
1SCIENTIfIC Reports |  (2018) 8:4311  | DOI:10.1038/s41598-018-22489-1

www.nature.com/scientificreports

Intensify3D: Normalizing signal 
intensity in large heterogenic 
image stacks
Nadav Yayon 1,2, Amir Dudai2,3, Nora Vrieler   2,3, Oren Amsalem 2,3, Michael London 2,3 & 
Hermona Soreq   1,2

Three-dimensional structures in biological systems are routinely evaluated using large image stacks 
acquired from fluorescence microscopy; however, analysis of such data is muddled by variability in 
the signal across and between samples. Here, we present Intensify3D: a user-guided normalization 
algorithm tailored for overcoming common heterogeneities in large image stacks. We demonstrate the 
use of Intensify3D for analyzing cholinergic interneurons of adult murine brains in 2-Photon and Light-
Sheet fluorescence microscopy, as well as of mammary gland and heart tissues. Beyond enhancement 
in 3D visualization in all samples tested, in 2-Photon in vivo images, this tool corrected errors in feature 
extraction of cortical interneurons; and in Light-Sheet microscopy, it enabled identification of individual 
cortical barrel fields and quantification of somata in cleared adult brains. Furthermore, Intensify3D 
enhanced the ability to separate signal from noise. Overall, the universal applicability of our method can 
facilitate detection and quantification of 3D structures and may add value to a wide range of imaging 
experiments.

Fluorescence microscopy once relied on single plane images from relatively small areas, and yielded lim-
ited amounts of quantitative data1. Nowadays, many imaging experiments encompass some form of depth or 
a Z-stack of images, often from distinct regions in the sample. Hence, much like biochemical and molecular 
experimental datasets2,3, accurate normalization, beyond background subtraction4 of imaging signals, could 
reduce tissue-derived and/or technical variation. Signal heterogeneity often arises from sample-specific factors 
(e.g. excessive blood vessel absorbance in live imaging, or non-uniform tissue clearing/antibody penetration 
in fixed tissues). These elements combined with imaging distortions and illumination gradients contribute to 
non-uniformity both within and across image stacks and may lead to erroneous conclusions. Such heterogeneity 
is exacerbated the larger the imaged structure and it often limits the ability to perform downstream applications 
such as feature extraction, threshold-based detection, co-localization, three dimensional (3D) rendering, and 
image stitching. Standard filtering as well as total image correction tools that construct a mathematical model 
based on multiple single plane images5–7 may excel at improving specific types of shading or microscopy distor-
tions. However, they do not account for differences that arise from sample specific factors and are sub-optimal 
when signal-to-noise ratios, imaging conditions, and pixel distributions vary in a location-dependent manner 
– a typical property of 3D imaging. Specialized image processing tools for brain datasets have been designed 
to correct signal homogeneity but are limited to a specific use (e.g. somata detection)8,9. Moreover, modern 3D 
image datasets are acquired using advanced imaging modalities10–12 and are based on novel sample preparation 
techniques13–18, some leaning on open source analysis tools19,20. Specifically, 2-Photon (2P) and Light-Sheet (LS) 
microscopes enable the acquisition of images from both deep and wide tissue dimensions (Fig. 1a,c, left panel). 
However, every biological sample and imaging technique introduces its own acquisition aberrations: beyond 
mirror and lens distortions21, the imaged preparations combine different characteristics (of e.g. cell density and 
lipid composition) that affect the optical penetration and light scattering at diverse tissue depths. Experimental 
limitation (antibody penetration, clearing efficiency) also constrain the ability to extract information from imag-
ing experiments. Taken together, these difficulties call for the development of universal post-acquisition image 
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correction/normalization tools that account for signal-carrying pixels and which estimate the specific heteroge-
neity of each image individually.

To achieve 3D normalization, we developed a new algorithm, Intensify3D (Fig. 1b), based on the following 
basic assumptions: (1) In the “perfect imaging experiment”, the intensity distribution of the background would 
have been similar throughout the imaged region; to achieve this quality, differences in background intensity 
distribution should be corrected by Intensify3D. (2) In many microscopy images, the fraction of signal-carrying 

