstream coding DNA sequence regions,
respectively) with a minimum of three filtered SNPs (Figure
5A). Overall, we observe significant differences but with

Table 4 Recombination and repeat content in centromeres of Z. tritici

Chromosome Start Stop Length Mean r No. of SNPs
Mean r for full
chromosome

Repeat density
(%)

TE density
(%)

Essential 1 3,839,299 3,851,749 12,450 0.229 20 0.021 0.94 31.33
2 512,901 521,916 9,015 0.053 77 0.024 0.00 32.39
3 3,348,307 3,356,535 8,228 0.097 269 0.025 0.00 0.00
4 217,113 226,545 9,432 0.033 421 0.028 0.00 9.88
5 2,604,117 2,614,736 10,619 0.104 47 0.027 0.94 28.19
6 625,186 637,601 12,415 NA 0 0.026 3.10 37.46
7 255,824 266,207 10,383 0.006 79 0.044 0.32 0.00
8 213,892 227,444 13,552 0.059 62 0.029 0.45 39.99
9 2,067,589 2,076,063 8,474 0.015 106 0.040 0.50 0.00
10 99,716 109,365 9,649 0.016 77 0.049 0.00 15.32
11 365,130 373,557 8,427 NA 0 0.049 0.00 46.30
12 180,233 188,209 7,976 0.001 150 0.052 2.48 7.10
13 236,993 242,558 5,565 0.015 156 0.037 0.50 0.00

Dispensable 14 59,960 70,870 10,910 0.000 785 0.000 0.00 35.86
15 382,500 394,754 12,254 0.001 1098 0.001 0.86 20.04
16 332,004 342,592 10,588 0.099 83 0.023 0.00 35.97
17 406,958 418,893 11,935 NA 0 0.000 0.24 46.85
18 159,000 171,999 12,999 NA 0 0.159 0.00 46.62
19 148,227 159,387 11,160 0.001 4 0.000 0.76 1.38
20 94,677 105,169 10,492 NA 0 0.008 0.30 11.86
21 340,264 346,657 6,393 NA 0 NA 0.31 2.33
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Figure 5 Fine-scale recombination patterns within chromosomes. (A) The distribution of recombination rate estimates in different sequence features in
Z. tritici and Z. ardabiliae reveals small, but significant, differences among the noncoding, coding, and UTR sequences in both species. Top line numbers
indicate significance groups by decreasing value of recombination rate. Categories with identical numbers are not significantly different at the 1% level.
(B) Distribution of recombination rate estimates in exons, introns, and UTRs of candidate effector and noneffector genes is shown. Bow widths are
proportional to the sample sizes. For Z. ardabiliae, the recombination rate in exons and introns is significantly lower in candidate effector genes
compared to noneffector genes. Wilcoxon rank test corrected for multiple testing, *** P , 0.1%. NS, nonsignificant.
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small size effects in fine-scale rates of recombination across
different genome regions (Kruskal–Wallis test with post hoc
comparisons, false discovery rate set to 1%). In both Z. tritici
and Z. ardabiliae, we find the lowest recombination rates in
introns and the highest rates in intergenic sequences (Figure
5A). A lower value of r = 2Ner can result from a reduced Ne,
a reduced r, or both. Ne in the proximity of genes is expected
to be lower due to the presence of background selection
(Nordborg et al. 1996; Hobolth et al. 2011; Scally et al.
2012). The highly similar observed recombination rates in
coding and noncoding sequences in Z. tritici and Z. ardabiliae
suggests that r is not suppressed in these regions in the same
way as is observed in other organisms. The pattern indicates
that other mechanisms define fine-scale recombination rates
in these fungi which lead to high recombination frequencies
in protein-coding sequences.

Because of the relatively high rates of recombination in
exons of Z. tritici and Z. ardabiliae, we sought to determine
whether recombination could play a particular role in plant–
pathogen coevolution. Plant pathogens interfere with host
defenses and manipulate the host metabolism by the secre-
tion of so-called effector proteins produced to target mole-
cules from the host (Lo Presti et al. 2015). Antagonistic
coevolution of these interacting proteins is often reflected
in accelerated evolution and signatures of positives selection
(Stukenbrock and McDonald 2009). To assess the role of re-
combination on effector evolution, we first predicted effector
proteins computationally in the secretomes of both species
using the EffectorP software (Sperschneider et al. 2016). This
approach identified 868 putative effector proteins in Z. tritici
and 1122 and Z. ardabiliae.

