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Abstract

Endosomal adaptor proteins are important regulators of signaling pathways underlying many 

biological processes. These adaptors can integrate signals from multiple pathways via localization 

to specific endosomal compartments, as well as through multiple protein-protein interactions. One 

such adaptor protein that has been implicated in regulating signaling pathways is the adaptor 

protein containing a pleckstrin-homology (PH) domain, phosphotyrosine binding (PTB) domain, 

and leucine zipper motif 1 (APPL1). APPL1 localizes to a subset of Rab5-positive endosomes 

through its Bin-Amphiphysin-Rvs (BAR) and PH domains, and it coordinates signaling pathways 

through its interaction with many signaling receptors and proteins through its PTB domain. This 

review discusses our current understanding of the role of APPL1 in signaling and trafficking, as 

well as highlights recent work into the function of APPL1 in cell migration and adhesion.
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Introduction

Signaling endosomes are believed to function as platforms for integrating distinct 

communication pathways within cells[1]. Endosome-associated adaptor proteins are critical 

in mediating this crosstalk between signaling pathways because of their ability to interact 

with multiple proteins[1]. APPL1, also known as DIP13α, is a 709-amino acid adaptor 

protein that is receiving increasing attention because it can facilitate signaling pathway 

crosstalk on endosomal surfaces. For example, APPL1 has been proposed to mediate 

crosstalk between Wnt and insulin signaling pathways by bringing together proteins 

involved in these pathways on endosomes[1, 2]. In this review, we will highlight the role of 

APPL1 as an adaptor protein and how APPL1 coordinates signaling and trafficking events to 

regulate cellular processes, including cell migration and adhesion.
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APPL1 integrates signaling crosstalk via multiple domains that mediate protein and lipid 

interactions[3, 4]. The N-terminal BAR domain is implicated in sensing or inducing 

membrane curvature[5, 6], while both the central PH and C-terminal PTB domains have 

been shown to bind to phospholipids[7]. Indeed, multiple studies have demonstrated the 

ability of APPL1 to bind phosphoinositides, including PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, 

PtdIns(3,4)P2 and PtdIns(3,5)P2, and PtdIns(3,4,5)P3[7, 8]. Through its BAR domain, 

APPL1 can oligomerize into homodimers (APPL1-APPL1) or heterodimers with APPL2 

(APPL1-APPL2)[8]. APPL1 is unique from other BAR domain-containing proteins, in that 

the BAR and PH domains of APPL1 together form a functional domain that binds the small 

GTPase Rab5 (Figure 1). Mutagenesis studies have revealed that Rab5 binds to both the 

BAR and PH domains of APPL1, as Rab5 could not interact with APPL1 lacking one of 

them[9]. The BAR-PH domain of APPL1 also binds Rab21[9], which is similar in structure 

to Rab5[10]. The PTB domain enables interaction of APPL1 with a number of receptor 

proteins, including epidermal growth factor receptor (EGFR)[4], tropomyosin receptor 

kinase A (TrkA)[11], deleted in colorectal cancer (DCC)[12], adiponectin receptor 

(AdipoR1)[13], insulin receptor (IR)[14], follicle stimulating hormone receptor (FSHR)[15], 

androgen receptor (AR)[16], and N-methyl-D-aspartate (NMDA) receptors[17], to regulate 

signaling[7]. At its C-terminus, APPL1 binds the PSD-95/Discs-large/ZO-1 (PDZ) domain 

of the adaptor protein GAIP-interacting protein C terminus, member 1 (GIPC1)[18], a 

protein involved in loading cargoes onto vesicles through its interaction with the actin motor 

protein myosin VI[19] (Figure 1).

Moreover, APPL1 associates with at least thirty-three unique proteins (Table 1), and 

possibly many more, as indicated by numerous studies (data deposited in BioGrid dataset: 

https://thebiogrid.org/117522/summary/homo-sapiens/appl1.html)[20]. It is highly 

implausible that APPL1 interacts with all of these proteins simultaneously. More likely, 

APPL1 binds a subset of these proteins in a cell type dependent manner to regulate specific 

signaling pathways. Furthermore, interactions between APPL1 and some of the listed 

proteins may not be direct since they were found by immunoprecipitation assays. Thus, 

more reconstitution studies should be performed to define proteins that directly interact with 

APPL1. Nevertheless, the number of putative interactors of APPL1 suggests its great 

potential to regulate a variety of processes.

