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Allele-specific expression in a 
family quartet with autism reveals 
mono-to-biallelic switch and novel 
transcriptional processes of autism 
susceptibility genes
Chun-Yen Lin1,2, Kai-Wei Chang1, Chia-Yi Lin1, Jia-Ying Wu1, Hilary Coon3, Pei-Hsin Huang4, 
Hong-Nerng Ho   5,6, Schahram Akbarian7, Susan Shur-Fen Gau1,8 & Hsien-Sung Huang   1,9

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder, and the exact 
causal mechanism is unknown. Dysregulated allele-specific expression (ASE) has been identified in 
persons with ASD; however, a comprehensive analysis of ASE has not been conducted in a family 
quartet with ASD. To fill this gap, we analyzed ASE using genomic DNA from parent and offspring and 
RNA from offspring’s postmortem prefrontal cortex (PFC); one of the two offspring had been diagnosed 
with ASD. DNA- and RNA-sequencing revealed distinct ASE patterns from the PFC of both offspring. 
However, only the PFC of the offspring with ASD exhibited a mono-to-biallelic switch for LRP2BP and 
ZNF407. We also identified a novel site of RNA-editing in KMT2C in addition to new monoallelically-
expressed genes and miRNAs. Our results demonstrate the prevalence of ASE in human PFC and ASE 
abnormalities in the PFC of a person with ASD. Taken together, these findings may provide mechanistic 
insights into the pathogenesis of ASD.

Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder characterized by social difficulties, 
communication challenges, and repetitive behaviors1. ASD has been identified in 1 out of 68 children2, which 
reveals its high prevalence and indicates its importance as a public health issue. There is no definitive biomarker 
for ASD and no widely accepted treatment. Although medications can provide an improvement in behaviors for 
persons with ASD, they cannot reliably ameliorate all of the core symptoms of this disorder3,4. This limitation of 
therapeutic efficacy is due to the heterogeneous and multifactorial causes of ASD, which include genetic com-
ponents, environmental insults, and gene-environment interactions5,6. Altered gene expression in the brain has 
been consistently identified in persons with ASD through genome-wide analysis7–10. In addition, phenotypic and 
genetic variations are entangled, which further hinders deciphering the etiology of ASD11,12. Although a single 
ultimate neuropathological feature in the brains of individuals with ASD may be impossible to define, we now 
know that common variant of small effect and rare de novo variants of large effect can combine to influence the 
risk for ASD. Apart from de novo mutations, copy number variations13–15, and aberrant microRNA profiles16, epi-
genetic mechanisms such as variations in DNA methylation on differential gene expression have been proposed 
to play a pivotal role in ASD17–19. Although Fragile X syndrome is the most well-known single-gene disorder, it 
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only accounts for approximately 5% of all ASD cases20; the cause of most cases of ASD are unclear. Moreover, the 
challenge of investigating the causes is further complicated by the complex nature of ASD.

Allele-specific expression (ASE) is an unequal expression of alleles. One extreme example is mono-allelic 
expression (MAE), in which one allele is expressed, while the other is inactive. MAE consists of several differ-
ent mechanisms, such as genomic imprinting21, X chromosome-inactivation22, expression quantitative trait loci 
(eQTL)23,24, and autosomal random MAE25. Genomic imprinting is essential for neurodevelopment and viabil-
ity of the organism26. Mono-allelically expressed genes play important roles during development, and they are 
predisposed to loss of their function through mutations, thus contributing to diseases27,28. Indeed, random or 
stochastic monoallelically expressed genes are enriched for candidate genes for neurodevelopmental disorders29. 
Furthermore, MAE affects epigenetic processes in brains of individuals with ASD30 and dysregulated genomic 
imprinting has been identified in persons with ASD31,32.

The quality of genetic information can be improved by analyzing complete genome sequences from family 
members, which was demonstrated by the pioneering work of Roach et al. (2010) using a family quartet (two 
siblings and their parents)33. Moreover, information regarding single nucleotide polymorphisms (SNPs) from 
the parent is critical for parent-of-origin allele-specific expression analysis, although haplotype phasing in an 
outbred human population is complicated34. Therefore, it is necessary to acquire samples from a family quartet to 
determine the parental source of transcripts in offspring. Despite the relevance of MAE to ASD, comprehensive 
analysis of MAE in a family quartet with ASD has not been conducted due to limited access to samples.

To address this critical knowledge gap, we investigated the role of ASE in the pathogenesis of ASD using spe-
cial human parent-child quartet samples. Genomic DNA from parent and offspring and RNA from offspring’s 
postmortem prefrontal cortex (PFC) of the brain were analyzed. One offspring had been diagnosed with ASD. We 
observed distinct ASE patterns of genes and microRNAs (miRNAs) in the PFC of both offspring. Importantly, we 
found a mono-to-biallelic switch for LRP2BP (LRP2 binding protein) and ZNF407 (Zinc f﻿inger protein 407) in 
the offspring diagnosed with ASD. We also found a novel site of RNA editing in KMT2C (Lysine (K) methyltrans-
ferase 2 C); a novel development stage- and brain-specific maternally-expressed gene, DUSP22 (Dual specificity 
phosphatase 22); and a novel development stage-specific paternally-expressed miRNA, miR-335, in the PFC of 
both offspring. KMT2C, DUSP22 and miR-335 are autism susceptibility genes and miRNAs. Our results provide 
further evidence that ASE could contribute to ASD.