By comparing the recombination rates in different genomic
regions encoding effector and noneffector genes, we show a
significantly lower recombination rate in exons and introns of
effector proteins in Z. ardabiliae (Wilcoxon rank test, P =
1.305e24 for exons and 2.534e25 for introns, P-values corrected
for multiple testing) (Figure 5B). The differences are mostly
driven by an excess of zero estimates in effector-encoding re-
gions in Z. ardabiliae, as visible on the distribution of measures
(Figure 5B). Discarding these regions with a mean recombina-
tion of zero leads to nonsignificant differences between effector
and noneffector genes. A recombination rate estimated to zero
can either be due to suppression of recombination in the region
or due to an estimation error. Introns and exons with a recom-
bination estimate of zero in Z. ardabiliae are found to be shorter
and to have a higher SNP density. While these differences are
significant, they are of a small size and are unlikely to be a cause
of estimation error, and the suppression of recombination in
some effector genes of Z. ardabiliae therefore appears to be a
biological signal whose origin remains to be elucidated by de-
tailed analysis of these regions.

Large-scale but not fine-scale correlation of recombination
landscapes in Z. tritici and Z. ardabiliae

Recombination landscapes have been compared in differ-
ent model species to assess the extent of conservation of

recombination rate variation. Broadscale recombination
rates in zebra finches and long-tailed finches have similar
levels and present correlation factors as high as 0.82 and
0.86 at the 10-kb and 1-Mb scales, respectively (Singhal
et al. 2015). Similarly, broadscale recombination rates in
human and chimpanzee tend to be conserved with few
exceptions, such as the human chromosome 2 which orig-
inates from a chromosome fusion in the human lineage
(Auton et al. 2012). However, when comparing the recom-
bination rates of more distantly related mammal species,
the correlation of recombination rates decreases even
when comparing homologous syntenic blocks (Jensen-
Seaman et al. 2004). In studies of mammals and fruit flies,
it is considered that the recombination landscape evolves
as a result of evolution of other sequence variables (Jensen-
Seaman et al. 2004) and the dynamics of fine-scale recom-
bination rates, including the positions of hotspots (Winckler
et al. 2005; Chan et al. 2012).

To address the evolution of recombination landscapes in
Z. tritici and Z. ardabiliae, we compared the genome-wide
recombination maps of the two species. We previously re-
ported that the genomes of the two species show a high
extent of colinearity and we found a mean sequence di-
vergence of dxy = 0.13 substitutions per site (Stukenbrock
et al. 2011). Here, we first aligned the two reference ge-
nomes of Z. tritici and Z. ardabiliae to compare recombi-
nation rates in homologous genome regions (Figure 6; see
Materials and Methods). Next, we calculated the average
recombination rate in nonoverlapping windows with at
least 100 SNPs in each species, which resulted in 3851win-
dows for which recombination in both species could be
averaged. The two maps show a moderate yet highly sig-
nificant correlation (Kendall’s rank correlation test, t =
0.2327, P , 2.2e216; Figure 7A), which suggests certain
similarities in the recombination landscape of the two
fungi. To determine the scale at which the maps are most
correlated (broad- or fine-scale recombination rates), we
further investigated how the correlations vary when vari-
ous window sizes are used. We find that the correlations,
consistently inferred with different correlation measures,
peak at the 0.5–1Mb scale (Figure 7B), suggesting that the
recombination landscape is conserved at large scales but
shows rapid evolution at smaller scales. These results mir-
ror findings from other eukaryotic species (e.g., Winckler
et al. 2005; Singhal et al. 2015) and suggest that distinct
mechanisms determine the recombination landscape at
fine and broad scales in these two species.

Frequency and intensity of recombination hotspots is
higher in Z. tritici

The fine-scale LDhat recombination maps clearly reveal the
presence of distinct peaks of recombination in both Z. tritici
and Z. ardabiliae (Figure 3). We used the program LDhot to
call positions of statistically significant recombination hot-
spots (Auton et al. 2014) and applied highly stringent selec-
tion criteria (seeMaterials and Methods) to obtain positions
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of the most significant hotspots for which the within-hotspot
rate was at least 10 times higher than the flanking regions
(Figure 8A). Interestingly, our approach revealed a consid-
erably greater number of recombination hotspots in Z. tritici
(2578 hotspots) than in Z. ardabiliae (862 hotspots). Fur-
thermore, we find a significant difference in the size of the
hotspot regions between the two species. In general, the
recombination hotspots span significantly shorter regions
in Z. tritici (median 39 bp) than in Z. ardabiliae (66 bp,
Wilcoxon ranked test P , 2.2e216). We also compared the
intensity of the recombination hotspots, as estimated by
LDhot (r across hotspot) and also find the median value of
r in hotspots to be significantly higher in Z. tritici (median of
16.44 compared with 8.42 for Z. ardabiliae, Wilcoxon rank
test P , 2.2e26). The higher frequency of more intense
hotspots in Z. tritici not only reveals a different hotspot

landscape in the wheat pathogen, it also suggests that the
overall higher recombination rate we observe in Z. tritici
partly is explained by the different recombination hotspot
architecture. These differences to some extent mirror the
larger density of SNPs in Z. tritici that enables a finer
resolution of the hotspot distribution and structure, and
could potentially be affected by a different demography
and population structure in the two species. We also spec-
ulate that recombination hotspots in these fungi have
evolved since the divergence of Z. tritici and Z. ardabiliae.
To address the extent of conservation in hotspot posi-
tions, we correlated the hotspot maps of the two species.