APPL1 in trafficking

APPL1, which localizes to early endosomes via interaction with Rab5 as well as lipid 

binding[9], may comprise a transient and very early compartment in the endocytic 

pathway[21]. In support of this, highly motile tubulovesicular transport carriers that traffic 

receptors and fuse to early endosomes were shown to contain APPL1[22]. APPL1 positive 

vesicles may serve as a precursor for more mature, early endosome antigen (EEA1)-positive, 

endosomes[21, 23]. Indeed, little to no colocalization occurs between APPL1 and EEA1, 

although both are Rab5 effectors[4]. Furthermore, EEA1 competes with APPL1 for Rab5 

binding on endosomes, and upon a phosphoinositide switch, APPL1 is lost and EEA1 is 

gained, giving more evidence to a model where APPL1 endosomes mature into EEA1 

endosomes[21]. Interestingly, another Rab5 effector, WD Repeat and FYVE Domain 

Containing 2 (WDFY2), partially colocalizes with both APPL1 and EEA1[21]. After APPL1 
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was lost from WDFY2 compartments, these compartments then fused to form larger 

endosomes, which then acquired EEA1 and lost WDFY2[21].

However, recent evidence suggests that a subset of APPL1 endosomes make up a distinct 

early endosome compartment that can be very stable[24]. Mathematical modeling argues 

against the hypothesis of APPL1 endosome maturation into EEA1-positive ones as an 

obligatory mechanism along the endocytic route[24]. Moreover, APPL1 compartments can 

act as sites of cargo sorting, which enable recycling of cargo back to the plasma 

membrane[24]. In support of this, the endosomal sorting complex required for transport 

(ESCRT)-0 was recently shown to mark an APPL1-independent route for trafficking to 

EEA1-positive endosomes, indicating that there are alternative ways of endosome 

maturation[25]. A subset of APPL1 endosomes most likely mature into and/or 

bidirectionally exchange cargo with EEA1 endosomes, whereas another subset directly sort 

cargo for recycling[24].

APPL1 has also been implicated in the regulation of trafficking, which is crucial for 

modulating signals from receptors. For instance, APPL1 is linked to EGFR trafficking by 

modulating Rab5 activation[26]. EGFR is quickly internalized after activation by EGF, in a 

Rab5-dependent manner. Then it is trafficked to early endosomes for sorting into recycling 

endosomes or lysosomes for degradation. Overexpression of APPL1 decreases Rab5 

activation and subsequently inhibits internalization of EGFR, which reduces degradation of 

the receptor. Conversely, APPL1 depletion increases Rab5 activation, resulting in increased 

internalization and trafficking of EGFR to lysosomes to regulate EGFR protein levels and 

signaling[26]. Thus, APPL1 is an important regulator of endocytic trafficking, and further 

studies will be needed to reveal the mechanisms by which APPL1 regulates the trafficking of 

a variety of receptors.

APPL1 in signaling

In addition to its roles in endocytic trafficking, APPL1 also regulates signaling events by 

interacting with receptors and other signaling proteins. APPL1 binds various signaling 

proteins, including the serine/threonine kinase Akt[3], p110α and p85 subunits of 

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)[16], insulin receptor substrate 

proteins 1 and 2 (IRS1/2)[14], and the Rab5 effector oculocerebrorenal syndrome of Lowe 

(OCRL)[27] (Figure 1). As a signaling adaptor protein, APPL1 is important for mediating 

signaling specificity[1]. For example, APPL1 regulates phosphorylation of glycogen 

synthase-3 beta (GSK3-β) by Akt, playing a role in cell survival. However, APPL1 is not 

required for Akt-mediated activation of tuberous sclerosis complex 2 (TSC2), which plays a 

role in growth control[1, 2].

