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Abstract

Current antipsychotic drugs provide symptomatic relief for positive symptoms of schizophrenia, 

but do not offer symptom management for negative and cognitive symptoms. In addition, many 

patients discontinue treatment due to adverse side effects. Therefore, there is a critical need to 

develop more effective and safe treatment options. Although the etiology of schizophrenia is 

unclear, considerable data from post-mortem, neuroimaging and neuropharmacology studies 

support a role of the muscarinic acetylcholine (mAChRs) in the pathophysiology of schizophrenia. 

Substantial evidence suggests that activation of mAChRs has the potential to treat all symptom 

domains of schizophrenia. Despite encouraging results in demonstrating efficacy, clinical trials of 

nonselective mAChR agonists were limited in their clinical utility due to dose-limiting peripheral 

side effects. Accordingly, efforts have been made to specifically target centrally located M1 and 

M4 mAChR subtypes devoid of adverse-effect liability. To circumvent this limitation, there have 

been tremendous advances in the discovery of ligands that bind at allosteric sites, binding sites 

distinct from the orthosteric site, which are structurally less conserved and thereby afford high 

levels of receptor subtype selectivity. The discovery of subtype-specific allosteric modulators has 

greatly advanced our understanding of the physiological role of various muscarinic receptor 

subtypes in schizophrenia and the potential utility of M1 and M4 mAChR subtypes as targets for 

the development of novel treatments for schizophrenia and related disorders.
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1.1 Introduction

Schizophrenia is a complex heterogeneous disorder that affects approximately 1% of the 

population worldwide (Sullivan et al., 2000) and is characterized by three broad clusters of 

symptoms that are associated with significant psychological, social and occupational 

dysfunction. These symptom domains include positive symptoms (e.g., hallucinations, 

delusions), negative symptoms (e.g., anhedonia, social withdrawal, blunted affect) and 

cognitive dysfunction (e.g., impaired working memory, attention, cognitive flexibility; 

American Psychiatric Association, 2000). Schizophrenia is typically diagnosed at the first 

episode of psychosis that results in hospitalization (Strakowski et al., 1993) and is treated 

with broad spectrum G-protein coupled receptor (GPCR) antagonists that exert their 

therapeutic effects through inhibition of dopamine (DA) D2 and serotonin (5-HT) 5-HT2A 

receptors (Roth et al., 2004). While these agents are efficacious for treating positive 

symptoms, they offer little to no benefit for the negative or cognitive symptom domains 

(Green, 1996; Greenwood et al., 2005). In addition to partial responsiveness, other 

limitations for successful treatment include adverse side effects, such as development of 

movement disorders, abnormal weight gain and metabolic syndrome (Gerlach et al., 1975; 

Parsons et al., 2009). Therefore, there is a critical need to develop more effective and safe 

treatment options.

The etiological basis of schizophrenia is thought to arise from dysregulated DA 

neurotransmission in mesocortical and mesolimbic pathways (Guillin et al., 2007; 

Meisenzahl et al., 2007). However, the poorly elucidated pathogenesis and failure of current 

therapeutics to treat the negative and cognitive symptom domains has encouraged a 

reappraisal of the role of the DA system in schizophrenia. Newer approaches highlight 

several neurochemical abnormalities in schizophrenia and suggest a relationship between 

DA and other neurotransmitter systems, including 5-HT, Gamma-Aminobutyric acid 

(GABA), glutamate (GLU), and acetylcholine (ACh; Laruelle et al., 2003; Meisenzahl et al., 

2007; Seo et al., 2008; Tandon et al., 1991). Although a significant role is still attributed to 

DA in the pathophysiology of schizophrenia, it is suggested that there is an imbalance 

between DA and one (or more) of these neurotransmitter systems that lead to symptom 

manifestation.

The ACh system is a regulator of neuronal activity throughout the peripheral (PNS) and 

central nervous systems (CNS; Picciotto et al., 2012), and is proposed to contribute to the 

pathophysiology of schizophrenia resulting from either hyperactivation of the 

pedunculopontine-lateral dorsal tegmental nuclei (Yeomans, 1995) or an imbalance between 

cholinergic and dopaminergic systems (Tandon and Greden, 1989). The importance of 

disturbances in the DA-ACh balance in schizophrenia is supported by the finding that 

psychotic symptoms are exacerbated by the psychostimulant methylphenidate and can be 

reversed by physostigmine, an anticholinesterase that enhances cholinergic transmission 

(Janowsky et al., 1973). ACh signals through two classes of receptors: ionotropic nicotinic 

receptors (nAChRs) and metabotropic muscarinic receptors (mAChRs). As discussed in 

more detail below, mAChRs are G protein-coupled and signaling through either Gαq (M1, 

M3, M5 subtypes) or Gαi (M2, M4 subtypes). In contrast, nAChRs function as excitatory 

cation channels and occur as either homomeric or heteromeric assemblies of a large family 
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of alpha- (α2-α7) or beta- (β2-β4) subunits. Cholinergic neurotransmission plays a critical 

role in a variety of functions, including sensory perception, attention, sleep, motivation, 

reward, mood, and cognitive processing; therefore, it is not surprising that abnormalities in 

the cholinergic system are known to contribute to a number of psychiatric and neurological 

diseases (Bohnen and Albin, 2011; Mufson et al., 2008; Scarr et al., 2013).