Results
Quality and quantity of DNA and RNA of a parent-child quartet with ASD met the require-
ments for deep sequencing.  We analyzed ASE on a genome-wide scale and investigated whether dysregu-
lated ASE occurs in persons with ASD using samples from a family quartet with ASD consisting of genomic DNA 
from the parent and offspring and RNA extracted from postmortem PFC of the offspring (Fig. 1a). Sequencing 
of parental genomic DNA provided information regarding single nucleotide polymorphisms (SNPs), which is 
essential for determining the parental source of offspring’s transcripts. In this family quartet, both offspring were 
female, and one had been diagnosed with ASD (Fig. 1a). Supplementary Fig. 1 provides a more detailed pedi-
gree of this family, which shows epilepsy and deafness co-occurred in both the affected and unaffected offspring 
in addition to other familial health conditions. Next, we performed DNA sequencing of parents and offspring; 
RNA-sequencing and follow-up transcriptomic and ASE analysis was performed on the offspring. The detailed 
demographic and deep sequencing information is presented in Supplementary Table 1. The quantity and quality 
of genomic DNA from parents and offspring met the requirements for DNA-sequencing (Fig. S2a); in addition, 
the quantity and quality of the offspring’s RNA met the requirements for RNA-sequencing (Fig. S2b). Total read 
number and mappability of the offspring’s RNA-Seq data met the requirements for further statistical analysis 
(Supplementary Table 1). Taken together, the DNA and RNA from the offspring qualified for deep sequencing.

Gene and miRNA expression are altered in the PFC of the offspring with ASD.  To determine 
whether dysregulated gene expression was present in the postmortem PFC of offspring with ASD, we compared 
gene expression patterns of the offspring with and without ASD on a genome-wide scale. We focused on genes 
with expression levels of more than 0.3 FPKM in the offspring without ASD and a fold change between the 
offspring with and without ASD larger than 0.5 or less than −0.5, on a base-10 logarithmic scale (Fig. 1b and 
Supplementary Table 2). Rather than use the typical two-fold change, we used a fold change of 3.16 (=10^(0.5)), 
which is a more stringent threshold. When compared to the offspring without ASD, we detected 2293 
up-regulated and 5980 down-regulated gene isoforms in the PFC of the offspring with ASD. We then performed 
gene ontology (GO) enrichment analysis on the affected gene isoforms to further investigate which functions, 
processes, and components were affected. Focusing on gene isoforms involved in brain-related functions, we 
observed that genes related to the development of dendrites, axons and the olfactory bulb were affected (Fig. 1c 
and Supplementary Table 3). None of the GO terms survived after false discovery rate (FDR) correction. The 
functions of the genes related to olfactory bulb development (ID2, AGTPBP1 and SEMA3A) are related to overall 
brain development35–37. If we applied more stringent criteria (log2 (ASD/non-ASD > 2 or −2 and q value < 0.05), 
we only detected 67 genes with altered expression in the offspring with ASD (Supplementary Table 4). Due to 
the small size of the genes, GO analysis could not be further pursued. To validate the accuracy of our heatmap 
results, we confirmed the expression levels of the top genes that were up-regulated (such as RNF220, SEMA3E, 
and SEPT5) and down-regulated (such as HLA-A, NPAS4, and TNFRSF8) with qPCR (Fig. 1d). These genes were 
chosen based on the availability of reliable primers, high expression levels, and a difference in expression level 
between ASD and non-ASD samples. To examine if the altered genes could be observed in other ASD cohorts, 
we compared our altered genes with RNA-Seq data from Dr. Weinberger’s group7 for the dorsolateral prefrontal 
cortex from three persons with ASD and three matched controls. We observed that expression of 2406 out of 8273 
genes was also altered in this ASD cohort (Fig. S3a and Supplementary Table 5). For analysis of Dr. Weinberger’s 
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RNA-Seq data, we used the same criteria of altered gene expression as we used for our ASD cohort. To investigate 
if the altered genes could be observed in a larger ASD cohort, we compared our altered genes with RNA-Seq data 
from a study by Dr. Geschwind’s group10 of the cortex from persons with ASD and matched controls. We found 
that expression of 387 out of 1087 genes was also altered in this ASD cohort (Supplementary Table 6).

Small RNAs, such as miRNAs, affect gene expression, but whether dysregulated miRNAs contribute to the eti-
ology of ASD has not been well studied. To address this question, we compared the expression levels of miRNAs 
from the PFC of the two offspring on a genome-wide scale. We focused on miRNAs with a fold change between 
the offspring with and without ASD larger than 0.5 or less than −0.5, on a base-10 logarithmic scale, which 
resulted in a threshold of fold change of 3.16 (=10^(0.5)). When PFC miRNAs from the offspring with ASD 
were compared with those of the offspring without ASD, we found 105 up-regulated and 125 down-regulated 
miRNAs in the offspring diagnosed with ASD (Fig. 1e and Supplementary Table 7). We then performed GO 
analysis on the affected miRNAs (Fig. 1f and Supplementary Table 8) and examined genes targeted by altered 
miRNAs (Supplementary Table 9). None of GO terms survived after FDR correction. To validate the accuracy 
of our heatmap results, we performed qPCR to confirm the expression levels of the top up-regulated miRNAs 
(such as miR365a-3p, miR-2277-3p, and miR-184-3p) and down-regulated miRNAs (such as miR-21-5p, miR-
136-3p, and miR-127-3p) (Fig. 1g). These miRNAs were chosen based on the availability of reliable primers, high 
expression levels, and a difference in expression level between ASD and non-ASD samples. To determine whether 
those altered miRNAs could be detected in other ASD cohorts, we compared our altered miRNAs with RNA-Seq 
data from Dr. Weinberger’s group7 for the dorsolateral prefrontal cortex of three persons with ASD and the three 
matched controls, using same criteria for analysis as we used in our ASD cohort. We observed that expression of 
12 out of 210 miRNAs was also altered in this ASD cohort (Fig. S3b and Supplementary Table 5). To investigate if 
the altered miRNAs could be detected in a larger ASD cohort, we compared our altered miRNAs with RNA-Seq 
data from a study by Dr. Geschwind’s group16 of the cortex from persons with ASD and matched controls. We 
found that expression of 1 out of 58 miRNAs was also altered in this ASD cohort (shaded genes, Supplementary 
Table 6). Taken together, our results showed the PFC of the offspring with ASD contained genes and miRNAs 
with altered expression.