APPL1-mediated signaling is largely coordinated through its PTB domain, located near the 

C-terminus. This allows APPL1 to couple trafficking and signaling, as lipid binding and 

Rab5 interaction (accomplished through the BAR and PH domains located near the N-

terminus of the protein) would not interfere with APPL1 interaction with signaling 

proteins[1]. The PTB domain of APPL1 is similar to that of another adaptor protein Shc, 

which recognizes the NPXpY consensus sequence in its interacting proteins[28]. However, 
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the binding of most PTB domains is independent of tyrosine phosphorylation[29], and this 

seems to be the case for APPL1[11, 14, 28]. Indeed, APPL1 has been shown to interact 

exclusively with the inactive (unphosphorylated) form of Akt2[3]. Similarly, binding 

between the PTB domain of APPL1 and TrkA or AdipoR1 does not depend on the presence 

of phosphotyrosine[11, 13]. Mutation of all tyrosine residues in AdipoR1 had no effect on 

APPL1 binding[13]. Thus, it is likely that APPL1 mediates its signaling interactions through 

a novel mechanism, independent of tyrosine phosphorylation, and this will require further 

studies to elucidate.

APPL1 allows the signaling events to occur after internalization of receptors into 

compartments termed signaling endosomes[1]. During endocytosis, signaling endosomes 

can be trafficked to specific locations within the cell to mediate certain signaling cascades. 

One example can be regulation of lysophosphatidic acid (LPA)-induced signaling by APPL1 

and its interacting partner GIPC1[18]. Depletion of GIPC1 promoted lysophosphatidic acid 

receptor 1 (LPA1)-mediated Akt signaling on APPL1 endosomes. At the same time 

trafficking of the receptor into EEA1-positive early endosomes that attenuates signaling is 

restricted. When LPA1 is in the APPL1 compartment, Akt signaling continues, while 

trafficking to EEA1 attenuates LPA1-mediated signaling[18]. Therefore, APPL1 may 

represent an important mode of regulation of signaling events through endosomes.

APPL1-regulated signaling is not limited to signaling endosomes. APPL1 couples the 

trafficking of receptors into early endosomes with the transmission of signals to the nucleus, 

through the interaction of APPL1 with Rab5. Upon GTP hydrolysis of Rab5, APPL1 is lost 

from endosomes and translocates to the nucleus, where it stimulates changes in chromatin 

remodeling and transcription[4]. In support of this, APPL1 interacts with and modulates the 

functions of histone deacetylases (HDAC)1-3[30, 31] to influence the expression of cyclin-

dependent kinase inhibitor 1 (p21CIP1)[30]. APPL1 also forms a complex with the tumor 

repressor Reptin in complex with HDAC1 to relieve translational repression and promote 

transcription of Wnt-signaling target genes[32]. Moreover, APPL1 binds Dishevelled 2 

(Dvl2) and enhances its ability to promote non-canonical Wnt signaling through the 

transcription factor activating protein 1 (AP-1). This is dependent on the endosomal 

localization of APPL1[33]. As such, APPL1 seems to regulate post-internalization signaling 

by coupling signaling and transcription to endocytic trafficking.

In addition to regulating signaling specificity, APPL1 facilitates crosstalk between multiple 

signaling pathways; one example is the synergism between the adiponectin and insulin 

signaling pathways. APPL1 associates with AdipoR1 upon stimulation with adiponectin, 

leading to downstream phosphorylation of 5’ adenosine monophosphate-activated protein 

kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK)[28]. Co-treatment with 

adiponectin and insulin usually results in Akt phosphorylation, but not in cells depleted of 

APPL1[28]. Furthermore, APPL1 mediates sensitization of insulin signaling through 

adiponectin. Treatment of C2C12 cells with adiponectin leads to phosphorylation of APPL1 

at Ser401. Co-treatment with insulin mediates the association of phosphorylated APPL1, IR, 

and IRS1/2 to allow for insulin signaling[14]. Together, this evidence highlights an 

important role for APPL1 as a signaling adaptor which mediates signaling pathways coupled 

to endosomal trafficking.
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APPL1 as a regulator of cell migration

While the functions of APPL1 in trafficking and signaling have been studied, the role of 

APPL1 in regulating cell migration is still poorly understood. This was initially explored in 

a study using murine embryonic fibroblasts (MEFs) from the APPL1 knockout mouse. 

Although APPL1 is dispensable for development, fibroblasts require APPL1 for proper Akt 

signaling during hepatocyte growth factor (HGF)-mediated survival and cell migration[34].

The importance of APPL1 in the regulation of cell migration has also been documented in 

cancer cell line models. A study by Broussard et al. showed that cell lines exhibiting lower 

migratory rates express higher levels of APPL1 in comparison to highly motile cancer cell 

lines[35]. It is therefore hypothesized that alterations in APPL1 expression levels affect cell 

migration. In support of this hypothesis, expression of APPL1-GFP in HT1080 fibrosarcoma 

cells leads to a decrease in cell migration speeds, which is dependent on endosomal 

localization of APPL1 and its ability to coordinate signaling. Mechanistically, APPL1 

inhibits Akt activity within adhesions and downstream of the tyrosine kinase Src (Figure 2a). 

Indeed, APPL1 decreases Src-mediated tyrosine phosphorylation of Akt, and this Akt 

activation is necessary for migration. As a result, APPL1-GFP-expressing cells exhibit 

slower migration due to impaired turnover of leading edge adhesions[35].

Several studies suggest that APPL1 is involved in integrin trafficking, which is critical for 

cell adhesion and migration. In endothelial cells, GIPC1 interaction with the glycoprotein 

neuropilin-1 (Nrp1) was shown to promote internalization of active α5β1 integrin into Rab5-

positive vesicles, which is then recycled to the cell surface near adhesion sites[36] (Figure 

2b). This is crucial for cell adhesion to the extracellular matrix protein fibronectin as well as 

fibronectin fibrillogenesis. Because APPL1 interacts with both GIPC1 and Rab5, Valdembri 

et al. suggest that APPL1 is involved in this pathway (Figure 2b)[36]. Future studies are 

needed to determine the importance of APPL1-dependent regulation of integrin 

internalization for cell migration.

More recently, APPL1 was implicated in the regulation of integrin trafficking in Arf6-

mediated adhesion and migration. Arf6 has been paradoxically shown to both increase and 

decrease cell adhesion by accelerating integrin recycling and by increasing integrin 

internalization, respectively. Chen et al. demonstrated that these opposite effects on integrin 

trafficking and focal adhesion size are accomplished by spatially separating two Arf6 

GTPase activating proteins (GAPs), namely ArfGAP with Coiled-Coil, Ankyrin Repeat and 

PH Domains 1 (ACAP1) and ArfGAP with RhoGAP Domain, Ankyrin Repeat and PH 

Domain 2 (ARAP2)[37]. ACAP1 was shown to promote recycling of integrins, while 

ARAP2 instead decreases integrin recycling (Figure 2c). ARAP2 colocalizes with Arf6 and 

APPL1 in distinct structures that are separate from ACAP1/Arf6 recycling endosomes. 

Knockdown of ARAP2 enhances trafficking of β1 integrin, and reduces β1 integrin transit 

from APPL1 to EEA1 vesicles (Figure 2c), whereas overexpression of ARAP2 leads to an 

increase in adhesion size. The former phenotype has been also reported for cells 

overexpressing APPL1. It is plausible that impaired trafficking of integrins by ARAP2 

would favor adhesions that turn over more slowly. Since APPL1 has been shown to reduce 

adhesion turnover[35], it is tempting to speculate that APPL1 and ARAP2 are both involved 
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in this process. On the other hand, ACAP1, which promotes integrin recycling, localizes to 

an APPL1-negative Arf6 compartment that has a different effect on Arf6-mediated cell 

adhesion. Interestingly, an inhibition of Akt prevents ACAP1-mediated integrin 

recycling[38]. As APPL1 downregulates Akt activation during cell migration, this could 

mean that APPL1 promotes ARAP2 activity by inhibiting ACAP1.

APPL1 and APPL2: similarities and contrasts

APPL2 is a 669-amino acid protein that shares 54% identity with APPL1[4]. APPL1 and 

APPL2 share similar BAR, PH, and PTB domains, as well as a C-terminal SEA motif for 

binding PDZ domains[12]. APPL1 and APPL2 share some similar roles. For instance, 

APPL1 and APPL2 both contribute to cell survival, but this occurs through distinct signaling 

pathways[2, 40]. APPL1 regulates Akt signaling to mediate cell survival, requiring its 

endosomal localization[2]. On the other hand, APPL2 decreases gene expression of 

apoptosis-related genes, and this effect on cell survival is independent of its endosomal 

localization[40]. Furthermore, the two proteins may have some redundant roles, as 

evidenced by the APPL1 knockout mouse, which is viable, with no obvious phenotypes. 