The position of recombination hotspots is defined by dif-
ferent mechanisms in different taxa, e.g., PRDM9 in primates
and transcription start and end sites in other species such as
birds (Myers et al. 2005; Singhal et al. 2015). Consequently,

Figure 6 Recombination maps of Z. tritici
and Z. ardabiliae plotted along the chromo-
some 1 of Z. tritici. (Upper panel) Recombina-
tion map in 100-kb windows plotted together
with smoothing curves. (Lower panel) Cu-
mulative curves of the recombination maps,
scaled to be comparable. The position of the
centromere is marked over the chromosome
plots as a vertical stippled line. Figures for
other chromosomes are available in File S2.
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hotspot positions are highly conserved in some species
(Tsai et al. 2010; Singhal et al. 2015), while highly variable
in others (Myers et al. 2010). We mapped Z. ardabiliae
hotspots on the Z. tritici genomes and counted the number
of colocalizing hotspots in the two species. We considered
a hotspot in Z. tritici as colocalizing with a hotspot in
Z. ardabiliae if the distance between the two hotspots
is ,1 kb and if no other hotspot is present in between.
We report that only 149 hotspots are colocalizing (6% of
hotspots in Z. tritici and 20% of hotspots in Z. ardabiliae).
This number is however significantly more than expected
by chance (P , 9.99e25, permutation test; Figure 8B).
These results are consistent with the previously reported
genetic maps of Z. tritici, which also show little overlap of
hotspot positions between two Swiss crosses (Croll et al.
2015). Conversely, the patterns are highly different from
Saccharomyces species in which hotspot positions are
highly conserved and associated with functional elements
across the yeast genomes (Tsai et al. 2010).

Given the dense genomes of Z. tritici and Z. ardabiliae,
we assessed the number of hotspots mapped to coding
sequences. Of the 2578 Z. tritici hotspots, 132 are located
in introns and 1435 are located in exons. Interestingly, in
Z. ardabiliae, we find 44 hotspots in introns and only
396 in exons. We plotted the number of hotspots as a func-
tion of the number of called sites in each region (Figure
8C). We observe a general trend in which the number of
detected hotspots increases with the number of called sites
as a power law (linear relationship in log space), and with

more hotspots detected in Z. tritici. In contrast to patterns
of previously studied species, this reveals the presence of
hotspots in all parts of the genome, including coding re-
gions. We do not observe a significant enrichment close to
transcription start sites (upstream regions) like in yeast
(Lam and Keeney 2015). We further note that compara-
tively fewer hotspots locate in intergenic regions of Z. tritici,
these regions displaying a density of hotspots similar to
what is expected in Z. ardabiliae for the observed number
of callable sites. We hypothesize two nonexclusive possible
origins for this result: (1) the number of callable sites is
higher in Z. tritici intergenic regions than in Z. ardabiliae,
due to the lack of telomere-to-telomere assembly of a refer-
ence genome for this species. The missing regions could
potentially bias our estimate of hotspot densities in inter-
genic regions. (2) Another possible explanation is that the
comparatively larger number of hotspots in Z. tritici is due to
an increased hotspot density in protein-coding genes in this
species, which raises the question whether intragenic re-
combination hotspots represent a selected feature during
evolution of the wheat-infecting lineage.

Conclusions

Pathogens need to adapt rapidly to overcome immune
responses in their host (Jones and Dangl 2006). Several
examples from animal and plant pathogens document ex-
ceptionally high rates of genome rearrangements, includ-
ing changes in ploidy and full chromosome gains or losses (e.g.,
Ma et al. 2010; Croll et al. 2013; Hickman et al. 2013, 2015).

Figure 7 Correlation of recombination maps of Z. tritici and Z. ardabiliae. (A) Comparison of the two recombination maps based on average
recombination rates in windows of at least 100 SNPs in each species. Points represent averages in 10 classes with equal numbers of windows;
points and error bars represent the median and first and third quartile of the distribution for each category. (B) Correlation of recombination
maps in sliding windows of different sizes. Three distinct correlation coefficients are plotted against recombination rates averaged in different
window sizes (see Materials and Methods). Points indicate the averages of 1000 samples and bars shows the SEM. Lines correspond to local
regression smoothing.
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So far, the importance of meiotic recombination in rapid evolu-
tion of pathogens has been poorly addressed. Our analyses dem-
onstrate extraordinarily high recombination rates in two fungal
plant pathogens and thereby suggest that sexual recombination
can also be a major driver of rapid pathogen evolution.