Figure 1.  Differential gene and miRNA expression patterns in the postmortem prefrontal cortex (PFC) of a 
person without and with ASD. (a) Schematic diagram of the family tree from a family quartet with ASD. Square 
indicates male and circle indicates female. Black solid circle indicates the offspring with ASD; open circle 
indicates the offspring without ASD. (b) Heatmap analyses showing gene expression profiles for the offspring 
without and with ASD. (c) Gene ontology (GO) enrichment analysis was performed for affected genes from the 
offspring with ASD. (d) The top genes that were up-regulated (top) and down-regulated (bottom) were validated 
by qPCR; expression levels of genes for the offspring with ASD (black bars) compared with levels for the 
offspring without ASD (open bars). (e) Heatmap analyses showing miRNA expression profiles for the offspring 
without and with ASD. (f) Gene ontology (GO) enrichment analysis was performed for affected miRNAs from 
the offspring with ASD. (g) The top miRNAs that were up-regulated (top) and down-regulated (bottom) were 
validated by qPCR; expression levels of miRNA in the offspring with ASD (black bars) compared with levels 
in the offspring without ASD (open bars). NA, the offspring without ASD; A, the offspring with ASD. The data 
points above the red dashed line represent P values less than 0.05. Euclidean distance was used to generate the 
heatmap plots.
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Autism susceptibility genes were altered in the PFC of the offspring with ASD.  To investigate 
whether autism susceptibility genes were preferentially altered, we compared expression levels of autism suscep-
tibility genes in the postmortem PFC of the two offspring. The source of autism susceptibility genes was from the 
Simons Foundation Autism Research Initiative (SFARI, September 2016; Supplementary Table 10). We focused 
on genes with expression levels of more than 0.3 FPKM in the offspring without ASD and a fold change between 
the offspring with and without ASD larger than 0.5 or less than −0.5, on a base-10 logarithmic scale and as a 
result, the threshold for fold change used was 3.16 (=10^(0.5)). Compared with the offspring without ASD, the 
PFC of the offspring with ASD exhibited 142 up-regulated and 312 down-regulated autism susceptibility gene 
isoforms (Fig. 2a and Supplementary Table 11). We performed a hypergeometric test to assess whether the above 
overlaps were more than one would expect by chance and found significant overlaps (p < 0.001). To validate the 
heatmap results regarding differences in regulation of these gene isoforms in the offspring with ASD, we com-
pared the offspring’s top up-regulated autism susceptibility genes (such as AGAP1, EFR3A and KAT6A, Fig. 2b) 
and down-regulated autism susceptibility genes (such as NRXN2, SERPINE1, and BBS4, Fig. 2c). These genes 
were chosen based on the availability of reliable primers, high expression levels, and a difference in expression 
level between ASD and non-ASD samples. To determine whether the altered ASD susceptibility genes could be 
observed in other ASD cohorts, we compared our altered ASD susceptibility genes with RNA-Seq data from Dr. 
Weinberger’s group7 for the dorsolateral prefrontal cortex of three persons with ASD and three matched controls. 
We observed altered expression in 51 out of 455 genes in this ASD cohort (Fig. S3c and Supplementary Table 5). 
For analysis of the data in the cohort from Dr. Weinberger’s data, we used the same criteria for the ASD suscep-
tibility genes we used in our ASD cohort. To investigate if the altered genes could be observed in a larger ASD 
cohort, we compared our altered genes with RNA-Seq data from a study by Dr. Geschwind’s group10 of the cortex 
from persons with ASD and matched controls. We found that expression of 29 out of 1087 genes was also altered 
in this ASD cohort (shaded genes, Supplementary Table 6).

When compared with the offspring without ASD, the following autism susceptibility miRNAs16,38 were altered 
in the offspring with ASD: miR-619-5p, miR-23a-3p, miR-103a-3p, miR-106b-5p, miR-143a-3p, miR-146a-5p, and 
miR-204-3p (Fig. 2d and Supplementary Table 12). A hypergeometric test showed the above overlaps were not 
significant (p = 0.92). Since miRNAs regulate gene expression, we also examined genes targeted by the affected 
miRNAs (Supplementary Table 12). We then performed gene ontology (GO) enrichment analysis on the affected 
miRNA target genes to further investigate which functions and pathways were affected. However, we did not 
observe any significant results. Our data showed altered expression of autism susceptibility genes from SFARI in 
the PFC from the offspring with ASD.