MEFs from the APPL1 knockout mouse exhibit impaired Akt signaling in response to HGF 

stimulation, and this effect is aggravated by APPL2 depletion[34]. However, APPL1 and 

APPL2 are not fully redundant, as the two proteins display some differences in binding 

partners. For instance, both APPL1 and APPL2 interact with Rab5[9], but APPL2 cannot 

bind Rab21; conversely, Rab22a, Rab24, and Rab31 can bind APPL2, but not APPL1[39]. 

APPL1 and APPL2 also exhibit some opposing functions; for example, APPL1 is a positive 

regulator of AdipoR1 signaling, whereas APPL2 is a negative regulator[41]. APPL2 has not 

been as well studied as APPL1, and further studies on APPL2 will be important to reveal 

redundant and/or unique novel functions of APPL2.

Future directions concluding remarks

APPL1 is an important adaptor protein for coordinating both signaling and trafficking events 

within cells in order to regulate processes such as cell migration and adhesion. Although the 

role of APPL1 in signaling and trafficking has been well characterized, future studies are 

needed to understand the complexity of APPL1 endosome formation and exchange and/or 

maturation with other Rab5-positive endosomes, and how this affects signaling on 

endosomes. A number of intriguing questions still remain. What is the importance of the 

ability of APPL1 to bind to unphosphorylated tyrosine residues? Is it to prevent signaling 

until the bound protein is released from the APPL1 compartment? Are there other receptors 

or signaling proteins that interact with APPL1? How does APPL1 mediate signaling 

specificity to coordinate multiple signaling pathways?

Studies focusing on APPL1 in the context of cell migration are only beginning to emerge, 

and thus, much remains to be learned. However, multiple proteins that interact with APPL1 

have been implicated in cell migration, and could represent feasible mechanisms for APPL1-

mediated cell migration. For instance, Rab5, in addition to its roles in regulating early 

endosome dynamics, is known to promote cell migration in a number of ways[42]. Rab5 

localizes to the leading edge of migrating cells and promotes lamellipodia formation[42, 43]. 
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Mechanistically, Rab5, downstream of Caveolin1, promotes activation of the GTPase Rac by 

recruiting the guanine nucleotide exchange factor (GEF) Tiam1[43–45]. APPL1 signaling 

endosomes could therefore be important for coordinating the signals leading to Rac 

activation. Moreover, Rab5 localizes to focal adhesions[46], associates in a complex with 

focal adhesion proteins vinculin and paxillin, and also promotes focal adhesion 

disassembly[47]. There is already evidence for the role of APPL1 in focal adhesion 

turnover[35]; therefore, the interaction between APPL1 and Rab5 might be important for 

focal adhesion dynamics. APPL1 also interacts with Rab21, a poorly studied Rab protein 

involved in the endocytic pathway. Rab21 associates with and controls trafficking of 

integrins to regulate cell migration[48]. Since APPL1 has already been shown to bind to 

Rab5 and Rab21[9, 37, 42], APPL1 may also be involved in Rab21-mediated integrin 

trafficking.

The integration of signaling and trafficking through adaptor proteins, such as APPL1, is an 

intriguing area of research that is still not well understood. Signaling specificity and 

crosstalk between multiple signaling pathways are complex, and studying APPL1 may 

provide a greater understanding into how signaling is controlled. Further studies into APPL1 

will lend insight in the molecular mechanisms underlying trafficking and signaling, as well 

as cell migration and adhesion.
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Abbreviations

APPL1 adaptor protein containing a pleckstrin-homology domain, phosphotyrosine 

binding domain, and leucine zipper motif 1

BAR Bin-Amphiphysin-Rvs

PH Pleckstrin Homology

PTB Phosphotyrosine binding

EGFR epidermal growth factor receptor

TrkA tropomyosin receptor kinase A

AdipoR1 adiponectin receptor

IR insulin receptor

GIPC1 GAIP-interacting protein C terminus, member 1

EEA1 early endosome antigen

IRS1/2 insulin receptor substrate proteins 1 and 2
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GSK3-β glycogen synthase-3 beta