Numerous clinical and preclinical findings suggest that disruptions in central nicotinic 

cholinergic transmission may be associated with the symptom manifestation in 

schizophrenia. Presynaptic nACh receptors have been long implicated in the regulation of 

striatal DA release (see Jones et al., 2012; Picciotto et al., 2012 for review), and participate 

in the induction of striatal long term depression (Partridge et al., 2002), suggesting an 

important modulatory role of nAChRs on DA release and behaviors. Furthermore, data from 

autoradiographic studies indicate reduced binding at both heteromeric and homomeric 

nAChRs in the striatum, hippocampus and cortex in schizophrenic patients compared to 

healthy controls (Jones et al., 2012). Polymorphisms in the core promoter of the α7 gene 

(CHRNA7) are indicative of abnormalities in sensory motor gating, sustained attention and 

cognition in schizophrenia (Kalkman and Feuerbach, 2016). Interestingly, two compounds 

that are currently in clinical use galantamine (anticholinesterase inhibitor) and topisetron 

(5HT3 antagonist) possess efficacy at α7 and are beneficial in patients with schizophrenia 

(see Olincy and Freedman, 2013 for review), suggesting that the development of selective 

nAChR activators may lead to important therapeutic interventions. However, a detailed 

discussion about nAChR in the neuropathology of schizophrenia is beyond the scope of this 

review (see Dineley et al. 2015; Jones et al., 2012; Martin and Freedman, 2007l; Ripoll et 

al., 2004 for detailed review).

Evidence for the involvement of mAChRs in schizophrenia is supported by data from post-

mortem, neuroimaging and neuropharmacology studies (Dean et al., 2003; Scarr and Dean, 

2009). Furthermore, recent studies using mAChR knockout mice have provided valuable 

insight into the potential role of mAChRs in the physiopathology of schizophrenia and 

cognitive deficits (Anagnostaras et al., 2003; Dencker et al., 2012; Gerber et al., 2001; 

Woolley et al., 2009). mAChRs are critical in modulating the activity of cholinergic 

projections from the midbrain, which innervate DA pathways implicated in psychotic 

symptoms of schizophrenia, as well as brain regions that are relevant to cognitive function, 

such as learning, memory and attention (Berman et al., 2007). Thus, these receptors have 

been proposed to contribute to the pathophysiology of schizophrenia as a result of an 

imbalance between central cholinergic and dopaminergic systems. In this review, we 

highlight the involvement of M1 and M4 muscarinic cholinergic receptors in schizophrenia 

and review data that suggest they may be a viable therapeutic target.

1.2 Muscarinic Receptors

As discussed in more detail below, the muscarinic cholinergic system has been implicated in 

the pathophysiology of schizophrenia (Raedler et al., 2007; Scarr and Dean, 2008, 2009) and 

such abnormalities may be significant to both the psychotic symptoms and cognitive deficits. 

mAChRs belong to the superfamily of GPCRs that either activate or inhibit signaling 

pathway systems through activation of intracellular second messengers such as cyclic 
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adenosine monophosphate (cAMP) or inositol triphosphate (IP3; Caulfield, 1993; Felder, 

1995). Molecular cloning strategies have revealed five distinct muscarinic receptors (M1-

M5) that can be subdivided into two functional classes based on G-protein coupling and 

location (Bonner et al., 1987; Bonner et al., 1988; Liao et al., 1989).

Individual mAChR subtypes are preferentially coupled to distinct heterotrimeric G-proteins 

that are capable of modulating a wide variety of ion channels and other signaling proteins. 

The M1, M3 and M5 receptor subtypes couple to Gq/G11, leading to activation of 

phospholipase C and formation of inositol phosphates and other second messengers, which 

promote closure of potassium (K+) channels in many neuronal populations, thus facilitating 

cell excitability. The M2 and M4 receptor subtypes, on the other hand, are coupled to Gi/Go, 

resulting in an inhibition of adenylyl cyclase and reduction in cAMP, promoting inhibition of 

voltage-gated calcium (Ca2+) channels, thus often diminishing cell excitability (Caulfield, 

1993). In addition to their canonical signaling pathways, cell expression studies have 

revealed that mAChRs are capable of activating multiple signal transduction pathways, such 

as receptor tyrosine kinases (Kuhne et al., 2015; Ockenga et al., 2014).

Muscarinic receptors are widely expressed in both the CNS and PNS with distinct cellular 

and tissue localization of individual subtypes. As the predominant subtype in the CNS, M1 

receptors are highly expressed in the cortex, striatum, and hippocampus, where they are 

postsynaptically localized on hippocampal pyramidal neurons and dentate granule cells 

(Levey et al., 1991; Marino et al., 1998). Due to the location of M1 receptors in the 

hippocampus and medial prefrontal cortex (mPFC), M1 receptor signaling is thought to be 

important for cognitive function and neural circuits disrupted in schizophrenia. In support of 

this hypothesis, M1 knockout mice show deficits in tasks that are dependent on 

hippocampal-cortical and mPFC function (Anagnostaras et al., 2003; Gould et al., 2015). In 

contrast to the widespread postsynaptic localization of M1 on pyramidal cells, the M4 

subtype is presynaptically localized at glutamatergic synapses, cholinergic interneurons and 

DA D1 receptor-expressing spiny projection neurons (D1-SPNs) within the striatum (Ince et 

al., 1997; Levey et al., 1991; Santiago and Potter, 2001). Together with initial studies of 

whole body M4 knockout mice (Gomeza et al., 2001; Tzavara et al., 2004; Zhang et al., 

2002), mice that selectively lack M4 receptors in D1-expressing neurons (D1-M4
−/− mice) 

have demonstrated the important modulatory role of M4 in DA-dependent behaviors and 

neurotransmission (Dencker et al., 2012; Jeon et al., 2010).

1.3 The muscarinic system and schizophrenia

Early insight into the role of the central muscarinic system in schizophrenia arose from 

investigations into polypharmacy. The administration of anticholinergic and antimuscarinic 

agents was once common practice in schizophrenics due to the capacity of these drugs to 

alleviate motor side effects (e.g. extrapyramidal symptoms) induced by typical antipsychotic 

medications (Tandon and Dequardo, 1995). However, it was also noted that treatment with 

anticholinergic drugs resulted in a worsening of neurocognitive impairment in schizophrenic 

patients (Johnstone et al., 1983; Singh et al., 1987). In addition to exacerbating existing 

symptoms in patients, antimuscarinic drugs also evoked a transient schizophrenia-like state 

(i.e., cognitive dysfunction and vivid multi-sensory hallucinations) in non-psychotic 
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individuals (McEvoy, 1987; Perry and Perry, 1995; Potamianos and Kellett, 1982). Parallel 

to these findings in humans, administration of muscarinic antagonists, such as scopolamine, 

have been shown to induce psychomimetic-like effects in various animal models of 

schizophrenia, including reduced latent inhibition (LI), increased locomotor activity, and 

disruption of prepulse inhibition (PPI; Barak and Weiner, 2007, 2009; Furuie et al., 2013; 

Jones and Shannon, 2000). Postmortem, clinical imaging and genetic approaches have 

further implicated mAChR expression and function in the underlying pathophysiology of 

schizophrenia.

Several post-mortem radioligand-binding studies, using the mAChR antagonist [3H]-

pirenzepine, have demonstrated decreased M1/M4 expression in a number of cortical and 

subcortical regions in schizophrenic patients, including the hippocampus, PFC, striatum, and 

the anterior and posterior cingulate cortex (Crook et al., 2000, 2001; Dean et al., 2002; Dean 

et al., 2008). These findings are further supported by neuroimaging studies reporting 

reduced mAChR availability in unmediated schizophrenics (Raedler et al., 2003). 

Additionally, polymorphisms of the M1 (CHRM1) and M4 (CHRM4) receptor gene appear 

to be specific to schizophrenia (Scarr et al., 2013a; Scarr et al., 2013b), as patients with 

bipolar disorder and major depression have been reported to express normal levels of these 

receptors (Zavitsanou et al., 2004). It has been suggested that polymorphisms in CHRM1 

and CHRM4 may represent distinguishable phenotypes within the syndrome of 

schizophrenia. For instance, compared to schizophrenic patients with heterozygous 

mutations, patients who have homozygous CHRM1 C267A nucleotide polymorphisms 

exhibit pronounced perseveration errors and responses on the Wisconsin Card Sorting Test, a 

neuropsychological measure of executive functioning and prefrontal lobe function (Cropley 

et al., 2015; Liao et al., 2003). It has been hypothesized that patients with decreased M1 

expression may exhibit more pronounced cognitive deficits compared to non-M1-deficit 

patients (Scarr et al., 2009; Scarr et al., 2013a), however, no associations can be definitively 

made. Alterations in M1 receptor binding and immunoreactivity have also been reported in 

autism (Perry et al., 2001a) and Alzheimer’s disease (AD; Flynn et al., 1995; Shioaki et al., 

2001), suggesting that this receptor plays an important role in cognitive function and actions 

at M1 have been proposed to have cognition enhancing effects (Bymaster et al., 2003). 

Interestingly, polymorphisms in CHRM4 have not been reported in patients with cognitive 

disturbances (Yonan et al., 2013), further supporting the hypothesis that cognitive deficits 

are due to decreases CHRM1 in subjects with schizophrenia. Taken together these findings 

highlight the role of the central muscarinic system in the symptomology of schizophrenia.

1.4. Targeting Muscarinic Receptors for the Treatment of Schizophrenia

While atypical antipsychotics are the primary treatment for schizophrenia, they offer 

minimal benefit for cognitive dysfunction and negative symptoms. Therefore, novel 

therapeutic agents are necessary to adequately treat these other symptom domains. 

Acetylcholinesterase (AChE), which inhibits breakdown of acetylcholine, may be one such 

target. AChE inhibitors (AChEIs), such as tacrine, donepezil, physostigmine and 

galantamine, are currently used to treat AD, but some open-label studies suggest that these 

compounds may also ameliorate cognitive dysfunction, visual hallucinations and psychosis 

in schizophrenia (Ferreri et al., 2006; Friedman et al., 2002; Ribeiz et al., 2010; Rosse and 
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Deutsch, 2002). Moreover, preclinical studies indicate that clinically used AChEIs have the 

ability to improve learning and memory in established rodent pharmacological models of 

pathological changes underlying schizophrenia (Kunitachi et al., 2009; Wang et al., 2007). 

