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Abstract

Background and aims

Hepatic cholesterol deposition drives inflammation and fibrosis in non-alcoholic steatohepa-

titis (NASH). The Niemann-Pick type C2 (NPC2) protein plays an important role in regulating

intracellular cholesterol trafficking and homeostasis. We hypothesized that intravenous

NPC2 supplementation reduces cholesterol accumulation, hepatic inflammation and fibro-

genesis in a nutritional NASH rat model.

Methods

Rats were fed a high-fat, high-cholesterol (HFHC) diet for four weeks resulting in moderately

severe NASH. Animals were treated with intravenous NPC2 or placebo twice weekly for

either the last two weeks or the entire four weeks. End-points were liver/body- and spleen/

body weight ratios, histopathological NASH scores, fibrosis, serum liver enzymes, choles-

terol, lipoproteins, cytokines, and quantitative polymerase chain reaction derived hepatic

gene expression related to cholesterol metabolism, inflammation, and fibrosis.

Results

HFHC rats developed hepatomegaly, non-fibrotic NASH histopathology, elevated liver

enzymes, serum cholesterol, and pro-inflammatory cytokines. Their sterol regulatory ele-

ment binding factor 2 (SREBF2) and low-density lipoprotein receptor (LDL-R) mRNAs were

down-regulated compared with rats on standard chow. NPC2 did not improve liver weight,

histopathology, levels of serum liver enzymes or pro-inflammatory tumor necrosis factor-α
(TNFα), Interleukin (IL)-6, or IL-1β in HFHC rats. Two weeks of NPC2 treatment lowered

hepatic TNFα and COL1A1 mRNA expression. However, this effect was ultimately reversed

following additional two weeks of treatment. Four weeks NPC2 treatment of rats raised
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ATP-binding cassette A1 (ABCA1) and low-density lipoprotein receptor (LDLR) mRNAs in

the liver, concurrent with a strong tendency towards higher serum high-density lipoprotein

(HDL). Furthermore, the peroxisome proliferator activated receptor-ɣ (PPARG) gene

expression was reduced.

Conclusions

NPC2 proved inefficient at modifying robust hepatic NASH end-points in a HFHC NASH

model. Nonetheless, our data suggest that hepatic ABCA1 expression and reverse choles-

terol transport were upregulated by NPC2 treatment, thus presenting putative therapeutic

effects in diseases associated with deregulated lipid metabolism.

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a continuum from simple steatosis to non-alco-

holic steatohepatitis (NASH) characterized by inflammation and fibrosis of the liver, and may

progress to cirrhosis. The prevalence of NAFLD in the general population of Western coun-

tries is 20–30%, and NASH affects 3–5% of the general adult population and up to 20–40% of

obese and diabetic patients[1,2].

There is currently no efficient medical treatment for NAFLD, with the exception of lifestyle

interventions; thus, reagents able to reverse biochemical and histopathological changes of

NAFLD are highly warranted. A growing body of experimental and clinical data including epi-

demiological studies suggest that increased cholesterol intake and subsequent aberrant hepato-

cyte cholesterol metabolism and cholesterol accumulation play a significant role in NAFLD

and NASH development and progression[3].

Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal cholesterol storage

disorder[4]. Mutations in the major disease locus Niemann Pick C1 (NPC1) are the most prev-

alent cause of NPC disease (95%), the remaining resulting from mutations in the minor disease

locus Niemann Pick C2 (NPC2), encoding the NPC2 protein[5]. NPC2 protein is a soluble

cholesterol binding glycoprotein ubiquitously expressed throughout the body. Intracellularly,

NPC2 mainly resides within late endosomes and lysosomal (LE/LY) compartments. NPC2

binds cellular cholesterol derived from the lipoprotein endocytic pathway and facilitates cho-

lesterol egress out of LE/LY compartments into the cytoplasm. This transport is mechanisti-

cally coordinated with the lysosomal transmembrane protein NPC1 in bringing cholesterol to

metabolically active sites within the cell. Additionally, NPC2 participates independently of

NPC1 in cellular cholesterol export by interacting with the adenosine tri-phosphate (ATP)

binding cassette A1 (ABCA1), the rate-limiting enzyme in high-density lipoprotein (HDL)

particle formation[6]. Further, NPC2 secreted into the bile canaliculi stimulates ATP binding

cassette G5 and G8 (ABCG5/8)-mediated cholesterol secretion[7].

Endocytosis of extracellular NPC2 protein imparts functional properties to NPC2-deficient

cells in the same manner as the endogenously expressed protein in vitro[8] and in vivo[9]. The

latter is evident by the significant improvement in liver and spleen steatosis seen following

intravenous NPC2 administration in a NPC2 hypomorphic disease mouse model[9].

The aim of the present study was to investigate the effects of NPC2 treatment using a high-

fat, high-cholesterol (HFHC) diet rat NASH model. We hypothesized that intravenous NPC2

administration would mobilize compartmentalized excess cholesterol trapped in hepatic cells

within LE/LY compartments through SREBP2-pathway controlled alterations in gene

Niemann-Pick type C2 protein supplementation in experimental non-alcoholic fatty liver disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0192728 March 9, 2018 2 / 15

https://doi.org/10.1371/journal.pone.0192728


expression, thereby ameliorating NASH changes. To test our hypothesis, we analyzed the liver

weight/body weight ratio, spleen weight/body weight ratio, liver histopathology and fibrosis,

serum liver enzymes, cholesterol lipoproteins, cytokines, and gene expressions related to cho-

lesterol metabolism, inflammation, and fibrosis.

To assess the translatability of the data derived from the rat NASH model, we additionally

compared gene expressions related to inflammation, fibrosis and cholesterol metabolism in a

human population subjects with NAFLD (N = 14) or NASH (N = 12) with (N = 7) or without

(N = 19) liver fibrosis. Other characteristics for these patients are as previously described[10].

Methods

Animals and design

Thirty-six female Wistar rats with a body weight of 180 g were sourced from Taconic (Ry,

Denmark) and housed in Specific Pathogen Free environment at 21˚C ± 2˚C with three ani-

mals per cage at the Department of Animal Care at Aarhus University. All rats were of good

health on arrival. The rats housed at the department undergo half-yearly serology to detect the

presence of transmissible infections, and the facility remains free of transmissible disease.

After one week of acclimatization on a standard isocaloric diet, we randomized the animals

into four groups. Experimental NASH was induced by feeding the animals a HFHC diet

(Research Diets Inc., New Brunswick, NJ, USA, D09052204) ad libitum for four weeks con-

taining 39 gross margin percentage (gm%) fat (main components 9.5 gm% palmitic acid; 13.1

gm% stearic acid, 12.5 gm% oleic acid; and 3 gm% linoleic acid), 27 gm% protein, 19 gm% car-

bohydrates, and 2 gm% cholesterol. Controls were fed a standard isocaloric diet (Research

Diets Inc.; D12450J). Animals had free access to tap water. Animals were observed on a day-

to-day basis and post-injections for signs of infection or systemic inflammation (loss of hair,

piloerection, huddled posture and decreased daily activity). This study was carried out in

accordance with the recommendations in the Guide for the Care and Use of Laboratory Ani-

mals of the National Institutes of Health. The Danish Animal Experiments Inspectorate

approved the experimental protocol (Permit number: 2013-15-2934-00971).

The study included four groups of nine animals each:

1. Isocaloric controls: Rats fed a standard diet and injected twice weekly with phosphate buff-

ered saline (PBS) as placebo for four weeks;

2. HFHC controls: Rats fed HFHC diet and injected twice weekly with PBS as placebo for four

weeks;

3. Two-week NPC2 (treatment group): Rats fed HFHC diet and injected twice weekly with

PBS as placebo for two weeks and then twice weekly with NPC2 for two weeks;

4. Four-week NPC2 (prevention group): Rats fed HFHC diet and injected twice weekly with

NPC2 for four weeks.

NPC2 was purified from bovine milk as previously described[9]. Aliquots with a concentra-

tion of 1.8 mg/mL were stored at -20˚C. We injected 5 mg/kg NPC2 or the equivalent volume

of vehicle (PBS) intravenously through the lateral tail veins, following Isoflurane (Forane1)

anesthesia.

At the end of the study, and after overnight fast, we anaesthetized the animals with a subcu-

taneous injection of fentanyl/fluanisone (Hypnorm1, Jansen Pharma, Birkerød, Denmark) at

0.5 mL/kg and midazolam (Dormicum1, La Roche, Basel, Switzerland) at 2.5 mg/kg followed

by retrobulbar whole blood extraction. The animals were sacrificed by cervical dislocation. Liv-

ers and spleens were weighed. Liver tissue samples from the left lobe were stored in 10%
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formalin for a maximum of 48h before paraffin embedding. Liver tissue was also snap-frozen

in liquid nitrogen and stored at -80˚C.

Histology

Each liver specimen was evaluated by scanning at low-power, before detailed examination in

five medium-power fields (20x objective). An experienced pathologist (SHD) graded NAFLD

changes (NAFLD activity score (NAS); 0–11) using a modified version of the system described

by Kleiner et al.[11]. The following parameters were assessed semi-quantitatively: steatosis (0–

3), lobular inflammation (0–2), hepatocyte ballooning (0–2), and fibrosis (0–4). We assessed

fibrosis on both hematoxylin/eosin and Masson trichrome stainings. We classified steatosis

into three subtypes: macrovesicular, large droplet; macrovesicular, small droplet; and

microvesicular.

Blood analyses

Serum total cholesterol and high density lipoprotein (HDL)-cholesterol, triglycerides, alanine

aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase

(GGT) and bilirubin were determined using enzymatic colorimetric assays based on the

Cobas c-system. The sum of serum very low-density lipoprotein and low-density lipoprotein

(VLDL+LDL) levels was assessed using the Friedewald formula[12], as the LDL concentration

alone cannot be reliably determined in sera from hypercholesterolemic rats[13].

We determined serum tumor necrosis factor-α (TNF-α), interleukin (IL) -6, IL-1β, IL-10,

and interferon-γ (IFN-γ) using a MULTI-SPOT Assay System “Proinflammatory Panel 1 (rat)

kit” (MSD, Ballerup, Denmark).

Liver tissue analyses

Ribonucleic acids (RNA) isolation and reverse transcription. Liver tissue was homoge-

nized on a Tissuelyzer II (Qiagen, Hilden, Germany) and suspended in Ribozol™ (Amresco

Inc., OH, USA) phenol reagent. Chloroform was added and the samples centrifuged, thus sep-

arating the proteinaceous organic phase and the aqueous nucleic acids containing interphase.

The aqueous phase was mixed with an equivalent volume isopropanol. Finally, samples were

washed three times in 70% ethanol/diethylpyrocarbonate (DEPC)-water, dried over laminar

flow and the RNA resuspended in DEPC-water.

The final RNA concentrations were determined using an Infinite1 200 Nanoquant (Tecan,

Männedorf, Switzerland) and normalized to 1000 ng/μL. We synthesized complementary

deoxyribonucleic acids (cDNA) with SuperScript1 Reverse Transcriptase (Thermo Fischer)

on a MyCycler thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA) according to the

manufacturer’s protocol.

Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR)

RT-qPCR was performed on a 96-well StepOnePlus™ Real-Time PCR System (Life Technolo-

gies, Darmstadt, Germany) using TaqMan Gene Expression Assays (S1 Table). Samples were

duplicated and the mean cycle threshold (CT) value used for statistical analysis. Gene expres-

sion was standardized using glyceraldehyde 3-phosphate dehydrogenase as house-keeping

gene and data analyzed using the delta-delta-Ct method as described by Livak et al.[14]. For

each gene, the CT expression of isocaloric control animal number 1 was set as reference and

the relative expressional levels compared with this sample.
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Microarray analysis of gene expression in human fatty livers

GeneChip data conducted in relation to a previously published clinical study was performed

as previously described[10]. In brief, patients were differentiated between simple steatosis

(NAFLD without NASH) or steatohepatitis (NASH) according to the FLIP algorithm[15] and

the fibrosis score graded according to Kleiner et al.[11].

Statistical methods

Data were analyzed using Kruskal-Wallis one-way analysis of variance by ranks followed by

the Wilcoxon Rank Sum Test (Mann-Whitney) and presented as median with interquartile

range. The NAS and components thereof, being discrete numerical, were compared parametri-

cally with Welch approximation and presented as mean ± standard deviation. Differences

were considered statistically significant for P< 0.05. We conducted all statistical analyses using

STATA version 12 for Windows (Statacorp, TX, USA).

Results

Animal weights

The HFHC diet led to markedly increased liver weights (13.0 vs. 6.5 g, P<0.001), liver/body

weight ratios (5.9 vs. 2.8%, P<0.001), spleen weights (0.9 vs. 0.6 g, P<0.001), and spleen/body

weight ratios (0.40 vs. 0.25%, P<0.005) compared with the standard diet (Table 1). In HFHC

animals, neither of the NPC2 treatment regimens affected body-, liver- or spleen weights, or

liver/body weight or spleen/body weight ratios.

Table 1. Animal characteristics and blood analyses at baseline and in placebo treated HFHC control group after four weeks. Two-week NPC2 treatment group was

fed the HFHC diet and injected intravenously with PBS for two weeks followed by two weekly NPC2 injections. The four-week NPC2 prevention group was fed the HFHC

diet for four weeks with twice weekly NPC2 injections.

Isocaloric diet High-Fat High-Cholesterol Diet

Controls Controls 2-weeks NPC2 4-weeks NPC2

Body weight, baseline (g) 198.5 (194.2–202.0) 194.7 (192.4–196.5) 194.9 (191.8–196.6) 193.7 (193.2–203.4)

Body weight, sacrifice (g) 222.4 (217.7–232.9) 220.8 (212.4–229.2) 211.3 (209.9–215.7) 219.4 (215.9–220.8)

Weight gain (g) 20.8 (18.3–34.9) 25.8 (19.8–33.7) 19.2 (17.3–22.6) 22.6 (17.9–27.4)

Liver weight (g) 6.5 (6.2–6.5) 13.0 (12.4–13.3)� 12.3 (11.7–13.5)� 13.7 (13.6–14.3)�

Liver/Body weight (%) 2.8 (2.8–3.0) 5.9 (5.9–6.0)� 5.8 (5.6–6.0)� 6.3 (6.1–6.8)�

Spleen weight (g) 0.58 (0.54–0.60) 0.88 (0.79–0.96)� 0.81 (0.80–0.85)� 0.98 (0.88–1.02)�

Spleen/Body weight (%) 0.25 (0.23–0.27) 0.40 (0.36–0.44)� 0.39 (0.36–0.41)� 0.45 (0.39–0.51)�

ALT (U/L) 32 (30–40) 881 (385–1275)� 1251 (958–1554)� 1553 (1239–1858)�

AST (U/L) 61 (59–66) 1153 (810–2502)� 2044 (842–2733)� 2312 (864–3550)�

GGT (U/L) 5 (5–5) 16 (5–23)� 29 (5–161)� 17 (8–80)�

Bilirubin (mg/dL) 5 (5–5) 5 (5–17)� 5 (5–8)� 9 (4–12)�

Total Cholesterol (mmol/L) 1.3 (1.1–1.4) 8.5 (7.8–9.0)� 9.1 (8.1–11.1)� 10.5 (8.1–12.8)�

HDL Cholesterol (mmol/L) 1.2 (1.0–1.3) 1.8 (1.5–2.0)� 1.9 (1.8–2.2)� 2.2 (1.8–2.4)�

(V)LDL Cholesterol (mmol/L) † 6.7 (5.7–7.4)� 6.9 (6.1–9.3)� 8.3 (6.3–10.1)�

Triglyceride (mmol/L) 0.4 (0.4–0.5) 0.4 (0.3–0.5) 0.5 (0.4–0.5) 0.5 (0.4–0.5)

ALT and AST: Serum alanine and aspartate aminotransferases; GGT: Gamma glutamyl transferase; HDL-Cholesterol: High-density lipoprotein cholesterol; V-VLDL:

Summated very-low density lipoprotein + low-density lipoprotein cholesterol. Data are presented as median (interquartile range).

�: P < 0.05 compared with isocaloric controls.
†: Below lower threshold.

https://doi.org/10.1371/journal.pone.0192728.t001
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Liver morphology and histopathology

Macroscopically, standard diet fed rats showed normal sized livers while HFHC rats presented

with enlarged fat-infiltrated livers irrespective of treatment regimen (PBS, two- or four-week

NPC2). Microscopically, the HFHC diet induced severe small droplet macrovesicular steatosis

(mean score 2.7 ± 1.0), inflammation (mean score 1.3 ± 0.7), ballooning (mean score 0.9 ±
0.6), and increased the total NAS score (4.4 ± 2.1) compared with controls fed isocaloric diet

(all P<0.0005) (Fig 1), but no fibrosis on either HE or MT stainings (data not shown). Neither

NPC2 treatment regimen affected the degree of steatosis or ballooning when comparing with

HFHC fed controls. While no effect of two-week NPC2 on inflammation or total NAS score

was found, four-week NPC2 was significantly associated with inflammation (increased inflam-

matory foci; mean score 2.0 ± 0.0; P = 0.01), and tended to increase the total NAS score

(5.9 ± 0.8; P = 0.07). Representative histological pictures are displayed in Fig 2.

Blood analyses

The HFHC diet was associated with increased serum total cholesterol, VLDL+LDL (both

P<0.001), HDL (P<0.005), ALT, and AST (P<0.0005) compared with the standard diet

(Table 1). While NPC2 treatment of either duration did not affect total cholesterol or

VLDL+LDL particle concentrations, four-week NPC2 treatment tended to increase serum

HDL (2.2 vs. 1.8 mmol/L, P = 0.07) and triglycerides (0.48 vs. 0.39 mmol/L, P = 0.07). Two-

week NPC2 treatment had no effect on ALT, but four-week NPC2 treatment tended to

increase ALT levels (1551 vs. 881 mmol/L, P = 0.06).

Fig 1. Hepatic histology scores. Hepatic histology scores graded semi-quantitatively according to Kleiner et. al. non-

alcoholic fatty liver disease (NAFLD) activity score (NAS), steatosis (0–3), lobular inflammation (0–2), ballooning (0–2)

and fibrosis (0–4) in isocaloric controls, high-fat, high-cholesterol (HFHC) controls, two-week NPC2 (treatment) and

four-week NPC2 (prevention) animals. No animal had significant histological fibrosis on HE (Panel A) or Masson

trichrome staining (Panel B). �: P< 0.05 compared with Isocaloric Controls. #: P< 0.05 compared with HFHC

Controls.

https://doi.org/10.1371/journal.pone.0192728.g001

Niemann-Pick type C2 protein supplementation in experimental non-alcoholic fatty liver disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0192728 March 9, 2018 6 / 15

https://doi.org/10.1371/journal.pone.0192728.g001
https://doi.org/10.1371/journal.pone.0192728


Cytokines

The HFHC diet significantly increased serum TNF-α, IL-6, IL-1β, and IL-10 levels. IFN-γ lev-

els were unaffected compared with controls (Table 2). Neither two- nor four-week NPC2 treat-

ment affected serum TNF-α, IL-6, IL-1β, or IL-10 levels.

Fig 2. Representative histological pictures. (A) Rat fed control standard isocaloric diet with placebo PBS injections.

Upper panel: Liver showing a normal histological picture. (Hematoxylin and eosin staining x 250). Lower panel: Liver

with a portal tract (to the right) and a central area (to the left). There is normal histology without portal or

perisinusoidal fibrosis. (Masson’s trichrome staining x 250). (B) Rat on HFHC diet with placebo PBS injections. Upper

panel: The liver shows marked mixed, small and large droplet macrovesicular steatosis. (Hematoxylin and eosin

staining x 250). Lower panel: Liver with a portal tract (to the right) and a central area (to the left). There is no evidence

of either portal or perisinusoidal fibrosis. (Masson’s trichrome staining x 250). (C) Rat on HFHC diet with placebo PBS

injections for two weeks, followed by NPC-2 injections for two weeks. Upper panel: Liver with marked mixed, small

and large droplet macrovesicular steatosis and grade 2 lobular inflammation. (Hematoxylin and eosin staining x 250).

Lower panel: The section shows a portal tract (to the right) and a central area (to the left). There is no evidence of

either portal or perisinusoidal fibrosis. (Masson’s trichrome staining x 250). (D) Liver from a rat on HFHC diet with

NPC2 injections for four weeks. Upper panel: There is marked mixed, small and large droplet macrovesicular steatosis

with grade 2 lobular inflammation. (Hematoxylin and eosin staining x 250). Lower panel: The section shows a small

portal tract (bottom right) and a central area (upper left). There is no evidence of either portal or perisinusoidal

fibrosis. (Masson’s trichrome staining x 250).

https://doi.org/10.1371/journal.pone.0192728.g002
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Hepatic messenger RNA (mRNA) expression related to inflammation and fibrosis.

The HFHC diet robustly up-regulated liver TNF, type 1 collagen A1 (COL1A1), transforming

growth factor beta-1 (TGFB1), and peroxisome proliferator activated receptor gamma

(PPARG) gene expression compared with isocaloric controls (Fig 3 Panels A and B).

Table 2. Serum pro- and anti-inflammatory cytokines (tumor necrosis factor-α (TNF-α), Interleukin (IL)-6, IL-1β, IL-10 and interferon-ɣ (IFN-ɣ)) at end of the

treatment periods of 2 weeks after 2 weeks HFHC diet or 4 weeks on the HFHC diet.

Isocaloric diet HFHC Diet

Controls Controls 2-weeks NPC2 4-weeks NPC2

TNF-α (pg/mL) 6 (5–7) 233 (152–256)� 243 (208–299)� 134 (117–166)�

IL-6 (pg/mL) 47 (41–53) 100 (83–178)� 140 (135–174)� 155 (103–176)�

IL-1β (pg/mL) 5 (5–5) 65 (52–113)� 69 (52–150)� 102 (85–151)�

IL-10 (pg/mL) 12.9 (10.7–13.4) 15.5 (14.5–18.4)� 16.0 (14.9–18.1)� 17.5 (14.2–18.1)�

IFN-ɣ pg/mL) † 0.27 (0.05–0.96) † 0.24 (0.05–1.13)

Data are presented as median (Interquartile range).

�: P < 0.05 compared with isocaloric controls.
†: Below lower threshold.

https://doi.org/10.1371/journal.pone.0192728.t002

Fig 3. Hepatic gene expression related to inflammation, fibrogenesis and cholesterol metabolism. Relative mRNA

expressions compared with isocaloric diet fed controls of TNF and COL1A1 (Panel A), TGFB1 and PPARG (Panel B), SREBF2,

LDLR, HMGCR and ABCA1 (Panel C) and INSIG1, SRB1, GNMT and NPC2 (Panel D) in isocaloric controls, high-fat-high-

cholesterol (HFHC) controls, two-week NPC2 (treatment) and four-week NPC2 (prevention) animals. Bars represent

median ± interquartile range. �: P< 0.05 compared with Isocaloric Controls. ��: P< 0.005 compared with Isocaloric controls.
���: P< 0.0005 compared with Isocaloric controls. #: P< 0.05 compared with HFHC Controls. ¤: P<0.05 compared with two-

week NPC2.

https://doi.org/10.1371/journal.pone.0192728.g003
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Two-week NPC2 treatment tended to reduce hepatic TNF expression (P = 0.08), whereas

four-week treatment had no effect compared with HFHC fed controls. Two-week NPC2 treat-

ment significantly reduced COL1A1 gene expression. This effect was not found with four-week

NPC2 treatment. When comparing two- and four-week NPC2 treatment groups, the four-

week NPC2 treated group showed higher gene expressions of both TNF and COL1A1 com-

pared with the two-week treated group (P = 0.04 and P = 0.02, respectively). NPC2 had no

effect on the gene expressions of TGFB1 or its pseudo-receptor bone morphogenetic protein

and activin membrane-bound inhibitor (BAMBI, (data not shown). Four-week NPC2 treat-

ment tended to reduce PPARG expression compared with the HFHC diet group (2.0 vs. 1.24

fold induction, P = 0.07).

Hepatic mRNA expression related to cholesterol metabolism. The HFHC diet sup-

pressed expression of sterol regulatory element binding factor 2 (SREBF2) (P = 0.02), the low-

density lipoprotein receptor (LDLR), P<0.001), 3-hydroxy-3-methyl glutaryl CoA reductase

(HMGCR) (P = 0.02); and tended to suppress glycine N-methyl transferase (GNMT, P = 0.07).

In contrast, ABCA1 gene expression was induced (P<0.001) compared with isocaloric controls

(Fig 3, Panel C and D). SREBF2, HMGCR, and GNMT gene expressions were all unaffected by

NPC2 treatment of either duration compared with HFHC fed controls, whereas four-week

NPC2 treatment tended to induce LDLR expression (0.08 vs. 0.15 fold induction, P = 0.07).

Similarly, four-week NPC2 treatment resulted in further induction of ABCA1 compared with

HFHC fed controls (9.8 vs. 5.2 fold induction, P = 0.03; Fig 3 Panel C). Insulin-induced gene 1

(INSIG1) and scavenger receptor type B1 (SRB1) gene expressions were similar in HFHC fed

controls and isocaloric control rats. Both genes were unaffected by either NPC2 treatment reg-

imen (Fig 3 Panel D). Endogenic NPC2 gene expression tended to differ between all groups

(P = 0.09).

Hepatic mRNA expressions in patients with NAFLD or NASH with or without fibro-

sis. When comparing patients with histological diagnoses of NAFLD and NASH, NASH

patients had higher mRNA expressions TGFB1 and LDLR expressions (respective up-regula-

tions of 17 and 27%, both P < 0.05) and lower GNMT expression (down-regulated by 45%)

(Table 3).

Livers of patients with fibrosis (all F1 apart from 1 patient whom was F2) had up-regula-

tions of PPARG (20%), INSIG1 (39%), SRB1 (11%), NPC1 (13%), and NPC2 (30%) (all

P< 0.05) (Table 3).

Discussion

This is the first study to test NPC2 protein supplementation as a potential means to lower cho-

lesterol accumulation and subsequent pathological inflammation and fibrosis in a HFHC

experimental NASH model. In disagreement with our hypothesis, NPC2 treatment did not

improve hepatomegaly or histopathology in HFHC diet-induced experimental NASH. In fact,

four-week NPC2 treatment associated with slightly worse histopathology and tended to

increase serum ALT indicating amplified hepatocyte injury. Further, four-week NPC2 sup-

pressed hepatic PPARG and tended to induce LDLR. Two-week NPC2 led to favorable

COL1A1 suppression and similarly tended to suppress hepatic TNF, but these findings were

inconsistent with the histopathology results and serum levels of TNF-α where no treatment

effect was observed. Furthermore, TNF and COL1A1 were significantly higher after four-week

NPC2 treatment compared with two-weeks.

Previously, our group established that the mouse immune system does not induce signifi-

cant humoral immune responses against bovine NPC2 protein[9]. This observation possibly
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will also apply for rats. Thus, we do not believe the lack of treatment effect to be due to anti-

NPC2 antibodies.

The rat NASH model exhibited typical findings of NAFLD pathology including hepato-

and splenomegaly, early NASH histopathology, hypercholesterolemia, increased serum liver

enzymes, and increased pro-inflammatory cytokines as well as up-regulated hepatic TNF,

COL1A1, and TGFB1 gene expressions, similar to our previous studies using the same model

[16–18]. Further, we observed changes in liver genes in the HFHC fed rats related to choles-

terol homeostasis e.g. reduced mRNA expression levels of SREBF2 alongside with LDLR and

HMGCR, which are downstream molecules of SREBP2 [19,20]. However, there was no effect

of NPC2 treatment on these cholesterol homeostasis genes.

The experimental NASH model comprised down-regulation of the SREBP2-pathway. This

indicates that our NASH model comprises decreases in hepatic cholesterol biosynthesis and

uptake most likely, by way of the high (2%) dietary cholesterol load. Further, the relatively

short disease induction of four weeks may be too short a time span for the elevated IL-6, IL-1β
to induce cholesterol biosynthesis as a previous study reported increased cholesterol biosyn-

thesis after feeding a HFHC diet for 16 weeks[21].

These data contrasts data from human liver biopsies where NASH was associated with

higher expressions of SREBF2, LDLR and HMGCR than simple steatosis, although, of the

three, only LDLR was significantly increased in support of previous findings[22]. SREBP2 pro-

tein levels are elevated in human NASH, possibly due to a direct stimulatory effect of hyperin-

sulinemia[23] and high levels of circulating and hepatic IL-6 and IL-1β. These noxious stimuli

induce cholesterol biosynthesis by up-regulating SREBF2 and HMGCR gene expressions and

increasing HMGCR enzymatic activity[24].

Reduced expression of PPARG and concomitant decrease in PPAR-γ protein levels and sig-

naling in HSCs associates with progression of liver fibrosis and increases collagen production

[20]. NPC2 treatment tended to down-regulate hepatic PPARG gene expression, concurring

with in vitro results showing that NPC2 plays a role in PPAR-γ suppression[25]. We observed

Table 3. Relative gene expressions in NAFLD and NASH patients and in fibrotic and non-fibrotic NAFLD (F1/2 versus F0).

NAFLD compared with NASH F0 compared with F1/2

Fold change NASH relative to NAFLD P Fold change F1/2 relative to F0 P

TNF 1,06 Up 0,24 1,00 Down 0,99

COL1A1 1,14 Up 0,08 1,12 Up 0,17

TGFB1 1,17� Up 0,02 1,15 Up 0,06

PPARG 1,25 Up 0,10 1,20� Up 0,02

BAMBI 1,03 Down 0,60 1,05 Down 0,50

SREBF2 1,15 Up 0,10 1,09 Up 0,34

LDLR 1,27� Up 0,02 1,11 Up 0,38

HMGCR 1,30 Up 0,16 1,04 Up 0,83

GNMT 1,45� Down 0,03 1,40 Down 0,08

ABCA1 1,06 Down 0,19 1,00 Down 0,92

INSIG1 1,25 Up 0,10 1,39� Up 0,02

SRB1 1,03 Up 0,54 1,11� Up 0,02

NPC1 1,09 Up 0,09 1,13� Up 0,03

NPC2 1,12 Up 0,37 1,30� Up 0,05

Relative mRNA expressions between patients with NAFLD and NASH (left) and between patients with or without liver fibrosis.

�: P < 0.05.

https://doi.org/10.1371/journal.pone.0192728.t003
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no effects of NPC2 treatment on genes related to fibrogenesis and no effects on liver fibrosis

per se.

The notion of LDL receptor-mediated endocytosis as a protective mechanism in metabolic

disorders such as NAFLD is underscored by the severely inflamed liver phenotype resembling

NASH found in LDLR knock-out models[26]. The noxious element in these animals is proba-

bly the abundant uptake of lipoprotein particles into KCs mediated by members of the CD36

receptor superfamily. Scavenger receptors, which, unlike LDLR, are not subject to feedback

regulation. We observed reduced LDLR expression in HFHC fed rats and observed that the

four-week NPC2 treatment almost doubled the hepatic LDLR gene expression. However, for

LDL receptor-mediated endocytosis to become hepato-protective this requires concomitant

functional up-regulations in robust cellular cholesterol excretory pathways. This cannot have

been the case, as we noticed no beneficial effect of NPC2 treatment on the serum levels of

VLDL and LDL.

To the best of our knowledge, no studies have previously established how hepatic NPC2 is

regulated in patients with NASH. While Liao et al. found no difference in serum levels of

NPC2 between patients with fatty liver and healthy controls[27], they did report lower NPC2

protein levels in chronic viral hepatitis, cirrhosis, and hepatocellular carcinoma[28]. We found

no difference in NPC1 and NPC2 gene expressions between NAFLD and NASH patients.

However, both NPC1 and NPC2 were significantly up-regulated in biopsies from patients with

liver fibrosis (F1-2) compared with patients without fibrosis. In light of the robust GNMT sup-

pressions, we speculate that NPC2 up-regulation might compensate for increased NPC2 pro-

tein decay due to GNMT deficiency in NASH.

In addition to its role in one-carbon metabolism, cytosolic GNMT doubles the half-life of

NPC2[29]. The 2% cholesterol HFHC diet down-regulated hepatic GNMT gene expression.

Likewise, GNMT was found significantly down-regulated in NASH patients livers compared

to patients with NAFLD. And lastly, fibrotic NASH livers compared with non-fibrotic NASH

livers tended to have decreased GNMT expressions. Thus, GNMT suppression could suggest

that the model encompasses functional NPC2 deficiency secondary to GNMT suppression,

similar to observations made in human fatty livers by other authors [29,30].

We demonstrated that NPC2 treatment raises total ABCA1 mRNA levels. The importance

of lysosomally-derived cholesterol in regulating ABCA1 expression has previously been dem-

onstrated in the lysosomal cholesterol storage disorders Niemann Pick type C (NPC) and cho-

lesteryl ester storage disease (CEST)[31,32]. In both cases the reduced flux of free cholesterol

out of lysosomes lead to reduced 27-hydroxycholesterol production and reduced ABCA1

expression, the likely cause of low plasma HDL-cholesterol in both these disorders[33,34].

Delivery of exogenous oxysterols to NPC fibroblasts[35] and lysosomal cholesteryl ester to

CESD fibroblasts[34] were both able to upregulate ABCA1 expression and cholesterol efflux to

apoA1, suggesting that cytosolic cholesterol is a critical determinant of cholesterol-dependent

ABCA1 gene regulation.

It has previously been shown that NPC2 replacement therapy enhances the rate of lysosome

cholesterol efflux in vitro and in vivo[9] and that NPC2 is involved in directly transfer of lyso-

somal cholesterol to the mitochondrial outer and inner membranes[36]. The transfer of free

cholesterol from the lysosome to the mitochondria potentially enhance 27-hydroxycholesterol

synthesis, which upon binding to the nuclear receptor liver X receptor activates transcription

of ABCA1[37]. We therefore believe that the enhanced delivery of cholesterol to mitochondria,

brought on by the NPC2 interventions, brought on increases in ABCA1 expression and serum

HDL.

Recently, Twu et al.[38] demonstrated that NPC2 overexpression attenuates TGF-β sensiti-

zation by mobilizing cholesterol. The authors concluded that NPC2 might prove an effective
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agent against liver fibrosis progression. We found TGFB1 up-regulated in NASH compared

with NAFLD and in fatty livers with fibrosis compared with non-fibrotic NAFLD. We then

investigated the hepatic expressions of TGFB1 and BAMBI in the experimental rat NASH

model and, contrary to our expectations, did not find any effect of NPC2 treatment on the

expression of either of these genes.

Relatively little is known about how endogenous and exogenous NPC2 protein degrades.

We know that the proteasome system can degrade NPC2 within the endoplasmic reticulum

and that expression of the Nogo B receptor halts this process[39]. Further, Niemann Pick C1

Like 1 (NPC1L1) interacts with NPC2 in pre-lysosomal compartments and accelerates NPC2

protein break-down[40]. NPC1L1 however seems to have minimal effect on the half-life of

endocytosed NPC2, which localizes within lysosomes[40]. Furthermore, glycine-N-methyl

transferase interacts with and increases the half-life of NPC2 within the cytosol. Lastly, cathep-

sins may be partially responsible for exogenous NPC2 degradation[41]. Cathepsins are a group

of cysteine proteases, which can degrade proteins taken up by endocytosis. Of particular inter-

est, cathepsins B and L down-regulate NPC2 in pro-inflammatory macrophages in vitro[41].

Furthermore, cathepsin D is a potential substance which degrades NPC2. Cathepsin D is up-

regulated as cholesterol accumulates in LE/LY compartments in an NPC1 knock-out model

[42], and inhibition of cathepsin D in an in vitro NPC1 disease model ameliorates the choles-

terol-storing phenotype[43]. Taking the NPC1-independent cholesterol-mobilizing effects of

NPC2 into account[6], this could imply that also cathepsin D mediates degradation of exoge-

nous NPC2.

In conclusion, the effect of NPC2 treatment on NASH remains equivocal. In our study

using a HFHC NASH model, NPC2 treatment proved inefficient at modifying robust hepatic

NASH end-points. However, NPC2 treatment seems to have accelerated post-lysosomal cho-

lesterol transport through the induction of ABCA1 and thereby increased HDL. The treat-

ment-induced PPARG down-regulation and LDLR up-regulation in addition to adverse

inductions of TNF and COL1A1 after four weeks NPC2 treatment may explain the overall lack

of improvement in NASH changes.
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