Allele-specific gene expression was altered in the postmortem PFC of the offspring with 
ASD.  To examine allele-specific gene expression and to determine whether dysregulated allele-specific gene 
expression occurred in the offspring with ASD, the parents’ and offspring’s genomic DNA was analyzed with 
DNA-Seq, and the offspring’s postmortem PFC RNA was analyzed with RNA-Seq followed by ASE analysis. 
First, we observed a distinct allele-specific gene expression pattern, which contained a diagonal line with one 
paternally-dominant cohort and one maternally-dominant cohort in both offspring (Fig. 3a and Supplementary 
Table 13). Genes within the diagonal line indicate both of their alleles were expressed equally, which represented 
the majority of genes; genes above or below the diagonal line indicate genes that were expressed predominantly 
from either maternal or paternal allele. This pattern has been observed consistently in different brain regions 
related to the mouse visual system39 as well as in cell types of the mouse visual cortex40. In contrast, when we 
compared the ASE patterns of all of SFARI’s autism susceptibility genes, several genes differed between the off-
spring with and without ASD (Fig. 3b and Supplementary Table 14). A hypergeometric test demonstrated these 
differences in genes between siblings were not by chance (p < 0.001). We validated allele-specific expression for 
our candidate genes with Sanger sequencing and determined LRP2BP and ZNF407 were both mono-allelically 
expressed in the offspring without ASD, but bi-allelically expressed in the offspring with ASD (Fig. 3c,d, top). 
LRP2BP was also monoallelically expressed in other non-ASD brain samples (Fig. S4a). This mono-to-biallelic 
switch reflects their expression levels (Fig. 3c,d, bottom). Because there is an overlap between autism suscepti-
bility genes from SFARI (Supplementary Table 10, September 2016) and known human imprinted genes from 
the Geneimprint website (Supplementary Table 15, September 2016) (Fig. 3e), we validated seven of the 19 over-
lapped genes with Sanger sequencing (Fig. 3f,g). Due to the lack of availability of SNPs and low gene expression 
levels, the remaining overlapped genes could not be validated. For genes that could be validated, Sanger sequenc-
ing showed ATP10A, CTNNA3, DLGAP2, GABRB3, and HTR2A were not imprinted in either of the offspring 
(Fig. 3f), whereas MAGEL2 and SNRPN were imprinted in both (Fig. 3g). The imprinting status of ATP10A, 
DLGAP2, and HTR2A was further confirmed in other brain samples (Fig. S4b). Taken together, our data sug-
gest that allele-specific gene expression occurs in human PFC and dysregulated allele-specific gene expression 
occurred in the PFC of the offspring with ASD.

Allele-specific miRNA expression was altered in the PFC of the offspring with ASD.  To deter-
mine whether allele-specific expression of miRNAs occurs in the PFC of humans and whether the expression 
is dysregulated in persons with ASD, we profiled allele-specific miRNA expression in the PFC of the offspring 
with and without ASD. We observed a pattern of ASE for miRNAs, which showed a diagonal line with a 
paternally-dominant cohort and a maternally-dominantly cohort (Fig. 4a), similar to that seen for genes (Fig. 3a). 
In addition, this pattern has been observed consistently in different brain regions related to the mouse visual sys-
tem39. Heatmap clustering compared miRNAs from the two offspring whose fold change on a base-10 logarithmic 
scale was larger than 0.5 or less than −0.5 (Fig. 4b and Supplementary Table 16), and as a result, the threshold 
for fold change used was the 3.16 (=10^(0.5)). We validated the allele-specific miRNA expression with Sanger 
sequencing (Fig. 4c,d). There was no difference in allele-specific miRNA expression between offspring without 
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and with ASD. However, we identified maternally-expressed miRNAs (miR-299 and miR-654) in both offspring 
(Fig. 4d). In summary, our data show distinct patterns of allele-specific miRNA expression in the PFC of both 
offspring.

Figure 2.  Distinct expression patterns of autism susceptibility genes and miRNAs from postmortem prefrontal 
cortex (PFC) of the offspring diagnosed with ASD. (a) Heatmap analyses showing different gene expression 
profiles of autism susceptibility genes from the PFC of the offspring without and with ASD. The top genes that 
were up-regulated (b) and down-regulated (c) were validated by qPCR; expression levels in the offspring with 
ASD (black bars) compared with levels in the offspring without ASD (open bars). (d) Autism susceptibility 
miRNAs were determined with qPCR for the offspring without ASD (open bars) and the offspring with ASD 
(black bars). NA, the offspring without ASD; A, the offspring with ASD. Euclidean distance was used to generate 
the heatmap plots.
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Figure 3.  Distinct patterns of allele-specific gene expression in postmortem prefrontal cortex (PFC) of the 
offspring without and with ASD. (a) Parental expression patterns from the PFC of the offspring without ASD 
(top) and with ASD (bottom) analyzed on a genome-wide scale with RNA-Seq. (b) Heatmap analyses showing 
allele-specific gene expression profiles in the offspring without and with ASD. (c) Sanger sequencing validated 
the allele-specific expression of LRP2BP from the two offspring. Expression levels of LRP2BP from the PFC 
of the offspring without ASD (open bar) and with ASD (black bar) were quantified by qPCR. (d) Sanger 
sequencing validated the allele-specific expression of ZNF407 from the two offspring. Expression levels of 
ZNF407 from the PFC of the offspring without ASD (open bar) and with ASD (black bar) were quantified by 
qPCR. The offspring with and without ASD each had unique SNPs for ZNF407: G/A for the offspring without 
ASD and T/A for the offspring with ASD. (e) Venn diagram showing overlapped Simons Foundation Autism 
Research Initiative (SFARI) genes with known human imprinted genes. (f,g) The imprinting status of seven of 
the 19 overlapped genes was verified by Sanger sequencing. NA, the offspring without ASD; A, the offspring 
with ASD; B, bi-allelic; M, maternal; p, paternal. *Gene could not be validated due to lack of availability of 
SNPs or low gene expression levels. SNP information was shown as (paternal allele/maternal allele). Euclidean 
distance was used to generate the heatmap plots.
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Genomic map of parent-of-origin-specific gene and miRNA expression in the human PFC.  To 
map parent-of-origin-specific gene and miRNA expression on a genome-wide scale in human PFC, we compared 
our data obtained from the PFC of the offspring without ASD for allele-specific gene and miRNA expression 

Figure 4.  Distinct patterns of allele-specific miRNAs in the postmortem prefrontal cortex (PFC) of offspring 
without and with ASD. (a) Parental expression pattern of miRNAs was analyzed on a genome-wide scale with 
RNA-Seq in the PFC of both offspring. (b) Heatmap analyses of allele-specific expression profiles for miRNAs 
with fold changes of >0.5 or <−0.5 on a base-10 logarithmic scale between the offspring without and with 
ASD. (c,d) Allele-specific expression was validated for the miRNAs in (b) from the two offspring by Sanger 
sequencing. SNP information is shown as (paternal allele/maternal allele). Euclidean distance was used to 
generate the heatmap plots.
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with known human imprinted genes reported by the Geneimprint website (Supplementary Table 15, September 
2016) and previous literature41. RNA-Seq and follow-up ASE analysis confirmed the presence of 60% of known 
paternally expressed genes and 60% of known maternally expressed genes (Supplementary Fig. 5 and Table 17). 
We mapped the confirmed imprinted genes and miRNAs into 23 human chromosomes (Fig. 5). This mapping 
identifies the parent-of-origin-specific genes and miRNAs expressed on a genome-wide scale in the human PFC. 
Canonical genomic imprinting involves silencing of the maternal and paternal allele. In contrast, noncanoni-
cal genomic imprinting involves maternal or paternal allele expression biases42. We identified a noncanonical 
imprinted gene, NOS1 (Fig. 6a) in the PFC of both offspring.

Novel transcriptional processes of autism susceptibility genes were identified in human 
PFC.  Validation of allele-specific expression in the PFC of both offspring with Sanger sequencing identified 
three novel transcriptional processes of autism susceptibility genes. First, we identified a novel human-specific 
site of RNA editing in KMT2C (Fig. 6b). When we analyzed RNA editing in human adult and fetal PFC (Fig. 6c), 
we observed T-to-C RNA editing of KMT2C sense transcript, which was in contrast to A-to-G RNA editing 
for KMT2C antisense, which could cause a phenylalanine-to-leucine change at the protein level (p.F291L). 
This pattern of RNA editing was not seen when we analyzed PFC from postnatal day 28 (P28) and embryonic 
day 15.5 (E15.5) mouse (Fig. 6d,e, respectively), suggesting this RNA editing in KMT2C is human-specific. 
These differences in RNA editing patterns between human and mouse tissue were also seen when we exam-
ined human and mouse blood (Fig. 6c,e). Second, we identified a development stage- and brain-specific 
maternally-expressed gene, DUSP22 (Fig. 7). We found that DUSP22 was maternally expressed in adult PFC but 
bi-allelically expressed in fetal PFC and adult blood (Fig. 7b). The imprinting status of DUSP22 has been validated 
in other fetal tissue (Fig. S4b). Because we have been unable to identify the exonic SNPs in mouse Dusp22, we 
have not examined the ASE pattern of Dusp22 in mouse PFC and blood. Finally, we identified a development 

Figure 5.  Chromosome map of parent-of-origin-specific genes and miRNAs in the PFC of the offspring 
without ASD. Examination of 23 chromosomes for the presence of paternally- (blue) and maternally- (red) 
expressed imprinted genes and miRNAs in the PFC from the offspring without ASD. Dotted line separates the p 
and q arm of each chromosome.
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Figure 6.  Identification of noncanonical imprinting in the PFC of the offspring without and with ASD 
and editing of KMT2C transcript in human PFC. (a) Sanger sequencing was used to analyze noncanonical 
imprinting of NOS1 in the PFC of the offspring without and with ASD. “M*” stands for maternally-biased 
expression. (b) Schematic diagram of the genomic locus of human KMT2C. Arrows indicate the direction 
of transcription. (c) Sanger sequencing was performed to analyze RNA editing for KMT2C in the PFC of the 
offspring without and with ASD, fetal PFC, and blood from parents of the fetus. (d) Schematic diagram of the 
genomic locus of mouse Kmt2c. Arrows indicate the direction of transcription. (e) Sanger sequencing was 
performed to analyze RNA editing for Kmt2c in PFC and blood from postnatal day 28 (P28) mice and PFC from 
embryonic day 15.5 (E15.5) mice. SNP information is shown as (paternal allele/maternal allele).
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stage-specific paternally-expressed miRNA, miR-335 (Fig. 8), which was paternally-expressed in the adult PFC 
but paternally-biased in the fetal PFC. Taken together, our results add new information about the dynamic tran-
scriptomic processes in the brain.

Discussion
Our genome-wide analysis provides new information regarding expression of allele-specific genes and miRNAs 
in human PFC and persons with ASD. Analysis of the PFC revealed a distinct allele-specific expression pattern, 
which contained a diagonal line with a maternally dominant cohort and a paternally dominant cohort. Moreover, 
we identified novel allele-specific genes such as DUSP22 and miRNAs such as miR-335 in both the offspring with 

Figure 7.  DUSP22 is maternally expressed in the PFC of the offspring without and with ASD. (a) Schematic 
diagram of the genomic locus of DUSP22. Arrows indicate the direction of transcription. (b) Sanger sequencing 
was performed to analyze allele-specific DUSP22 expression in the PFC of the offspring without and with ASD, 
fetal PFC, and blood from the parents of the fetus. “M” stands for maternal expression. “B” stands for biallelic 
expression. SNP information is shown as (paternal allele/maternal allele).

Figure 8.  miR-335 is paternally expressed in the PFC of the offspring without and with ASD. Sanger sequencing 
was performed to analyze allele-specific miR-335 expression in the PFC of the offspring without and with ASD, 
fetal PFC, and blood from the parents of the fetus. “P” stands for paternal expression. “B” stands for biallelic 
expression. “P*” stands for paternally-biased expression. SNP information is shown as (paternal allele/maternal 
allele).
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and without ASD, as well as a mono-to-biallelic switch for LRP2BP and ZNF407 in the offspring diagnosed with 
ASD. We also identified a novel human-specific site of RNA editing in KMT2C. Importantly, our study results 
indicate that a genome-wide ASE map could provide a powerful model for understanding neuropsychiatric dis-
orders through the study of key features of dynamic allele-specific gene and miRNA expression in human PFC, 
supplemented with the study of the roles of dysregulated allele-specific genes and miRNAs in ASD.

Dual specificity phosphatase 22 (DUSP22) is an enzyme, which activates the JNK signaling pathway43. JNK 
activation has been shown to play an essential role in organogenesis during mouse development by regulating 
cell survival, apoptosis, and proliferation44. The physiological role of DUSP22 in the brain is unclear, and a rare 
DUSP22 deletion was found in a patient with autism and mild intellectual disability45. DUSP22 in the PFC from 
the offspring without and with ASD consistently showed maternal expression. Our finding further extends a 
previous finding showing DUSP22 is a monoallelically-expressed gene46. Interestingly, DUSP22 from fetal PFC 
showed bi-allelical expression, therefore it would be of interest to investigate how a biallelic-to-monoallelic switch 
is regulated for DUSP22 during prefrontal development. Moreover, LRP2BP and ZNF407 in the PFC from the 
offspring with ASD consistently showed a mono-to-biallelic switch. Importantly, dysregulation of LRP2BP47 and 
ZNF40748 has been identified in persons with ASD. However, the roles of LRP2BP and ZNF407 in the brain have 
not been identified and the function of LRP2BP protein is still unknown. In contrast, the function of ZNF407 pro-
tein has been shown to regulate glucose homeostasis49. Therefore, because glucose homeostasis is critical for nor-
mal brain function, dysregulation of ZNF407 could affect brain development and function. It would be of interest 
not only to investigate how a mono-to-biallelic switch is regulated for LRP2BP and ZNF407, which could provide 
insight into their roles in ASD specifically, but also to study the roles of LRP2BP and ZNF407 more generally dur-
ing neurodevelopment. The PFC from the offspring without and with ASD consistently showed paternal expres-
sion of miR-335, which further extends a previous finding showing mouse miR-335 is paternally-expressed50.

Lysine methyltransferase 2 C (KMT2C) has histone methylation activity and is a transcriptional coactivator. 
In our studies, we found that T-to-C RNA editing occurred in the KMT2C sense transcript. This editing causes 
a missense mutation, which converts phenylalanine to leucine at amino acid 291 of KMT2C. Phenylalanine and 
leucine are both neutral and non-polar amino acids, therefore, this change should have a minor effect on the pro-
tein structure of KMT2C. Indeed, when we used SIFT (http://sift.jcvi.org/) to predict whether such amino acid 
substitution affects protein function, the result predicted that this change is a tolerated substitution. It would be 
of interest to investigate the physiological significance of the T-to-C editing event in the sense transcript and an 
A-to-G editing event in the antisense transcript.

It has been reported that parent-of-origin-specific expression is also brain-region specific51. Our results 
demonstrate expression of parent-of-origin-specific genes and miRNAs in human PFC, which has not previ-
ously been reported. Our transcriptomic and ASE analysis of the PFC of the offspring with and without ASD 
of a family quartet identified dysregulated gene and miRNA expression, and ASE in the offspring with ASD, 
which could identify a novel set of autism susceptibility genes and miRNAs. It will be important to identify the 
regulatory mechanisms for dysregulated transcriptomic and allele-specific expression of these genes and miR-
NAs identified in the offspring with ASD. To this end, it will be essential to determine if stringent identification 
of allele-specific genes together with the systematic screening of allele-specific chromatin and DNA modifica-
tions could unravel markers for further mechanistic validation. It would also be interesting to further investigate 
whether cis-transcribed non-coding RNAs, intra-nuclear allelic positioning, and chromosomal interactions are 
associated with the allele-specific expression.

Several methods are available for seeking the allele-specific expressed genetic locus on a genome-wide scale, 
which include in silico prediction pipelines52, SNP genotyping arrays53, gene expression arrays54 and transcrip-
tome sequencing approach55. The transcriptomic approach is based on detecting allelic expression with RNA-Seq 
reads that map heterozygous SNPs, where the identity of the base is used to distinguish allelic origin and a recip-
rocal cross is used to discriminate parent-of-origin specificity from strain-specific or random biases. The tran-
scriptomic approach for allele-specific gene expression is a paradigm shift in comparison to previous methods. 
However, recent literature has indicated a high FDR could explain the majority of novel imprinted genes in an 
RNA-Seq approach resulting from the contribution of several factors. First, systematic errors in technical and 
biological replicates include priming, fragmentation, and PCR biases that arise during library construction and 
sequencing. One can adopt a mock reciprocal cross as a negative control to set a false discovery cutoff for sys-
temic errors. Second, the strain-specific effect could be due to cis-eQTL and tissue-specific effect could be due to 
trans-eQTL. Third, in comparison to the inbred mouse, the human is an outbred species and the complexity of 
haplotype phasing is much higher, which might lead to wrong read alignment (mapping bias). Since we cannot 
acquire a large sample size of SNPs calling data from the same population as the sampled genome, the only way to 
perform haplotype calling is to make inference via an established reference haploid genome from the same pop-
ulation. If the reference haploid genome distinctly differs from the sampled genome, then FDR inevitably rises. 
Recently, a Bayesian approach for analysis of ASE using a personal diploid genome as a reference sequence has 
been established and shows less biased alignments and more consistent ASE56. Fourth, small sample size and con-
founding underlying diseases (e.g. epilepsy, congenital deafness, or intellectual disability) may contribute to false 
detection. Fifth, in our study, we only had tissue from the prefrontal cortex of the offspring. However, other brain 
regions, such as the cerebellum, are also reported to be related to the anatomical and neuropathological causes of 
ASD57 and have different miRNA expression patterns16 in comparison with the prefrontal area.

Bipolar disorder was also present in the offspring with ASD. Because the age of onset for autism (2 to 3 years 
of age) is much earlier than that of bipolar disorder (25 years) and the offspring with ASD died at age 29 years, 
the impact of autism should be higher than that of bipolar disorder. In addition, many psychiatric disorders share 
genetic roots58. For example, there is an overlap between rare genetic variations linked to bipolar disorder and 
those implicated in autism59. Moreover, 83% of persons with ASD have been shown to have been diagnosed with 
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at least one comorbid non-ASD developmental disorder60, therefore, it would be difficult to acquire cases of per-
sons with ASD only. The results obtained here are more likely due to ASD rather than bipolar disorder.

Due to tissue availability, we sampled different regions of the prefrontal cortex (BA10 for the offspring without 
ASD and BA8 for the offspring with ASD) to conduct the analysis. The differential expression analysis may be 
confounded by the tissue specificity of gene expression in BA8 and BA10. To explore the impact of this potential 
confounding factor and verify the similarity of these two regions, we first compared the expression patterns of dif-
ferent regions of the central nervous system with principle component analysis (PCA) (Fig. S6a,b). PCA demon-
strated similarities between BA8 and BA10 in comparison with the cerebellum and frontal cortex by PC2. It also 
showed a strong difference of BA8/10 from the amygdala, caudate nucleus, and spinal cord by PC1. Heatmap 
analysis again showed similarities between BA8 and BA10 in comparison to other regions of the central nervous 
system (Fig. S6c). To further confirm whether the differential gene expression in Figs 1b and 2a was due to brain 
region, we used heatmap and volcano analysis to examine those differentially expressed genes and observed that 
less than 7% of those genes were significantly affected (Fig. S6d to g and Supplementary Table 18). These findings 
show the two regions are similar, which supports our use of BA8 and BA10 for the comparison of gene expression.

In spite of these potential limitations and confounding factors, our results provide valuable clues for iden-
tifying biomarkers and biological signatures of ASD, and increase our understanding of potential underlying 
mechanisms that contribute to the pathogenesis of the disorder. Our findings not only advance our knowledge of 
allele-specific gene and miRNA expression in ASD, but also provide the first genomic map for allele-specific gene 
and miRNA expression in human PFC. These results could also provide clues to the evolutionary development of 
allele-specific expression. In addition, therapeutic targets and strategies for brain disorders such as ASD, as well as 
those involving ASE, could be determined. This will require development and validation of a plausible pipeline for 
ASE analysis in order to identify new genetic candidates for epigenetic mechanisms related to neuropathological 
characteristics of ASD, which could serve as targets for therapies of ASE-linked neurological disorders.

Methods
Subject material.  We studied one family quartet comprised of parents and two offspring with and with-
out ASD. In addition, one family trio, comprised of parents and one fetal offspring, was examined. Additional 
post-mortem samples included one fetal frontal cortex and one adult frontal cortex and cerebellum, shown in 
Supplementary Fig. 4. We assessed prefrontal cortex tissue from the dorsorostral pole of the frontal lobe corre-
sponding to Brodmann’s area (BA) 10 for the offspring without ASD, and BA 8 for the offspring with ASD. Areas 
were based on tissue availability. Supplementary Fig. 1 and Supplementary Table 1 provides a more detailed pedi-
gree of the family quartet showing epilepsy and deafness co-occurred in both the affected and unaffected offspring 
in addition to other familial health conditions. Moreover, we assessed prefrontal cortex tissue from the fetus and 
blood from the parents of the fetus. The detailed information of this family trio is shown in Supplementary 
Table 1. The detailed information of samples used for Supplementary Fig. 4 is shown in Supplementary Table 1. 
The institutional review boards (IRBs) of the participating institutions approved all experimental protocols. All 
experiments were carried out in accordance with the approved guidelines of the IRBs of the participating insti-
tutions. Written informed consent was obtained from both parents. Human quartet samples were obtained from 
the University of Utah Autism Research Program. The IRBs of the University of Utah, Icahn School of Medicine 
and National Taiwan University approved the analyses of samples and data in this study. Human trio samples and 
samples used for Supplementary Fig. 4 were obtained from National Taiwan University Hospital. The IRBs of the 
National Taiwan University approved the analyses of samples and data in this study. All tissue was fresh-frozen 
and stored at −80 degrees.

RNA extraction and RNA sequencing (RNA-Seq).  Total RNA was extracted from postmortem PFC 
tissue using a NucleoSpin miRNA kit (Macherey-Nagel, 740971) according to the manufacturer’s instructions. 
The RNA was quantified with an ND-1000 spectrophotometer (Nanodrop Technology). The quality of RNA 
was based on the RNA integrity number (RIN) measured with a Bioanalyzer 2100 (Agilent Technology) and 
an RNA 6000 LabChip Kit (Agilent Technology). Ribosomal RNA was removed from the purified RNA with 
the Ribo-Zero Magnetic Gold Kit (Epicentre, MRZG126). Purified RNA was then amplified and prepared for 
sequencing with a SureSelect Strand-Specific RNA Library Prep Kit (Agilent Technologies, G9691A). Libraries 
were sequenced using sequencing-by-synthesis technology (TruSeq SBS Kit v3-HS, Illumina, FC-401-3001) on an 
Illumina HiSeq. 2000 (100 base pairs paired-end reads) at the Welgene Biotech Company, which generated 6 Gb 
reads of data per sample. The detailed information of RNA-Seq is shown in Supplementary Table 1.

Detection of variants.  DNA from the parents and offspring was extracted and sequenced according to 
standard whole-genome sequencing protocol. The sequencing reads were trimmed with Trimmomatic to obtain 
the qualified reads. The reads were then aligned to the human reference genome GRCh38 using BWA and pro-
cessed with SAMtools. Picard (http://broadinstitute.github.io/picard/) was implemented to mark the duplicate 
reads and exclude them from downstream analyses. The read alignments were further refined with GATK for 
local realignment of reads around known insertions and deletions (indels) and recalibration of base quality. 
GATK was also applied to call single-nucleotide variants (SNVs) and short indels. Data from SNVs were conse-
quently used to construct the haplotype scaffolds as described below. The RNA-Seq and DNA-Seq data discussed 
in this publication have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO 
Series accession number GSE98581.

Allele-specific expression analysis.  The SNV data from the parents and offspring were processed with 
VCFtools. SHAPEIT was then used to phase the SNV data with the family pedigree for building phased haplotype 
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scaffolds. To improve phasing accuracy, the information of recombination rates between SNPs was provided 
via a genetic map retrieved from The 1000 Genomes Project Phase 3. The reference panel of phased haplotypes 
belonging to Utah residents with Northern and Western European ancestry (CEU) from The 1000 Genomes 
Project Phase 3 was also applied to align SNPs between the dataset and the panel for assisting in reliable phasing. 
The information of phased haplotypes was subsequently analyzed with in-house scripts to create haploid genomic 
sequences for the parents and offspring based on the human reference genome GRCh38. For RNA-Seq analysis, 
the sequences generated were filtered to obtain qualified reads. ConDeTri was implemented to trim or remove the 
reads according to the quality score. Qualified reads after filtering low-quality data were analyzed using TopHat/
Cufflinks for gene expression estimation. The gene expression level was calculated as FPKM (Fragments Per 
Kilobase of transcript per Million mapped reads). A comprehensive analysis of the tissue using mammalian tran-
scriptome data sets suggests that a lower cutoff of FPKM = 0.3 is often justifiable therefore we applied this cutoff 
for all analysis of mammalian transcriptomes. For differential expression analysis, CummeRbund was employed 
to perform statistical analyses of gene expression profiles. For allele-specific expression analysis, MMSEQ was 
then implemented to estimate allelic imbalance and deconvolve the alignment of reads to diploid transcripts 
derived from diploid genomic sequences and Ensembl gene annotation 74 following the mapping of RNA-Seq 
reads with Bowtie. SNPs for confirming imprinted miRNAs are within primary miRNA sequence. We defined the 
sequence for primary miRNAs as the genomic locus from 500 bp upstream to 500 bp downstream of the mature 
miRNA sequence. The FPKM value is much less than from regular read analysis because only the read with SNPs 
can be used for allele-specific expression analysis.

Reverse transcription quantitative PCR (RT-qPCR).  Total RNA was extracted from the postmortem 
PFC of the offspring using a NucleoSpin® miRNA kit (Macherey-Nagel, 740971). Total RNA (10 ng) was con-
verted to cDNA and amplified by One Step SYBR® PrimeScriptTMRT-PCR Kit II (Takara, PR086A). Quantitative 
real-time PCR was performed with a StepOnePlus Real Time PCR System (Applied Biosystems). Ct values were 
generated using StepOne Software version 2.2.2. The expression level of each gene was normalized to B2M. All 
primer sequences of candidate genes were designed by Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/) and 
are shown in Supplementary Table 19.

miRNA quantification.  We extracted miRNA using a NucleoSpin® miRNA kit (Macherey-Nagel, 740971). 
Because the length of miRNA is too short to perform normal qRT-PCR, the miRNA was lengthened with a 
Poly(A) tail (Poly(A) Tailing Kit; Ambion, AM1350). The poly(A) tailed miRNA was reverse transcribed into 
cDNA with a poly(T) anchor adaptor. The miRNA was amplified and quantitated by qPCR using a specific miRNA 
forward primer and a universal adaptor primer. Information of primer sequence is shown in Supplementary 
Table 20.

Similarly, the qPCR product was too small for Sanger sequencing. Therefore, to determine the sequence, the 
amplified PCR product was inserted into a plasmid vector, and the vector was transformed into bacteria with the 
TOPO TA Cloning Kit (Invitrogen, 450071), cloned, and cultured according to the manufacturer’s directions. 
Plasmid DNA containing the inserted qPCR product was extracted with the Presto Mini Plasmid kit (Geneaid, 
PHD100). Sanger sequencing of the purified plasmid used M13-tailed primers, which can yield sequences up to 
approximately 200 bp.

Graphic representation and statistical analysis.  Heatmaps were generated with Pretty Heatmaps 
software (pheatmap package in R 3.3.2). The hierarchical clustering of heatmaps and the supplementary tables 
were measured in Euclidean distance. Micro-RNA target prediction was performed via DIANA microT-CDS 
web-based program. Pedegree was generated with Genial Pedigree Draw (www.pedigreedraw.com). Gene ontol-
ogy (GO) analysis were performed via web-based Gorilla program and miEAA program for gene set enrichment 
analysis (GSEA) adapted for miRNA. Statistical analysis and graphic illustrations were performed using R 3.3.2 
and Sigmaplot 13.0. All values with technical triplicates are expressed as the mean ± standard error of mean 
(s.e.m.).

Data availability statement.  All data are available in this manuscript.
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