However, the results from clinical trials with AChEIs in schizophrenic patients have been 

disappointing (Thakurathi et al., 2013), possibly owing to dose-limiting adverse effects 

caused by activation of peripheral receptors.

Xanomeline, an M1/M4 preferring agonist, has been shown to have positive effects on 

cognitive and psychotic-like symptoms (e.g., hallucinations, delusions) in AD (Bodick et al., 

1997a; Bodick et al., 1997b; Veroff et al., 1998) and may hold therapeutic efficacy for the 

treatment of schizophrenia. In support of this notion, xanomeline displays robust 

antipsychotic-like efficacy in several rodent models that have been used to predict 

antipsychotic efficacy (Jones et al., 2005; Mirza et al., 2003; Perry et al., 2001b; Shannon et 

al., 2000; Stanhope et al., 2001). Schizophrenia patients show impaired PPI, which is 

mimicked in rodents following administration of the non-selective DA antagonist, 

apomorphine. In this pharmacological model of psychosis, administration of xanomeline 

reversed apomorphine-induced deficits in PPI similar to other clinically effective 

antipsychotics (Jones et al., 2005; Stanhope et al., 2001). Xanomeline also demonstrated 

antipsychotic-like efficacy in other preclinical assays including conditioned avoidance 

responding (CAR), amphetamine-induced hyperlocomotion (AHL), apomorphine-induced 

climbing, and amphetamine-induced deficits in LI (Jones et al., 2005; Shannon et al., 1999). 

In addition, xanomeline significantly attenuated deficits in models of cortical pathology 

associated with schizophrenia, such as novel object recognition (NOR) and contextual fear 

conditioning (Brown et al., 2014) and attenuated MK-801-induced disruptions in LI (Barak 

and Weiner, 2011), a model of cognitive and negative symptoms of schizophrenia. Taken 

together these studies suggest that M1/M4 selective agents may have clinical utility in 

positive, negative and cognition symptom domains of schizophrenia and thus warrant further 

investigation.

In the only proof of concept human clinical trial, xanomeline has been shown to improve 

positive, negative and cognitive symptom domains in schizophrenia patients (Shekhar et al., 

2008). Interestingly, xanomeline treatment was superior to that of traditional antipsychotic 

agents (e.g., the DA D2 antagonist haloperidol), and significant antipsychotic effects were 

documented within the first week. This clinical trial highlights not only xanomeline’s 

potential, but that of M1/M4 receptor agonists to serve as an alternative treatment in 

schizophrenia. Although xanomeline displayed efficacy in improving cognition and reducing 

negative and psychotic symptoms of schizophrenia, its clinical utility was limited due to 

adverse side effects elicited by its agonism of peripheral M2 and M3 receptors (Bymaster et 

al., 2003).

1.5 Allosteric Modulators of Muscarinic Receptors

Accordingly, efforts have been made to specifically target M1 or M4 receptors to retain 

therapeutic efficacy while minimizing the adverse side effects (Foster et al., 2014; Foster et 

al., 2012; Jones et al., 2012). mAChRs have an orthosteric binding site for natural or 

exogenous agonists that is highly conserved among individual receptor subtypes, making it 
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difficult to develop subtype-selective ACh site ligands. To circumvent this problem, an 

approach of targeting allosteric binding sites that are topographically distinct from the 

orthosteric site and less conserved across receptor subtypes has been developed (Bridges et 

al., 2010; Christopoulos, 2002; Conn et al., 2009a; Digby et al., 2010; Foster and Conn, 

2017; Nickols and Conn, 2014; Wenthur et al., 2014). Allosteric modulators possess high 

subtype selectivity and can either activate the receptor by themselves or modulate receptor 

activation by ACh. Allosteric activators can include allosteric agonists, which act at a site 

removed from the orthosteric site to directly activate the receptor in the absence of ACh, or 

positive allosteric modulators (PAMs), which do not activate the receptor directly but 

potentiate activation of the receptor by the endogenous orthosteric agonist ACh (Conn et al., 

2009a; Conn et al., 2009b; Marlo et al., 2009). It is also possible for a single molecule to 

have both allosteric potentiator and allosteric agonist activity. Since allosteric mechanisms 

are governed by both affinity and cooperativity factors, it presents practical implications and 

challenges for drug discovery (Conn et al., 2009).

Compounds that possess an allosteric mode of action can display a number of advantages 

over orthosteric ligands as potential therapeutic agents. For example, allosteric modulators 

that do not display any agonism are quiescent in the absence of endogenous orthosteric 

activity and only exert their effect in the presence of the released orthosteric agonist (Conn 

et al., 2009a; Conn et al., 2014; Foster and Conn, 2017; Lindsley et al., 2016; Lutjens and 

Rocher, 2017). A key advantage of allosteric modulators is that their modulation is in 

concert with the temporal and spatial organization of physiological receptor activation (Conn 

et al., 2009a). Another advantage stemming from allosteric modulators is that their effect is 

given by the factor of cooperativity with orthosteric ligands that dictates a maximal degree 

of interaction of binding both agents, thus imposing a “ceiling” on the magnitude of 

allosteric effect (May et al., 2007). Together, these properties may reduce the side effect 

potential relative to orthosteric agonists, which stimulate a given receptor independently of 

its physiological state. The possibility of limiting side effects in the treatment of 

schizophrenia is obviously of significant importance given the current adverse side effect 

profile of current therapies (Ucok and Gaebel, 2008). As discussed below, the discovery of 

subtype-specific allosteric modulators has greatly advanced our understanding of the 

physiological role of various muscarinic receptor subtypes in brain regions important for 

schizophrenia and have emphasized the potential utility of M1 and M4 mAChR subtypes as 

targets for the development of novel treatments for this disorder.

Species differences among receptors can cause variability in the response between an 

orthosteric and an allosteric ligand (Wootten et al. 2013), presenting a challenge for drug 

discovery. Allosteric sites are less evolutionarily conserved across receptor subtypes (Conn 

et al., 2009) and amino acid residues in allosteric sites may be subject to change the 

allosteric behavior of enzymes in different species (Hines et al. 2007). Therefore, it is 

possible that compounds that are identified using human GPCR cell lines do not produce 

desired effects when tested in vivo in animal models, which may be due to lack of 

cooperativity with the endogenous agonist or pharmacokinetic limitations. Recently, 

Suratman and colleagues (2011) discovered that the M4 PAM LY2033298 (discussed in 

more detail below) displayed differences at rodent and human M4 receptors due to 

cooperativity factors and probe-dependence (the need to co-administer an orthosteric agonist 
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with an allosteric modulator to provide sufficient tone). When possible, it is advantageous to 

select for allosteric ligands that do not display pronounced species bias (Conn et al., 2014; 

Lindsley et al., 2016).

1.6 Animal Models of Schizophrenia

While this review focuses on allosteric modulators of M1 and M4 for symptom management 

in schizophrenia, it is important to keep in mind that current pharmacological animal models 

of schizophrenia are not intended to serve as the complete equivalent of the human disorder, 

but rather are designed to test specific causative or mechanistic hypothesis (Jones et al., 

2011; Marcotte et al., 2001). A common approach for developing animal models has been to 

use drug-induced states that produce schizophrenic-like symptoms in nonschizophrenic 

individuals. In rodents, administration of dopaminergic stimulants (i.e, amphetamine) 

elevate locomotor activity and impair PPI, which is thought to mimic the hyperdopaminergic 

tone observed in schizophrenic patients. Measures of locomotor hyperactivity are useful for 

providing a functional measure of the antidopaminergic activity of neuroleptics. Although 

dopaminergic psychostimulants provide a model of psychosis, it does not accurately mimic 

the cognitive or negative symptom domains (Pratt et al., 2012). In contrast, N-methyl-D-

aspartate (NMDA) receptor antagonists generate a more complete model of schizophrenia, 

including aspects of the positive, negative and cognitive symptoms (Marcotte et al., 2001; 

Nabeshima et al., 2006). While pharmacological models may never be able to accurately 

mimic symptom domains observed in schizophrenic patients, they still provide valuable 

insight into the neurobiological mechanisms (Steeds et al., 2015) and to facilitate the 

development of improved therapeutics. In addition to pharmacological models, genetic 

models of schizophrenia based on human mutations have been established (Nestler and 

Hyman, 2010). Therefore, novel therapeutics should be assessed in translational assays with 

high construct validity and genetic models.

1.7 M1 Positive Allosteric Modulators (PAMs)

Of the five mAChR subtypes, the M1 receptor is viewed as the most important for memory 

and attention mechanisms. Due to the postsynaptic localization of M1 on cholinergic 

projections to the PFC and colocalization with NMDA receptors in the hippocampus (Levey 

et al., 1991; Marino et al., 1998), these receptors have long been a target for the treatment of 

cognitive deficits in schizophrenia. In rodents, activation of M1 has been shown to increases 

synaptic excitation of pyramidal cells in the mPFC (Shirey et al., 2009) and potentiate CA1 

hippocampal pyramidal cell firing (Buchanan et al., 2010), a physiological response 

associated with learning and memory. In support of this hypothesis, M1 knockout mice show 

deficits in tasks that require mPFC function (e.g., non-match to sample working memory and 

consolidation; Anagnostaras et al., 2003), lack the ability of the cholinomimetic carbachol to 

induce long-term potentiation (LTP) in the hippocampus (Buchanan et al., 2010; Hamilton 

and Nathanson, 2001), and have reduced expression of extracellular signal-regulated kinase 

(ERK 1 and 2) in the hippocampus, a protein involved in synaptic plasticity (Berkeley et al., 

2001).
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In addition to regulating cognition, M1 has been shown to modulate DA signaling. M1 

knockout mice have elevated levels of extracellular DA in the striatum and increased basal 

and amphetamine-induced locomotion (Gerber et al., 2001), indicating an inhibitory role for 

M1 control of subcortical dopaminergic transmission. M1 receptors are highly expressed in 

both striatonigral and striatopallidal medium spiny neurons (MSNs; Yan et al., 2001). 

Through coordinated modulation of potassium and calcium channels (Ben-Ari et al., 1992; 

Perez-Burgos et al., 2010), M1 can shape the synaptic integration and spiking activity in 

MSNs. Correspondingly, muscarinic agonists, particularly those with M1-preferring activity 

(e.g., AC260584, sabcomeline, xanomeline) have been shown to acutely stimulate DA efflux 

within the PFC and striatum (Li et al., 2007; Li et al., 2008). Data from neuroimaging 

studies have demonstrated that frontal and striatal DA release is critical for working memory 

representations and behavioral flexibility, respectively (Cools and D’Esposito, 2011; Frank 

et al., 2001). In schizophrenia it is hypothesized that DA hypofunction may contribute to 

cognitive and negative symptom manifestation, thus agents that enhance DA transmission in 

mesocortical pathways, such as M1, may possess antipsychotic efficacy.

Remarkable progress has been achieved in the discovery of highly selective M1 PAMs that 

provide tools to further understand the contributions of M1 to the preclinical and clinical 

efficacy of xanomeline. BQCA (benzyl quinolone carboxylic acid), a second generation M1 

PAM which potentiates responses to ACh in CHO cell lines expressing rhesus, dog, rat and 

mouse M1 (Ma et al., 2009), was found to express antipsychotic drug-like qualities and 

produce pro-cognitive responses, including enhancing memory function and increasing 

spontaneous prefrontal brain activity in rodent models (Chambon et al., 2012; Gould et al., 

2015; Ma et al., 2009; Shirey et al., 2009). The dissociative anesthetic phencyclidine (PCP) 

and MK-801 are noncompetitive NMDA receptor antagonists suggested to be validated 

pharmacological model of all symptom domains of schizophrenia (Steeds et al., 2015). 

Recently, it was found that BQCA can attenuate deficits induced by MK-801 and potentiate 

the effects of atypical, but not typical, antipsychotics in a Y-maze test, a short-term spatial 

memory paradigm for assessing hippocampal-dependent memory function (Choy et al., 

2016). An analog of BQCA, PQCA (1-((4-cyano-4-(pyridine-2-yl) piperidin-1-yl) methyl-4-

oxo-4 H-quinolizine-3-carboxylic acid) demonstrated robust efficacy in rodent and non-

human primate cognition assays (Lange et al., 2015). Taken together these results provide 

preclinical insights into M1 PAMs’ procognitive effects as well as synergic effects with 

atypical antipsychotics.

Further behavioral effects of M1 receptors have been characterized through use of second 

generation M1 PAMs, such as VU0453595, PF-06767832 and VU6004256. Behavioral 

deficits following administration of PCP to mice tested in social interaction and NOR were 

reversed following acute treatment with VU0453595 (Ghoshal et al., 2016). Recent findings 

indicate that M1-mediated plasticity in the PFC is highly dysregulated following acute or 

chronic NMDA receptor blockade (Ghoshal and Conn, 2015; Thomases et al., 2014). 

Namely, acute administration of NMDA antagonists lead to a tonic excitation of PFC 

neurons (Homayoun and Moghaddam, 2007; Ninan and Wang, 2003), and this aberrant 

plasticity occurs in conjunction with cognitive deficits in animal models (Blot et al., 2013). 

The M1 PAM VU0453595 was found to restore muscarinic LTD (mLTD), thus providing 

evidence that loss of M1-mediated mLTD at the hippocampal-PFC synapse contributes to the 
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increased activation of the PFC and cognitive impairments (Ghoshal et al., 2016). Additional 

evidence suggests that activation of M1 triggers release of an endocannabinoid leading to 

CB1 mediated depression of GLU transmission (Martin et al., 2016); however, how this form 

of LTD correlated with mPFC dependent learning and function is still speculative. At 

present, very few studies have focused on understanding the cellular mechanisms underlying 

mLTD in the PFC (Caruana et al., 2011; Ghoshal et al., 2016; Scheiderer et al., 2008). It has 

also been suggested that the loss of mLTD could be related to a dysfunction in the 

muscarinic regulation of GABAergic neurotransmission in the PFC (Yi et al., 2014); 

however, future studies need to conducted to test this possibility.

In addition, PF-0676832 was found to attenuate learning and memory deficits induced by the 

anticholinergic scopolamine in the Morris water maze (MWM) assay (Davoren et al., 2016) 

and VU6004256 was shown to ameliorate cognitive abnormalities in a genetic mouse model 

of a global reduction in the NR1 subunit of the NMDA receptor (Grannan et al., 2016). 

These studies support the idea that M1 activation may have a critical role in mPFC-

dependent cognitive functions and suggest that M1 allosteric activators may serve as a novel 

approach for the treatment of PFC deficits observed in schizophrenic patients.

More recently studies are investigating whether M1 activation could potentially provide 

antipsychotic effects. Davoren and colleagues (2016) tested PF-06767832 in amphetamine-

induced disruptions in PPI of acoustic startle, a preclinical model of sensorimotor gating 

deficits observed in schizophrenia. Interestingly, administration of PF-06767832 was found 

to significantly block amphetamine-induced deficits in PPI. Although well tolerated in 

rodents, PF-06767832 was poorly tolerated in dogs as evidenced by dose-dependent 

cholinergic signs, such as salivation, watery stool, ataxia and convulsions (Davoren et al., 

2016), which may limit clinical utility. M1 activation is generally not thought to be 

associated with GI adverse effects; however, these results are consistent with toxicology data 

on BQCA, PQCA, and a related analog (Alt et al., 2016). The M1 mechanism is associated 

with convulsions (Cruickshank et al., 1994), most likely due to unbound plasma values and 

agonist activity (Davoren et al., 2016; Rook et al., 2017). To compliment these findings, the 

highly potent M1 PAM VU6004256 was found to attenuate spontaneous hyperlocomotion in 

a genetic model of NMDA hypofunction (Grannan et al., 2016), suggesting that M1 

modulation in cortical and limbic regions may contribute to antipsychotic-like effects of 

xanomeline.