Figure 1.  The basic normalization process of Intensify3D for 2-Photon and Light-Sheet 3D imaging (a). Left 
panel. 2-photon imaging setup illustrating the decay in excitation laser (red) and emitted light (green) through 
the imaged tissue. Red frame, middle panel. 3D projection of In vivo 2-photon Z-stack of CChIs up to 300 µm 
depth, bottom portion is deeper. Green frame, right panel. 3D projection of image stack post normalization with 
Intensify3D; note the enhanced visibility of deep neurites (b). Intensify 3D processing pipeline for 2-Photon and 
light sheet image stacks. The latter requires an additional step to only account for tissue pixels in the image. The 
images in the stack are normalized one by one (XY normalization). After all the images are corrected the entire 
stack is corrected (Z Normalization) by semi-quantile normalization (other options exist) (c). Left panel. Light-
Sheet imaging setup where the excitation light is orthogonal to the imaged surface. Red frame, middle panel. 
iDISCO immunostaining and clearing of CChIs as well as striatal Cholinergic interneurons. Original image 
suffers from fluorescence decay at increasing tissue depth. Green frame, right panel. Intensify3D Normalized 
image stack. Images before and after normalization are presented at the same brightness and contrast levels.
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pixels is significantly smaller than that of the background pixels. Moreover, signal-portraying pixels are often 
sparse and variable across the imaged region, while some images in an image stack might not contain a signal 
at all. On the other hand, background pixels are (by the assumption above) numerous and exhibit a continuous 
pixels histogram (often following a Poisson22 distribution), allowing accurate assessment of quantiles. Leaning 
on these features, Intensify3D aims to detect and use the background for correct normalization of the signal. 
Consequently, our normalization algorithm initiates with an estimation of the background by removing as much 
as possible of the imaged signals. Then, the background intensity gradients are used for correction by local trans-
formation (correction by division) of both signal and background, without compromising the signal-to-noise 
ratio (Fig. 1a,b).

Intensify3D stack normalization: methodological outline
We selected 2 P in vivo brain images harboring fluorescently labeled Cortical Cholinergic interneurons23 (CChIs), 
which present with challenging complexity and diversity, to demonstrate our capacity to reach enhanced signal 
uniformity across the entire 3D space. Our correction process employs two input parameters that are determined 
by the user and represent the imaged signal: (1) Maximum background intensity (MBI), which stands for the 
highest pixel value of the background in a selected image stack. (2) Spatial filter size (SFS), which should be deter-
mined based on the largest element in the signal and preferably be at least twice the size of a typical imaged struc-
ture (Supplementary Figs S1 and S2a). Based on the MBI, Intensify3D automatically assigns a matching value to 
the entire image stack (Supplementary Fig. S2b). Initially, each image in the stack is normalized separately across 
the XY dimensions. To generate an accurate representation of the image background, the signal carrying pixels 
are deleted by applying a threshold (MBI) and replaced by values presenting similar distributions to that observed 
in the rest of the image (Supplementary Fig. S2c). Next, a background mask image is created by a Savitzky-Golay 
spatial filter (SFS), further removing features of the signal from the mask image while preserving general intensity 
gradients in the background (Supplementary Fig. S2d, middle panel). Note that larger values of SFS will result 
in normalization of larger scale gradients in background intensity while ignoring smaller spatial changes. After 
the mask image is generated, it is used for normalization by division: the value of each pixel I(x) in the original 
image, I, is divided by the value of the corresponding pixel in the mask image, M, to produce a corrected image, N 
(For every pixel x, N(x) = I(x)/M(x)) (Supplementary Fig. S2d). The corrected image is then standardized to avoid 
artificial “overexposure” due to normalization. Finally, for normalization across the imaged stack, Intensify 3D 
offers 3 types of Z normalization: (1) Upper quantile normalization, which shifts the intensity histogram of each 
image so that the upper quantile (based on MBI) would match across the entire stack (Supplementary Fig. S3a). 
(2) Contrast stretch normalization, which fits the intensity histogram to two intensity quantiles (tenth percentile 
and upper quantile) through linear interpolation (Supplementary Fig. S3b). (3) Semi-quantile normalization, 
which matches all image quantiles up to the upper quantile across the stack. Based on the transformation of the 
quantiles, pixels higher than the upper quantile are corrected through contrast stretch (Supplementary Fig. S3c). 
Semi-quantile normalization achieved the best results in terms of homogeneity of both background and signal 
throughout the stack. (Figure 1a,c, Green frames).

Addressing background complexity
For cases where the imaged sample does not occupy the entire image (Fig. 1c), Intensify3D includes an option 
to automatically detect the area of the tissue (Supplementary Fig. S4) and thus avoid normalization of irrelevant 
areas (e.g. imaging media) of the image. This feature is especially important when the relative size of the tissue 
section changes dramatically across the stack, as is often the case with Selective Plane Illumination Microscopy 
(SPIM) of large tissue samples (e.g. brain, heart). The automated detection option is based on principal compo-
nent analysis (PCA) followed by either the application of a Gaussian mixture Expectation Maximization (E.M.) 
algorithm or K-means clustering to detect pixels that belong to the tissue. This step minimizes possible normal-
ization artifacts due to media/tissue borders across the stack and accounts for changes in tissue size across the 
stack.