The overall higher recombination rate and the increased
density of recombination hotspots in the crop pathogen
Z. tritici are remarkable. Z. tritici and Z. ardabiliae share
a recent common ancestor, but exist and evolve in highly
different environments. While Z. ardabiliae infects wild
grasses in a natural ecosystem, Z. tritici infects a crop host
and propagates only in managed ecosystems. Agricultural
management strategies, dense host populations, and increased
gene flow between geographically distant populations are

factors that contribute to the different population structure
of Z. tritici. We hypothesize that an increased rate of recom-
bination in coding sequences of Z. tritici was selected as it
favored the rapid generation of new alleles and allele com-
binations (Brunner et al. 2008). The exceptionally high re-
combination rate in Z. tritici allows the pathogen to rapidly
overcome new host resistances and explains the current
difficulties of controlling this important wheat pathogen.

Acknowledgments

The authors thank Nicolas Galtier for helpful discussions on
the GC-biased gene conversion, Mohammad J. Nikkah and
Bruce McDonald for providing the Z. ardabiliae isolates, and

Figure 8 Distribution of hotspots in the genomes of Z. tritici and Z. ardabiliae. (A) Example of mapped hotspot in a homologous region in Z. tritici and
Z. ardabiliae. Lines indicate the background recombination rate as estimated by LDhat. Bars indicate the positions, widths, and strengths of hotspots
detected by LDhot in the region, after filtering (see Materials and Methods). (B) Number of hotspots in Z. tritici in the direct 1-kb range of a hotspot in
Z. ardabiliae (vertical line) and the corresponding distribution under the null hypothesis of a random distribution of hotspots. (C) Frequencies of hotspots
in distinct regions of the genome. Number of detected hotspots in each region as a function of the number of called sites. Lines correspond to ordinary
least-square regressions.

1226 E. H. Stukenbrock and J. Y. Dutheil



Daniel Croll for providing genetic data from experimental
crosses of Z. tritici. E.H.S. is supported by intramural fund-
ing from the Max Planck Society, Germany; a personal grant
from the State of Schleswig-Holstein, Germany; and a grant
from the German Research Council, Deutsche Forschungsge-
meinschaft, grant number HO 4435/1-1 in the framework of
the SPP1819. J.Y.D. is supported by intramural funding from
the Max Planck Society, Germany. The authors declare that
they have no competing interests.

Literature Cited

Auton, A., and G. McVean, 2007 Recombination rate estimation
in the presence of hotspots. Genome Res. 17: 1219–1227.

Auton, A., A. Fledel-Alon, S. Pfeifer, O. Venn, L. Ségurel et al.,
2012 A fine-scale chimpanzee genetic map from population
sequencing. Science 336: 193–198.

Auton, A., S. Myers, and G. McVean, 2014 Identifying recom-
bination hotspots using population genetic data. arXiv:
1403.4264.

Awadalla, P., 2003 The evolutionary genomics of pathogen re-
combination. Nat. Rev. Genet. 4: 50–60.

Badouin, H., M. E. Hood, J. Gouzy, G. Aguileta, S. Siguenza et al.,
2015 Chaos of rearrangements in the mating-type chromo-
somes of the anther-smut fungus Microbotryum lychnidis-dioicae.
Genetics 200: 1275–1284.

Begun, D. J., and C. F. Aquadro, 1992 Levels of naturally occur-
ring DNA polymorphism correlate with recombination rates in
D. melanogaster. Nature 356: 519–520.

Betancourt, A. J., J. J. Welch, and B. Charlesworth, 2009 Reduced
effectiveness of selection caused by a lack of recombination.
Curr. Biol. 19: 655–660.

Blanchette, M., W. J. Kent, C. Riemer, L. Elnitski, A. F. A. Smit et al.,
2004 Aligning multiple genomic sequences with the threaded
blockset aligner. Genome Res. 14: 708–715.

Broman, K. W., J. C. Murray, V. C. Sheffield, R. L. White, and J. L.
Weber, 1998 Comprehensive human genetic maps: individual
and sex-specific variation in recombination. Am. J. Hum. Genet.
63: 861–869.

Brunner, P. C., F. L. Stefanato, and B. A. McDonald, 2008 Evolution
of the CYP51 gene in Mycosphaerella graminicola: evidence for
intragenic recombination and selective replacement. Mol. Plant
Pathol. 9: 305–316.