GAPs GTPase activating proteins

WDFY2 WD repeat and FYVE domain containing 2

LPA1 lysophosphatidic acid receptor 1

HGF hepatocyte growth factor

ACAP1 ArfGAP with Coiled-Coil, Ankyrin Repeat and PH Domains 1

ARAP2 ArfGAP with RhoGAP Domain, Ankyrin Repeat and PH Domain 2
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Figure 1. Schematic of the domain structure of APPL1 with binding sites of interacting proteins
Numbers correspond with amino acid residues. Numbering of APPL1 domains is based on 

Li et al.[7]. Interacting proteins are labeled as follows: red, trafficking proteins; purple, 

signaling proteins; blue, proteins involved in both signaling and trafficking; green, receptors.
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Figure 2. Function of APPL1 in cell migration and adhesion
(A) APPL1 decreases migration speeds by inhibiting Akt tyrosine phosphorylation by Src 

within adhesions. This process required endosomal localization of APPL1. Circle represents 

APPL1-positive early endosomes. (B) Rab5 and GIPC1 promote internalization of active 

α5β1 integrin from adhesions, which is subsequently recycled to newly forming adhesions. 

APPL1 may be involved in this process. Circle represents Rab5-positive early endosomes 

that may contain APPL1. (C) APPL1 colocalizes with the Arf6 compartment containing the 

GAP ARAP2, which promotes transition of integrins from APPL1-endosomes to EEA1-

endosomes, and may block transition of integrins to recycling endosomes. Arf6 

compartments containing ACAP1, however, promote recycling of integrins. Circles 

represent Arf6 compartments marked by either ARAP2/APPL1 or ACAP1. Irregular shaped 

compartment represents EEA1-positive early endosomes.
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Table 1

List of APPL1 interactions identified through BioGRID database and literature searches. At least 33 proteins 

interact with APPL1. Protein interactions identified by BioGRID through high throughput methods have been 

excluded. For full list, see https://thebiogrid.org/117522/summary/homo-sapiens/appl1/html[20].

ID Experimental Method References

ADIPOR1 Affinity Capture-Western, Protein Fragmentation Complementation Assay, Two-Hybrid, Reconstituted Complex [13, 49]

ADIPOR2 Affinity Capture-Western, Two-Hybrid [13]

AKT1 Affinity Capture-Western [16]

AKT2 Affinity Capture-Western, Reconstituted Complex, Two-Hybrid [3, 50]

APPL1 Co-crystal Structure, Reconstituted Complex [9]

APPL2 Affinity Capture-Western [50]

AR Affinity Capture-Western [16]

CDON Affinity Capture-Western, Two-Hybrid [51]

DCC Affinity Capture-Western, Two-Hybrid [12]

DVL2 Affinity Capture-Western [33]

EGFR Co-Localization [4, 26]

FSHR Affinity Capture-Western, Two-Hybrid [15, 52]

GIPC1 Affinity Capture-Western [11, 18, 53]

HDAC1 Affinity Capture-Western, Reconstituted Complex [30]

HDAC2 Affinity Capture-Western, Reconstituted Complex [30]

HDAC3 Affinity Capture-Western [31]

INPP5B Affinity Capture-Western [27]

INSR Affinity Capture-Western [14]

IRS1/2 Affinity Capture-Western [14]

MTA 2 Affinity Capture-Western, Reconstituted Complex [4, 30]

NTRK1 Affinity Capture-Western [11]

OCRL Affinity Capture-Western [27]

PIKCA Affinity Capture-Western [3]

PIK3R1 Affinity Capture-Western [16]

PRKCZ Affinity Capture-Western, Reconstituted Complex [54]

RAB5A Affinity Capture-Western, Reconstituted Complex [4, 9, 13]

RAB21 Reconstituted Complex [9]

RBBP4 Affinity Capture-Western [30]

RBBP7 Affinity Capture-Western
Reconstituted Complex

[30]
[4]

RUVBL2 Affinity Capture-Western, Reconstituted Complex [32]

TGFBR1 Affinity Capture-Western, Co-localization, Reconstituted Complex [54]

TRAF6 Affinity Capture-Western [55]

TUBB3 Affinity Capture-Western [54]
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