Supplementary Fig. S1 presents a MATLAB graphical user interface (GUI) manual for using Intensify3D.

Results
To challenge the value of the Intensify3D normalization algorithm, we used in-house data from 2P and LS brain, 
mammary gland, and heart image stacks as well as simulated data. These represent distinct types of modern 
imaging platforms that are used for both visualization and quantification analyses and produce vast 3D data that 
can gain substantial additional value when normalized. Notably, each of these techniques introduces its own 
constraints both at the step of sample preparation and during the imaging process (detailed below); and our tool 
comes to correct both of these aspects.

Correction of in vivo 2-Photon imaging data facilitates accurate neurite detection and meas-
urements.  In a typical 2P brain imaging experiment, a cranial window is opened in the mouse skull and the 
gap between the objective lens and the surface of the brain is filled with a water-based medium (external buffer or 
gel). 2P excitation is achieved through a tunable near infra-red pulsed laser, and the emitted fluorescence is split 
by filtering the image through green and red light filters, yielding split signals that are detected by photomultiplier 
tubes (PMTs)24. However, both the excitation light and the emitted light are subject to depth-dependent scatter-
ing; therefore, the excitation gradually becomes less efficient, which limits the power of detection with increasing 
depth despite the same amount of power being used. In addition, the detected photon emission is diminished 
accordingly, which leads to signal decreases both in intensity and in resolution (Fig. 1a, left panel). Another 
source of inhomogeneity comes from the different reflective indices of diverse biological materials; for example, 
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blood vessels absorb red light more than the surrounding tissue24. Thus, both the tissue and the imaging technol-
ogy cause distinct difficulties, each of which needs correction to achieve appropriate normalization.

The membrane composition, dendritic and axonal dimensions, and the morphology of neurons together 
determine their function25–27, making accurate assessment of a neuron’s structure crucial to understanding the 
scope of its performance. Cortical cholinergic interneurons (CChIs)23 provide an intriguing example of a neu-
ronal population with functional complexity28. To access this specific neuronal population, we used mice that 
endogenously express a red fluorescent protein (ChAT_Cre X loxp_stop_loxp_tdTomato) in all cholinergic neu-
rons. We then acquired 2P image stacks through a cranial window in an anesthetized mouse, with the same laser 
intensity across all depths (30 to 300 µm) (see Methods). Applying the Intensify3D normalization algorithm on 
this image stack added ample details to the observed structures without compromising their basic features. This is 
demonstrated by homogeneous image statistics, represented by the median and mean values across stack depths 
(Fig. 2a and Movie 1). To estimate the difference between pre- and post-normalization images for feature extrac-
tion capabilities, we reconstructed neurons from original and corrected image stacks by a “blind” experimenter 
using a semi-automated reconstruction tool (Vaa3D, Allen Institute)29 (Fig. 2b). This reconstruction highlighted 
considerable increases in the numbers and complexities of deep neurites (Fig. 2c). It further presented superior 
uniformity of dendritic diameters (automatically assigned by the reconstruction software) between deep and 
superficial dendrites (Fig. 2d), compatible with the known features of this class of bipolar cortical interneurons23. 
The apparent depth-dependent variability of dendritic diameters in the original 2P Z-stack is therefore mislead-
ing, and Intensify3D corrects this erroneous depth dependent profile of the normalized stack which is consistent 
with the actual situation30 (Supplementary Fig. S5). Our algorithm thus expanded the capacity to detect and 
reconstruct deep neurites while maintaining their spatial characteristics and correcting 3D microscopy errors.

Normalized Light Sheet microscopy images enable precise identification of anatomical macro- 
and microstructures.  Aside from the difficulties of imaging deep details of cellular features, normalizing 
microscopy image stacks is often confronted with large scale imaging variability. We addressed this issue using 
Light Sheet (LS), or Selective Plane Illumination Microscopy31 (SPIM). LS microscopy differs fundamentally from 
confocal and 2P imaging in that the excitation involves a single sheet-like beam that is projected orthogonally 
to the acquisition objective, and in that the image is captured by a CMOS camera instead of the scanning laser 
in 2P12. This offers a powerful capacity for preparing multiple micrographs from vast areas of transparent tissue 
samples in a short time, while avoiding damage to tissue preparations. However, this technology also involves a 
major challenge in achieving equal penetration efficacy of the light beam through the specimen as well as of anti-
body penetration if used in combination with immunostaining. Reflections, deflections, and diffractions caused 
by differences in the intrinsic characteristics of the tissue (e.g. white vs. grey brain matter, cavities, etc.) as well as 
from the angle at which the light enters the tissue may additionally distort the signal in a plane-specific manner 
and result in non-homogeneous excitation.