Chan, A. H., P. A. Jenkins, and Y. S. Song, 2012 Genome-wide
fine-scale recombination rate variation in Drosophila mela-
nogaster. PLoS Genet. 8: e1003090.

Choi, K., X. Zhao, K. A. Kelly, O. Venn, J. D. Higgins et al.,
2013 Arabidopsis meiotic crossover hot spots overlap with
H2A.Z nucleosomes at gene promoters. Nat. Genet. 45:
1327–1336.

Croll, D., M. Zala, and B. A. McDonald, 2013 Breakage-fusion-
bridge cycles and large insertions contribute to the rapid evolu-
tion of accessory chromosomes in a fungal pathogen. PLoS
Genet. 9: e1003567.

Croll, D., M. H. Lendenmann, E. Stewart, and B. A. McDonald,
2015 The impact of recombination hotspots on genome evo-
lution of a fungal plant pathogen. Genetics 201: 1213–1228.

Daverdin, G., T. Rouxel, L. Gout, J.-N. Aubertot, I. Fudal et al.,
2012 Genome structure and reproductive behaviour influence
the evolutionary potential of a fungal phytopathogen. PLoS
Pathog. 8: e1003020.

de Castro, E., I. Soriano, L. Marín, R. Serrano, L. Quintales et al.,
2012 Nucleosomal organization of replication origins and meiotic
recombination hotspots in fission yeast. EMBO J. 31: 124–137.

de Jonge, R., M. D. Bolton, A. Kombrink, G. C. M. van den Berg, K.
A. Yadeta et al., 2013 Extensive chromosomal reshuffling
drives evolution of virulence in an asexual pathogen. Genome
Res. 23: 1271–1282.

Dray, S., and A.-B. Dufour, 2007 The ade4 package: implementing
the duality diagram for ecologists. J. Stat. Softw. 22: 1–20.

Duret, L., and P. F. Arndt, 2008 The impact of recombination on
nucleotide substitutions in the human genome. PLoS Genet. 4:
e1000071.

Duret, L., and N. Galtier, 2009 Biased gene conversion and the
evolution of mammalian genomic landscapes. Annu. Rev. Geno-
mics Hum. Genet. 10: 285–311.

Dutheil, J., and B. Boussau, 2008 Non-homogeneous models of
sequence evolution in the Bio++ suite of libraries and pro-
grams. BMC Evol. Biol. 8: 255.

Dutheil, J. Y., S. Gaillard, and E. H. Stukenbrock, 2014 MafFilter:
a highly flexible and extensible multiple genome alignment files
processor. BMC Genomics 15: 53.

Dutheil, J. Y., G. Mannhaupt, G. Schweizer, C. M. K. Sieber, M.
Münsterkötter et al., 2016 A tale of genome compartmentali-
zation: the evolution of virulence clusters in smut fungi. Ge-
nome Biol. Evol. 8: 681–704.

Escobar, J. S., S. Glémin, and N. Galtier, 2011 GC-biased gene con-
version impacts ribosomal DNA evolution in vertebrates, angio-
sperms, and other eukaryotes. Mol. Biol. Evol. 28: 2561–2575.

Galtier, N., G. Piganeau, D. Mouchiroud, and L. Duret, 2001 GC-
content evolution in mammalian genomes: the biased gene con-
version hypothesis. Genetics 159: 907–911.

Goodwin, S. B., S. Ben M’barek, B. Dhillon, A. H. J. Wittenberg, C.
F. Crane et al., 2011 Finished genome of the fungal wheat
pathogen Mycosphaerella graminicola reveals dispensome struc-
ture, chromosome plasticity, and stealth pathogenesis. PLoS
Genet. 7: e1002070.

Grandaubert, J., A. Bhattacharyya, and E. H. Stukenbrock,
2015 RNA-seq-based gene annotation and comparative geno-
mics of four fungal grass pathogens in the genus Zymoseptoria
identify novel orphan genes and species-specific invasions of
transposable elements. G3 (Bethesda) 5: 1323–1333

Grandaubert, J., J. Y. Dutheil, and E. H. Stukenbrock, 2017 The
genomic rate of adaptation in the fungal wheat pathogen Zymosep-
toria tritici. bioRxiv. DOI: https://doi.org/10.1101/176727.

Gremme, G., S. Steinbiss, and S. Kurtz, 2013 GenomeTools: a
comprehensive software library for efficient processing of struc-
tured genome annotations. IEEE/ACM Trans. Comput. Biol. Bi-
oinform. 10: 645–656.

Hasegawa, M., H. Kishino, and T. Yano, 1985 Dating of the hu-
man-ape splitting by a molecular clock of mitochondrial DNA.
J. Mol. Evol. 22: 160–174.

Hickman, M. A., G. Zeng, A. Forche, M. P. Hirakawa, D. Abbey
et al., 2013 The ‘obligate diploid’ Candida albicans forms mat-
ing-competent haploids. Nature 494: 55–59 [corrigenda: Nature
530: 242 (2016)].

Hickman, M. A., C. Paulson, A. M. Dudley, and J. Berman,
2015 Parasexual ploidy reduction drives population heteroge-
neity through random and transient aneuploidy in Candida al-
bicans. Genetics 200: 781–794.

Hobolth, A., J. Y. Dutheil, J. Hawks, M. H. Schierup, and T. Mailund,
2011 Incomplete lineage sorting patterns among human, chim-
panzee, and orangutan suggest recent orangutan speciation and
widespread selection. Genome Res. 21: 349–356.

Hood, M. E., E. Petit, and T. Giraud, 2013 Extensive divergence
between mating-type chromosomes of the anther-smut fungus.
Genetics 193: 309–315.

Horton, M. W., A. M. Hancock, Y. S. Huang, C. Toomajian, S. Atwell
et al., 2012 Genome-wide patterns of genetic variation in
worldwide Arabidopsis thaliana accessions from the RegMap
panel. Nat. Genet. 44: 212–216.

Recombination Rate Evolution 1227



Hunter, C. M., W. Huang, T. F. C. Mackay, and N. D. Singh,
2016 The genetic architecture of natural variation in recombi-
nation rate in Drosophila melanogaster. PLoS Genet. 12:
e1005951.

Jeffreys, A. J., and R. Neumann, 2009 The rise and fall of a hu-
man recombination hot spot. Nat. Genet. 41: 625–629.

Jeffreys, A. J., J. Murray, and R. Neumann, 1998 High-resolution
mapping of crossovers in human sperm defines a minisatellite-
associated recombination hotspot. Mol. Cell 2: 267–273.

Jensen-Seaman, M. I., T. S. Furey, B. A. Payseur, Y. Lu, K. M. Roskin
et al., 2004 Comparative recombination rates in the rat,
mouse, and human genomes. Genome Res. 14: 528–538.

Jones, J. D., and J. L. Dangl, 2006 The plant immune system.
Nature 444: 323–329.

Jones, P. A., 2012 Functions of DNA methylation: islands, start
sites, gene bodies and beyond. Nat. Rev. Genet. 13: 484–492.

Kaplan, N., I. K. Moore, Y. Fondufe-Mittendorf, A. J. Gossett, D.
Tillo et al., 2009 The DNA-encoded nucleosome organization
of a eukaryotic genome. Nature 458: 362–366.

Katoh, K., G. Asimenos, and H. Toh, 2009 Multiple alignment of
DNA sequences with MAFFT. Methods Mol. Biol. 537: 39–64.

Kellner, R., A. Bhattacharyya, S. Poppe, T. Y. Hsu, R. B. Brem et al.,
2014 Expression profiling of the wheat pathogen Zymosepto-
ria tritici reveals genomic patterns of transcription and host-
specific regulatory programs. Genome Biol. Evol. 6: 1353–1365.

Kong, A., D. F. Gudbjartsson, J. Sainz, G. M. Jonsdottir, S. A. Gud-
jonsson et al., 2002 A high-resolution recombination map of
the human genome. Nat. Genet. 31: 241–247.

Lam, I., and S. Keeney, 2015 Nonparadoxical evolutionary stabil-
ity of the recombination initiation landscape in yeast. Science
350: 932–937.

Lassalle, F., S. Périan, T. Bataillon, X. Nesme, L. Duret et al., 2015 GC-
content evolution in bacterial genomes: the biased gene conversion
hypothesis expands. PLoS Genet. 11: e1004941.

Linde, C. C., J. Zhan, and B. A. McDonald, 2002 Population struc-
ture of Mycosphaerella graminicola: from lesions to continents.
Phytopathology 92: 946–955.

Lo Presti, L., D. Lanver, G. Schweizer, S. Tanaka, L. Liang et al.,
2015 Fungal effectors and plant susceptibility. Annu. Rev.
Plant Biol. 66: 513–545.

Ma, L.-J., H. C. van der Does, K. A. Borkovich, J. J. Coleman, M.-
J. M.-J. Daboussi et al., 2010 Comparative genomics reveals
mobile pathogenicity chromosomes in Fusarium. Nature 464:
367–373.

Mancera, E., R. Bourgon, A. Brozzi, W. Huber, and L. M. Steinmetz,
2008 High-resolution mapping of meiotic crossovers and non-
crossovers in yeast. Nature 454: 479–485.

Marais, G., D. Mouchiroud, and L. Duret, 2003 Neutral effect of
recombination on base composition in Drosophila. Genet. Res.
81: 79–87.

McMullen, M. D., S. Kresovich, H. S. Villeda, P. Bradbury, H. Li
et al., 2009 Genetic properties of the maize nested association
mapping population. Science 325: 737–740.

Meunier, J., and L. Duret, 2004 Recombination drives the evolu-
tion of GC-content in the human genome. Mol. Biol. Evol. 21:
984–990.

Möller, M., and E. H. Stukenbrock, 2017 Evolution and genome
architecture in fungal plant pathogens. Nat. Rev. Microbiol. 15:
756–771.

Mugal, C. F., C. C. Weber, and H. Ellegren, 2015 GC-biased gene
conversion links the recombination landscape and demography
to genomic base composition. BioEssays 37: 1317–1326.

Munch, K., T. Mailund, J. Y. Dutheil, and M. H. Schierup, 2014 A
fine-scale recombination map of the human–chimpanzee ances-
tor reveals faster change in humans than in chimpanzees and a
strong impact of GC-biased gene conversion. Genome Res. 24:
467–474.

Myers, S., L. Bottolo, C. Freeman, G. McVean, and P. Donnelly,
2005 A fine-scale map of recombination rates and hotspots
across the human genome. Science 310: 321–324.

Myers, S., R. Bowden, A. Tumian, R. E. Bontrop, C. Freeman et al.,
2010 Drive against hotspot motifs in primates implicates the
PRDM9 gene in meiotic recombination. Science 327: 876–879.

Nordborg, M., B. Charlesworth, and D. Charlesworth, 1996 The
effect of recombination on background selection. Genet. Res.
67: 159–174.

Petersen, T. N., S. Brunak, G. Heijne, and H. Nielsen, 2011 SignalP
4.0: discriminating signal peptides from transmembrane regions.
Nat. Methods 8: 785–786.

Petes, T. D., 2001 Meiotic recombination hot spots and cold spots.
Nat. Rev. Genet. 2: 360–369.

Petit, E., T. Giraud, D. M. Vienne, M. A. Coelho, G. Aguileta et al.,
2012 Linkage to the mating-type locus across the genus Micro-
botryum: insights into nonrecombining chromosomes. Evolution
66: 3519–3533.

Piganeau, G., D. Mouchiroud, L. Duret, and C. Gautier, 2002 Expected
relationship between the silent substitution rate and the GC
content: implications for the evolution of isochores. J. Mol.
Evol. 54: 129–133.

Raffaele, S., and S. Kamoun, 2012 Genome evolution in filamen-
tous plant pathogens: why bigger can be better. Nat. Rev. Micro-
biol. 10: 417–430.

R Core Team, 2013 R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna.

Rizzon, C., G. Marais, M. Gouy, and C. Biémont, 2002 Recombination
rate and the distribution of transposable elements in the Drosophila
melanogaster genome. Genome Res. 12: 400–407.

Scally, A., J. Y. Dutheil, L. W. Hillier, G. E. Jordan, I. Goodhead
et al., 2012 Insights into hominid evolution from the gorilla
genome sequence. Nature 483: 169–175.

Schotanus, K., J. L. Soyer, L. R. Connolly, J. Grandaubert, P. Happel
et al., 2015 Histone modifications rather than the novel re-
gional centromeres of Zymoseptoria tritici distinguish core and
accessory chromosomes. Epigenetics Chromatin 8: 41.

Serres-Giardi, L., K. Belkhir, J. David, and S. Glémin, 2012 Patterns
and evolution of nucleotide landscapes in seed plants. Plant Cell
24: 1379–1397.

Singhal, S., E. M. Leffler, K. Sannareddy, I. Turner, O. Venn et al.,
2015 Stable recombination hotspots in birds. Science 350:
928–932.

Smeds, L., C. F. Mugal, A. Qvarnström, and H. Ellegren, 2016 High-
resolution mapping of crossover and non-crossover recombination
events by whole-genome re-sequencing of an avian pedigree. PLoS
Genet. 12: e1006044.

Smith, K. M., P. A. Phatale, C. M. Sullivan, K. R. Pomraning, and
M. Freitag, 2011 Heterochromatin is required for normal distribu-
tion of Neurospora crassa CenH3. Mol. Cell. Biol. 31: 2528–2542.

Spencer, C. C. A., P. Deloukas, S. Hunt, J. Mullikin, S. Myers et al.,
2006 The influence of recombination on human genetic diver-
sity. PLoS Genet. 2: e148.

Sperschneider, J., D. M. Gardiner, P. N. Dodds, F. Tini, L. Covarelli
et al., 2016 EffectorP: predicting fungal effector proteins from
secretomes using machine learning. New Phytol. 210: 743–
761.10.1111/nph.13794

Staab, P. R., S. Zhu, D. Metzler, and G. Lunter, 2015 Scrm: effi-
ciently simulating long sequences using the approximated co-
alescent with recombination. Bioinformatics 31: 1680–1682.

Stukenbrock, E. H., and B. A. McDonald, 2009 Population genet-
ics of fungal and oomycete effectors involved in gene-for-gene
interactions. Mol. Plant Microbe Interact. 22: 371–380.

Stukenbrock, E. H., S. Banke, M. Javan-Nikkhah, and B. A. McDonald,
2007 Origin and domestication of the fungal wheat pathogen
Mycosphaerella graminicola via sympatric speciation. Mol. Biol.
Evol. 24: 398–411.

1228 E. H. Stukenbrock and J. Y. Dutheil



Stukenbrock, E. H., F. G. Jørgensen, M. Zala, T. T. Hansen, B. A.
McDonald et al., 2010 Whole-genome and chromosome evo-
lution associated with host adaptation and speciation of the
wheat pathogen mycosphaerella graminicola. PLoS Genet. 6:
e1001189.

Stukenbrock, E. H., T. Bataillon, J. Y. Dutheil, T. T. Hansen, R. Li
et al., 2011 The making of a new pathogen: insights from
comparative population genomics of the domesticated wheat
pathogen Mycosphaerella graminicola and its wild sister spe-
cies. Genome Res. 21: 2157–2166.

Stukenbrock, E. H., W. Quaedvlieg, M. Javan-Nikhah, M. Zala, P.
W. Crous et al., 2012 Zymoseptoria ardabiliae and Z. pseudo-
tritici, two progenitor species of the septoria tritici leaf blotch
fungus Z. tritici (synonym: Mycosphaerella graminicola). Myco-
logia 104: 1397–1407.

Stumpf, M. P. H., and G. A. T. McVean, 2003 Estimating recom-
bination rates from population-genetic data. Nat. Rev. Genet. 4:
959–968.

Taylor, J. W., C. Hann-Soden, S. Branco, I. Sylvain, and C. E. Elli-
son, 2015 Clonal reproduction in fungi. Proc. Natl. Acad. Sci.
USA 112: 8901–8908.

True, J. R., J. M. Mercer, and C. C. Laurie, 1996 Differences in
crossover frequency and distribution among three sibling spe-
cies of Drosophila. Genetics 142: 507–523.

Tsai, I. J., A. Burt, and V. Koufopanou, 2010 Conservation of re-
combination hotspots in yeast. Proc. Natl. Acad. Sci. USA 107:
7847–7852.

Wallberg, A., S. Glémin, and M. T. Webster, 2015 Extreme
recombination frequencies shape genome variation and evo-
lution in the honeybee, Apis mellifera. PLoS Genet. 11:
e1005189.

Wang, Y., and B. Rannala, 2014 Bayesian inference of shared re-
combination hotspots between humans and chimpanzees. Ge-
netics 198: 1621–1628.

Weber, C. C., B. Boussau, J. Romiguier, E. D. Jarvis, and H. Ellegren,
2014 Evidence for GC-biased gene conversion as a driver of
between-lineage differences in avian base composition. Genome
Biol. 15: 549.

Whittle, C. A., and H. Johannesson, 2011 Evidence of the accu-
mulation of allele-specific non-synonymous substitutions in the
young region of recombination suppression within the mating-
type chromosomes of Neurospora tetrasperma. Heredity (Edinb)
107: 305–314.

Whittle, C. A., Y. Sun, and H. Johannesson, 2011 Degeneration in
codon usage within the region of suppressed recombination in
the mating-type chromosomes of Neurospora tetrasperma. Eu-
karyot. Cell 10: 594–603.

Wickham, H., 2016 ggplot2: Elegant Graphics for Data Analysis.
Springer, New York.

Wijnker, E., G. Velikkakam James, J. Ding, F. Becker, J. R. Klasen et al.,
2013 The genomic landscape of meiotic crossovers and gene con-
versions in Arabidopsis thaliana (G McVean, Ed.). Elife 2: e01426.

Winckler, W., S. R. Myers, D. J. Richter, R. C. Onofrio, G. J. McDo-
nald et al., 2005 Comparison of fine-scale recombination rates
in humans and chimpanzees. Science 308: 107–111.

Zhan, J., R. E. Pettway, and B. A. McDonald, 2003 The global
genetic structure of the wheat pathogen Mycosphaerella grami-
nicola is characterized by high nuclear diversity, low mitochon-
drial diversity, regular recombination, and gene flow. Fungal
Genet. Biol. 38: 286–297.

Communicating editor: M. Hahn

Recombination Rate Evolution 1229