The dopaminergic system has been shown to have an excitatory influence on the 

hippocampal-PFC pathway (Bernardi et al., 1982; Li et al. 2015). Activation of the 

mesocortical DA system at a frequency that leads to DA overflow causes a long-lasting 

enhancement in the magnitude of hippocampal-PFC tetanic LTP in vivo (Jay et al., 1995) 

and depletion of DA in the PFC has the opposite effect (Gurden et al., 1999). The exact 

physiological roles of M1 on DA release still remains to be illuminated. Therefore, future 

studies should determine the modulatory role of M1 dependent DA release and behaviors 

through optogenetic techniques. Together with multiple studies demonstrating robust effects 

of M1 PAMs on cognitive function, these studies support the exciting possibility that highly 

selective M1 PAMs may provide a novel approach for reducing symptomology associated 

with changes in cortical plasticity in schizophrenia patients. Thus, it will be critical to 
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advance M1 PAMs into clinical development that has robust actions on M1-mediated 

responses in PFC neurons and in MSNs.

1.8 M4 Positive Allosteric Modulators (PAMs)

The M4 receptor is believed to play a crucial role in the antipsychotic properties of the 

muscarinic agonist xanomeline (Bymaster et al., 2003; Woolley et al., 2009). M4 receptors 

are abundantly expressed in the striatum (Hersch et al., 1994), and are co-expressed with DA 

D1 receptors on SPNs (Ince et al., 1997; Santiago and Potter, 2001), suggesting that M4 is 

ideally located to modulate dopaminergic signaling. All currently approved antipsychotics 

that are efficacious for the management of positive symptoms act to reduce DA transmission 

(Howes et al., 2009). This is significant as there is evidence that links M4 receptor activation 

with dopaminergic regulation, and that atypical antipsychotic medications may act was M4 

receptor agonists (Brady et al., 2008; Jeon et al., 2010; Tzavara et al., 2004; Wess, 2004). In 

preclinical studies, mAChR agonists with partial M4 selectivity exert antipsychotic-like 

efficacy in animal models of psychosis (Bymaster et al., 1998; Thomsen et al., 2010; Watt et 

al., 2013) and these behavioral effects are absent in M4 knockout mice (Dencker et al., 

2011). Additional evidence for the involvement of M4 in modulating the activity of the 

central dopaminergic comes from whole body M4 knockout mice, that display enhanced 

hyperlocomotor activity and increased behavioral sensitization following treatment with 

psychostimulants (Gomeza et al., 2001; Koshimizu et al., 2012; Tzavara et al., 2004; Zhang 

et al., 2002). Moreover, the antipsychotic-like effects of xanomeline are absent in mice 

lacking the M4 mAChR in D1 DA receptor expressing cells (D1-M4 knockout mice; Jeon et 

al., 2010). Taken together, these findings support the hypothesis that M4 mAChRs represent 

a viable drug target for the treatment of schizophrenia.

An important breakthrough for M4-selective compounds occurred with the discovery of the 

first generation allosteric agents, VU0010010 and LY2033298 (Chan et al., 2008; Shirey et 

al., 2008). These agents do not directly activate M4, rather they serve as allosteric 

potentiators that increases responses of the receptor to ACh. In brain slices, VU0010010 

selectively potentiated mAChR-mediated reductions in excitatory, but not inhibitory, 

synapses in hippocampal neurons, indicating a key role for M4 in regulating hippocampal 

function. These findings validated the functional activity of M4 PAMs ex vivo and lead to 

the chemical optimization of future compounds (Shirey et al., 2008). Unlike VU0010010, 

LY2033298 possessed physiochemical properties suitable for in vivo dosing and was found 

to potentiate the behavioral effects of the nonselective mAChR agonist oxotremorine in 

animal models of psychosis, such as CAR and PPI, and modulate DA release in the PFC. 

Additionally, the effects of LY2033298 were significantly attenuated in M4 knockout, 

indicating the critical role of the M4 receptor in governing antipsychotic-like effects (Chan et 

al., 2008; Leach et al., 2010). However, LY2033298 does not provide an optimal tool 

compound for rodent studies in that it has relatively low potency at the rat M4 mAChR 

(Chan et al., 2008; Leach et al., 2010) and displays only weak cooperativity with ACh, the 

endogenous agonist of M4 (Suratman et al., 2011).

The scaffolds of VU0010010 and LY2033298 have led to the advancement of M4 PAMs 

with central penetration and suitable pharmacokinetic properties for preclinical studies. New 
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generations of M4–selective PAMs, such as VU1052100 and VU0467154, have 

demonstrated robust effects, similar to those seen with xanomeline and the atypical 

antipsychotic clozapine, in multiple animal models of psychosis (Brady et al., 2008; Bubser 

et al., 2014; Byun et al., 2014; Chan et al., 2008; Foster et al., 2016). VU0467154 is a highly 

valuable rodent in vivo tool compound with excellent physiochemical properties (reviewed 

in Wood et al., 2016). M4 PAMs have been shown to attenuate amphetamine-induced 

increases in extracellular DA in the striatum and nucleus accumbens (Byun et al., 2014). 

Taken together with data from D1-M4
−/− mice depicting increased DA efflux in response to 

psychotomimetics (Jeon et al., 2010), it is hypothesized that activation of M4 on D1 SPNs 

may provide feedback control on basal and evoked DA release in the striatum.

Studies using fast scan cyclic voltammetry (FSCV) have demonstrated that D1-M4
−/− mice 

lack sustained reductions in striatal DA release seen in littermate controls and antipsychotic-

like effects following administration of M4 PAMs and xanomeline (Dencker et al., 2011; 

Foster et al., 2016), suggesting that M4 expressed on D1-containing neurons mediate these 

effects. One proposed mechanism for these effects is that activation of M4 on D1-containing 

MSNs leads to decreased GABA release from nerve terminals via a multisynaptic 

mechanism. This inhibition is thought to underlie the antipsychotic-like profile of M4 PAMs 

as well as atypical antipsychotics with M4 selectivity (Mirza et al., 2003; Olianas et al., 

1999; Stanhope et al., 2001), however, this model remains to be rigorously tested. Another 

possible mechanism supported by Foster et al. (2016) posits that M4 activation induces 

release of a local messenger that acts on neighboring DA terminals to inhibit DA release. In 

support of this notion, M4-mediated effects on DA release are blocked by a CB2 

endocannabinoid (eCB) receptor antagonist, absent in CB2 knock out mice, and are occluded 

by inhibition of the eCB synthetic enzyme diacylglycerol lipase (Foster et al., 2016). Taken 

together, these data suggest that the effects of M4 PAMs on DA release in the striatum are 

mediated, at least in part, by activation of CB2 receptors, possibly expressed on neighboring 

DA terminals.

In addition to displaying antipsychotic-like properties, M4 PAMs have been reported to 

display cognition enhancing properties in associative learning paradigms. Administration of 

VU0467154 improves the acquisition of both contextual and cue-mediated fear conditioning 

and reverses stimulant-induced deficits in learning and memory (Bubser et al., 2014). 

Interestingly, it has recently been reported that M4 PAMs improve memory of rodents that 

perform poorly at baseline, more so than an M1 allosteric agonist BQCA (Galloway et al., 

2014), suggesting that M4 PAMs may offer improvement to the cognitive symptoms of 

schizophrenia. Recent physiology studies have revealed that activation of presynaptic M4 

receptors decreases GLU release from excitatory terminals in the hippocampus (Shirey et al. 

2008) and from corticostriatal terminals (Pancani et al., 2015), suggesting that M4 is the 

primary mAChR mediating cholinergic inhibition of excitatory transmission in these brain 

regions. Psychotomimetic agents like the MK-801 enhance spontaneous firing at 

glutamatergic synapses within the mPFC and induce cognitive impairments (Blot et al. 2015; 

Wang and Gao, 2012). These data raise the possibility that M4-PAMs could reverse 

MK-801-induced deficits in cognition that may involve actions at excitatory synapses, 

including corticostriatal terminals to normalize the function of overactive excitatory 
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projections from layer V pyramidal cells of the mPFC to the striatum; however, additional 

studies are needed to confirm the role of M4 in modulating cognitive function.

While these results are exciting, the potential of M4 PAMs as clinical candidates has been 

hindered by a significant species disconnect (35x less potent at human M4; Wood et al., 

2017). Due to the disconnect between rodent and human M4 receptors, it lead to the 

discovery of a potent, selective, and orally bioavailable M4 PAM (VU0467485) that 

displayed robust efficacy in hyperdopaminergic states and NMDA hypofunction (Wood et 

al., 2016). Excitingly, VU0467485 is the first potent M4 PAM to overcome major species 

differences in potency while maintaining high selectivity (Wood et al., 2016), however, 

further advancement was halted due to solubility issues.

1.9 Conclusions

Significant progress has been made in terms of our scientific understanding of the 

neurochemical origins of the symptoms of schizophrenia. From the evidence reviewed here, 

it is apparent that an abnormal central muscarinic system contributes to positive, negative 

and cognitive symptom domains of schizophrenia. These observations combined with the 

positive clinical data observed with xanomeline suggest that M1/M4 activity warrant further 

investigation as potential therapeutic options for schizophrenia. Major attention has been 

focused on developing highly selective allosteric modulators to use as research tools to 

achieve a better understanding of the exact role of these receptor subtypes in schizophrenia. 

Excitingly, new generations of M1 and M4 PAMs have demonstrated efficacy in preclinical 

assays that predict antipsychotic-like and cognition enhancing effects, suggesting these 

compounds may be beneficial for symptom management in schizophrenic patients. 

However, additional studies are needed to further understand the effects of these compounds 

in preclinical models of negative symptoms.
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Highlights

• Allosteric modulators demonstrate unique mechanisms of action and high 

subtype selectivity.

• M1 PAMs have procognitive effects and have efficacy in some models of 

negative symptoms.

• M4 PAMs exhibit antipsychotic efficacy via influence on dopaminergic 

signaling.

• M1 and M4 activators may provide novel therapeutic approaches with 

minimal adverse side effects.
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