Extraction of accurate barrel field anatomy from auto-fluorescent LS scans.  To test the capacity 
of Intensify3D to overcome difficulties at the macro scale level, we selected the cortical barrel fields which may 
be visualized in the auto-fluorescent channel of cleared hemi-brain iDISCO preparations20. Barrel fields present 
an intriguing example of a spatially defined, cortical processing unit capable of experience-dependent rewiring32. 
Recent studies have shown the importance of precise mapping of neuronal types in a single barrel column33 and 
the effect of this anatomical diversity on network activity patterns34. Thus, the identification of individual barrel 
fields is crucial for studies focused on this region. Figure 3 presents an LS scan in the auto-fluorescent blue/green 
excitation emission spectrum of cleared mouse hemisphere samples prepared with the iDISCO+ method. Such 
scans may provide ample information regarding diverse neuroanatomical macrostructures13 (e.g. white and grey 
matter, barrel cortex composition, hippocampus areas, blood vessels, etc.) without external fluorescent labeling. 
However, this type of signal is inclined to photo bleaching and suffers from massive changes in intensity along the 
path of the LS beam through the tissue (Fig. 3a,b top panel). This poses a challenge when attempting to select a 
threshold to separately identify elements within the tissue or between the tissue and the imaging media.

At the single image level, Intensify3D corrected for intensity differences in the XY dimensions (Fig. 3b). Such 
corrections resulted in a shift in intensity of pixels (Fig. 3c, black curved arrow) of the tissue but not the media 
background due to automated tissue detection (Supplementary Fig. S4). In post-normalization images, a simple 
threshold could then differentiate between the distinct anatomical features within the tissue (Fig. 3c, Movie 2). 
However, in addition to the X and Y dimensions, the original image stack showed substantial differences in 
intensity between different scans along the Z-axis. In our example, this was probably due to grooves in the surface 
of the tissue (Fig. 3d, arrows, Movie 2), which became more apparent after applying a threshold in an attempt 
to separate between distinct barrel structures (Fig. 3d, orange box - green region). Consequently, our correction 
contributed to improved homogeneity also along the Z-axis, allowing the selection of a single threshold by which 
each of the barrel structures could be effectively separated from the background around them. After 3D render-
ing (ImageJ, 3D viewer)35, all of the principal barrels36 were clearly identified and could be numbered (Fig. 3e, 
Movie 3), further offering the option of testing and comparing their structural features individually for compara-
tive analyses of different experimental samples.

Correction of antibody and light penetration with Intensify3D facilitates accurate soma detec-
tion and quantification.  The power of the LS microscope effectively comes into play when combined with 
tissue clearing techniques. The ability to acquire microscale morphologies and cellular distributions in a pre-
served macroscale tissue within a short time is unique to this technique. The iDISCO technique offers superb 
clearing power and the ability to immuno-stain desired targets and use far-red fluorophores that are superior 
in terms of interference by auto-fluorescence (Fig. 4a). Nevertheless, variabilities in LS laser efficiency and 
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Figure 2.  Intensify3D normalization of 2-Photon imaging data corrects and facilitates the reconstruction of 
CChIs (a). Orthogonal projections of 3D rendered image stacks before (left) and after (right) normalization. 
Images are shown together with mean (red) and median (green) relative fluorescent units values across all imaging 
planes. Note the homogeneous average and median intensity levels post-normalization. Horizontal and vertical 
scale bars represent 25 µm. For presentation purposes, the z dimension is smaller than x and y dimensions (b). 
Semi-automated reconstructions of the 2 CChIs (A and B) image stacks above, before and after normalization. Side 
boxes present the directions of view (c). Top view of the deeper portion (red and green frame) of reconstructed 
CChIs. Red arrows mark deep dendrites that were detected in the normalized, but not the pre-normalized 
reconstruction; orange arrow represents the reciprocal dendrites (d). Comparison of the diameter of deep to 
superficial (blue to red gradient represents Z depth) neurites as a function of distance from the soma. This analysis 
is based on the reconstructions of both CChIs. