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Autophagy is an evolutionarily conserved mechanism of bulk protein degradation. Aberrant
autophagic activity contributes to the pathogenesis of many diseases including cancer.1: 2
Although allelic loss of key autophagy genes such as A7G6/ BECNI has been specifically
associated with malignancies, the prevalence of mutations in the autophagy network as a
whole has never been comprehensively studied in a diverse spectrum of patients with
myeloid neoplasms.2 We conducted a cross-sectional analysis of 180 autophagy genes and
their interactions by analyzing the results of whole exome sequencing (WES) derived from a
cohort of 223 cases with myeloid neoplasms [(N=223; myelodysplastic syndromes
(MDS)=120, acute myeloid leukemia (AML)=46, MDS/myeloproliferative neoplasms
(MPN)=45, MPN=5, and others (paroxysmal nocturnal hemoglobinuria (PNH), aplastic
anemia/PNH =7)]. We also reviewed the TCGA data of patients with primary AML
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(N=202). In total, we identified missense mutations and copy number alterations in the
following genes of the autophagy network (ATG2A, ATG4C, ATG14, ATG16L 1, BCL?Z,
CDKNZ2AIPNL, COG8, DNMI1L, DNMZ2, GYSI1, HIFIA, KIFIB, LAMPZ, MLSTS,
MTOR, NODZ, PIK3C2G, PIK3CZA/B, PIK3CB, PPPZR2A/B, PPPZ2R3A, PRKACS,
PRKAA1/2, PRKAG1/G2, PTPN2, RICTOR, RPTOR, SEC22B, SMURF1, SQSTM,
STAT3, SUPT20H, TAB2, TNFSF10/13B, ULK4, USP10, VVPS11/33B, VTI1A, WDFY3/4,
WAC) in 40 patients (MDS=14, AML=15, MPN and MDS/MPN=9, Others=2).
Bioinformatic analyses detected genetic alterations in at least one relevant gene in 31/223
(14%) of patients with available WES and in 9/202 (4.4%) of patients from the TCGA
cohort (Table 1). Table S1 summarizes the clinical characteristics of the patients carrying
mutations in autophagy-related genes [pt#1-31 (our cohort) and 32—40 (TCGA cohort)]. The
analysis of matched CD3* lymphocytes confirmed the somatic nature of each alteration.
Mutations were: non-synonymous (45), stop-gain (5), frameshift insertions/deletions (3/1),
non-frameshift deletion (1), and splice site (3); 32/40 patients had a sole mutation, 4 patients
carried 2 mutations each (ULK4, WDFY?3), (KIF1B, SEC22B), (VIT1A, TAB2), (DNM?Z,
WAC). Two patients harbored mutations in 3 genes each [pt#10 (RPTOR, SQSTM1, GYSI)
and pt#13 (TNVFSF10, LAMPZ, PTPNZ2)]. One patient (pt#15) carried 2 mutations in the
NOD?2 gene [stopgain, (13.5%) and a missense (8.2%)]. One patient (pt#1) had >3
mutations. We also identified recurrently mutated genes: PRKACB [pt#1 (AML stage), 14
and 24], ULK4 [pt#1 (MDS stage), #2], NODZ2 [pt#1 (AML stage), #15], PTPNZ (pt#13,
17), PRKAGI (pt#25, 26), VPS11 (pt#29, 30), and WAC (pt#32, 40). The same mutation
(p.-T192P; ¢.A574C) in the v-SNARE coiled-coil homology domain of SEC22B gene was
also detected in pts#6 and #27. We designed a mutational diagram by clustering all the genes
based on their function in the autophagy pathway (Figure 1a) and classified the mutations in
the following autophagy interactome components: apoptotic effectors/inducers (13/55;
24%), protein kinases and dependent kinases (10/55; 18%), vesicle transport (9/55; 16%),
early-stage autophagy (8/55; 15%) and phosphatidylinositol-3 phosphatase family (6/55;
11%; Figure S1, panel a). In the cohort of mutant patients, mutations were observed in more
than 10% of all myeloid disease types with the majority of mutant patients being high-risk
MDS (12/40; 30%) and AML patients (15/40; 37.5%) (Figure S1, panel b). A schematic
diagram depicts 2 genes (PRKACB, ULK4) that were found mutated in 3 and 2 patients,
respectively (Figure 1b). Of note, the association of mutations in the autophagy pathway
with higher grade rather than lower grade MDS disease is emphasized by the analysis of
consecutive samples. Indeed, we performed WES of patients #1 and 13 in paired specimens
obtained at the stage of MDS and after progression to AML. We found a high mutation level
in early stage autophagy (ULK4, 12.5%) genes and in the mTOR pathway [MTOR (10%)
and R/CTOR (16.7%)] at the stage of MDS in patient #1. Mutations in apoptotic effectors
and inducers [BCLZ, 14.2% (MDS stage) vs. NODZ, 63% (AML stage)] and in the protein
kinase phosphatase pathway [PPP2ZR2A; 7.1% (MDS stage) vs. PPP2R3A; 10% (AML
stage)] were detected at both the MDS and AML stages. This patient had multiple adverse
features including a complex karyotype, 7P53and PRPF8mutations, a rapid increase in
bone marrow blasts with disease progression (3% vs. 35% in 3 months) and no response to
hypomethylating therapy. In patient #13, we observed the emergence of mutations in
autophagy-related genes such as 7NFSF10(7.6%), LAMPZ2 (7.7%) and PTPNZ2 (8%) only at
the AML stage and not at the MDS stage. These characteristics suggest that alterations in
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autophagy-related genes may be a cooperative event associated with disease progression and
that cells with autophagic defects may be more susceptible to clonal evolution.

Analysis of the cytogenetic profiles of the mutant patients showed that 4 genes mapped to
commonly deleted regions e.g., 5q (CDKN2AIPNL, SQSTMI) or 7q (SMURF1, PRKAG?2)
and coincided with haploinsufficient expression, while 3 genes had hemizygous
configuration (SMURF1, PPP2R3A, PIK3C2G) (Table S2). Analysis of the variant types
showed that loss-of-function mutations were observed in ULK4 (stopgain; p.L1220X),
NOD2 (stopgain; p.E1008X), VT/1A (stopgain; p.E5S3X), PTPNZ (stopgain; p.R26X),
PRKAAZ (stopgain; p.R227X), VPS11 (frameshift insertion; p.S64fs*), DNMZ (frameshift
insertion; T471fs*), WAC (frameshift insertion; p.E87fs), and USP10 (frameshift deletion;
p.P386fs*) genes. We also dissected the clonal hierarchy of autophagy gene mutations.
Clonal hierarchy showed that autophagy mutations were predominantly secondary events,
were ancestral events in 7 patients (ATG2A, SEC22B, STAT3, PRKACB, DNML 1, PTPNZ,
PRKAGI) and co-dominant in 2 patients (VOD2, MLST8) When autophagy gene mutations
were secondary, the most represented ancestral mutations were in splicing factors (N=9;
SRSF2, PRPF8, U2AFI) and DNA methylation genes (N=4; TET2, DNMT3A). The
characterization of ancestral vs. secondary events suggested to us that autophagy gene
mutations are cooperative rather than initiating events in clonal evolution. We also observed
that autophagy gene mutations are secondary mutations in several cases when ancestral
mutations occurred in splicing factor genes. A recent article reported that autophagy genes
may be implicated in the epigenetic mechanism of patients with MDS carrying UZAF1
mutations and may contribute to disease phenotypes. U2AF153* mutations have been
described to possibly promote leukemogenesis by aberrant splicing of the autophagy gene
ATG7* This observation led us to investigate whether epigenetic defects in autophagy genes
are also commonly detected in MDS and, if present, whether they correlate with specific
biological and clinical MDS phenotypes. We analyzed RNA sequencing of patients with
MDS and found that the expression levels of several autophagy genes was increased in
SF3BIMYT MDS compared to SF3B1WT MDS cells: early stage autophagy genes
(ATGZ2AIB, FC=2; ATG4A, FC=2; ATGY9A, FC=5; ATG4C, P=0.05; ATG18(FC=4.8; P=
0.02), autophagy-initiating kinases (ULK1, FC=2; ULK3, FC=3.9; P=0.05), and late stage
autophagy genes (CTSL1, FC=20; CTSD, FC=5.8; P=0.05; C7SB, FC=2.1; CTSE, FC=5.9;
CTSD, FC=2; P=0.01). Of note, 2 genes (ATGZA, ATG4C) carried somatic mutations and
increased expression levels. One of them, A7GZ2A was also an ancestral event when mutated.
We originally reported a list of genes found differentially expressed in S7361*/~ BM cells
compared to S£361* BM cells® (see Table S1) by RNA sequencing analysis. Interestingly
enough we merged the list of genes found mutated in our cohort of patients with the list of
genes found modulated in S£361"/~ mice and found that 17 genes were up-regulated more
than 2-fold change in our mouse model of MDS (ATG16L1, PIK3CB, GYS1, SEC22B,
KIF1B, STAT3, VT1A, TNFSF10, PTPN2, DNML1, DNM2, HIF1A, MLSTS,
CDKN2AIPNL, WAC, BCL2, USP10). These observations suggested that the autophagy
pathway can potentially be triggered in MDS cells for therapeutic benefit. Autophagy gene
mutations were most prevalent in high-risk MDS (12/40; 30%) and almost equally prevalent
in SAML and pAML patients (6/9). 21/37 (57%) had abnormal karyotype with 4 patients
having complex karyotype including -17 and -7. Among the cases with abnormal karyotype,
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4 cases had del (5q). 21 patients had a fatal outcome. Comparative analysis of Sanger
sequencing, TruSeq targeted DNA sequencing, WES and TCGA data was used to assess the
global mutational spectrum of the patients harboring mutations in the autophagy-network.
We found that the most commonly mutated gene was 7E£72(11/40; 27.5%), followed by
RUNXIand STAGZ (8/40; 20%), SRSF2 (7/40; 7.5%) and DNMT3A and ASXL1 (6/40;
15%). Hemizygosity due to somatic deletions for genes associated with poor prognosis was
also noted (7P53. 2 patients; PRPF8, CUX1, DDX41: 1 patient each) (Figure 1c).
Comparative analysis (Sanger, TruSeq, WES, TCGA) found that patients with autophagy-
related genes are more susceptible to acquire mutations in signal transduction pathways (26
mutations), DNA methylation (24 mutations), and RNA-splicing (20 mutations) (Figure 1c
and Figure S2). Twenty-five mutations had a cut-off more than 20% variant allele frequency
(VAF) (Figure S3). Targeted gene panel sequencing was applied for 22 genes and confirmed
the presence of high variant allele frequency mutations like NODZ2 (63%), PIK3CZB (44%),
PRKACB (36%) and STAT3(38%). The majority of mutant patients had a dismal prognosis,
suggesting that these patients had cumulative unfavorable mutations like RUNXI1, ASXL 1,
DNMT3A and that these negative prognostic mutations® represented driver mutations in
these patients. Seven patients receiving hypomethylating agents had no response to therapy
(Table S1). Comparison of mutant and wild type (WT) patients showed that mutant patients
had lower survival trending toward significance compared to WT (14 mo vs. 20 mo; NMUT
vs. NWT =20 vs. 90; log-rank=0.09). Among disease subtypes, autophagy network
mutations were associated with significantly inferior survival in patients with MDS (NMUT =
13, mean survival: 17 mo; NWT = 61, mean survival: 35 mo, log-rank: 0.0187) and
MDS/MPN overlap syndromes (NMUT = 4, mean survival: 12 mo; NWT= 31, mean survival:
30 mo, log-rank: 0.0374).

Given the recent discovery of familial AML and MDS cases carrying pathogenic germ-line
variants, /8 we also evaluated whether the same autophagy genes we found to be
somatically mutated may also be prone to germ-line alterations. An in house analysis of a
database of 263,973 variants obtained from WES was conducted by testing different
predictive tools assessing deleterious variants and by calling a variant as deleterious if
present as deleterious in all Supplemental methods). We found 4 variants in 3 genes among 4
patients with possible deleterious exonic non-synonymous variants that were predicted to be
significantly damaging by all the tested scores: PIK3C2G (rs377020826, ¢.T3083C, total
allele frequency: 0.0001; rs201569993, ¢.C2938T, total allele frequency: 0.0007), NOD2
(rs104895423, ¢.T662G, total allele frequency: 0.0006), and H/F1A (c.A1666G; total allele
frequency: undetermined) (Table S3). In total, P/IK3C2G carried 1 somatic and 2 germ-line
variants, NODZhad 2 somatic and 1 germ-line variants, and H/F1A harbored 1 somatic and
1 germ-line variant. A complete table summarizes the somatic and germ-line status of the
variants we identified in the autophagy pathway (Table S4).

As mentioned previously, many types of malignant cells have been reported to exhibit
defective or dysregulated autophagy including mutations in BECNI (17921), which is
monoallelically deleted in 40-75% of patients with breast, ovarian, and prostate cancer.? In
other tumors, autophagy genes such as SH3GLB1 have been associated with regions of loss
of heterozygosity.19 In our study, we identified mutations in proximal co-factors of BECN1
such as PI3KCIII, vacuolar sorting proteins (Vps34, Vps1l) and ATG14. We performed an
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analysis of the related protein sequences (http://www.uniprot.org/) of the mutated regions
and found that several mutations occurred in essential domains/regions involved in protein-
protein interactions, particularly those required for autophagosome formation (ATG14,
BECNL1, PI3KC3, SEC22B, VPS34/11) (Table 1). Several mutations were found in
functional domains of the proteins [pt#32 (DNMZ, pleckstrin homology domain), pt#38
(PRKAAZ, protein kinase domain)]. Other mutations were detected in regions of
interactions between genes highly relevant in the autophagy pathway such as WDFY3
mutation (p.G3362V; pt#2) maps in a region spanning the interaction with SQS7MI (amino-
acid 2586-3526), ATG5 (amino-acid 2981-3526) and the region containing the LC3-
interacting region (LIR) motif, which allows the targeting of autophagy receptors to LC3 (or
other ATG8 family proteins) as a crucial step in the autophagy cascade. SQSTMI was also
found mutated in our cohort (p.D347Y; pt#10) and the mutated region was proximal to the
LIR motif (amino-acid 336-341). We also detected a mutation in a Beclin-1-associated
autophagy key regulator (A7G14, pt#33), which has been shown to directly interact with
Beclin-1 and increases phosphatidylinositol 3-phosphate kinase class I11 (PI3KC3) activity
to initiate autophagosome membrane nucleation by targeting SNARE-associated proteins.1!
We also reviewed extensively the literature to identify possible variants occurring also in
other diseases (Table S5).

Our collective findings define for the first time an important and perhaps so far
underappreciated role for genetic aberrations in the autophagy network in the pathogenesis
of myeloid neoplasms. Our data demonstrate that autophagy are autophagy-related gene
mutations are more prevalent in MDS and AML, co-occur with unfavorable mutations
(RUNX1, ASXL1, DNMT3A), and are associated with inferior survival. These findings
support further investigation of genetic loss of autophagy regulation as a novel cooperative
mechanism leading to leukemogenesis that can potentially be therapeutically targeted with
synthetic lethal approaches. Results from high-throughput next generation sequencing
collected from a larger population of genetically annotated patients with myeloid neoplasms
and comprehensive clinical information from different institutional centers will help define
the exact frequency of single gene mutations and the precise correlation with the clinical
phenotypes.
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Figure 1.
(a) Somatic mutations of the autophagy network in patients with myeloid neoplasms.

Whole exome and targeted sequencing identified 55 somatic mutations in autophagy-related
genes (a complete list of mutations is presented in Table 1). A schematic diagram illustrates
mutations per patients (N=40; pts #1-31; our cohort; pts #32-40, TCGA cohort). For pt #1,
exome sequencing was performed at the stage of MDS and AML. Different colors represent
the specific pathways where genes were clustered based on their function in the autophagy
pathway (yellow: early stage autophagy; gray: vesicles-mediated transport; light blue:
lysosomal enzymes: red: protein kinases and dependent kinases family; purple: protein
tyrosine phosphatase family; black: phosphatidylinositol-3 phosphatases; green: apoptotic
inducers/inhibitors; dark green: insulin receptor/mTOR associated signaling. Clustering was
conducted by reviewing previous published reports and by using the reactome pathway
database (http://www.reactome.org/). Pink half square triangles represent patients who were
hemizygous for specific mutations. Stars indicate genes for which germline variants were
also detected. The total number of mutations per pathway is indicated in the right column.
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(b) Schematic diagrams of two mutated autophagy-related genes. Protein kinase cCAMP-
activated catalytic subunit beta (PRKACB) is a serine/threonine protein kinase composed by
351 amino acids which mediates signaling through cyclic AMP and it is involved in the
induction of autophagy. The protein kinase (PK) domain spans amino-acid 44-244. Three
patients in our cohort carried PRKACB mutations [p.W184C, p.W244R, Splice site_303
(exon 9-1)]. Unc-51 like kinase 4 (ULK4) is a serine/threonine protein kinase involved in
autophagy. The protein is composed by 1275 amino acids with a kinase domain spanning
amino acids 4-280. Two patients carried ULK4 mutations (p.L1220X, p.P1003L).

(c) Mutational spectrum of patientswith myeloid neoplasms harboring mutationsin
the autophagy network. A schematic diagram illustrates the complete molecular profile of
patients with myeloid malignancies (N=40; pts #1-31; our cohort; pts #32-40, TCGA
cohort). For pt #1, exome sequencing was performed at the stage of MDS and AML. Data
are a collection of exome sequencing, TruSeq analysis, and Sanger sequencing. Genes were
clustered in pathway based on their function according to the literature (blue: DNA-
methylation; light green: Chromatin modification; dark green: transcriptional factors/
repressors/regulation; purple: RNA-helicases; light orange: signal transduction/receptors;
yellow: cohesin complex; dark orange: RNA-splicing). Pink half square triangle represents
patients who are hemizygous for specific mutations.
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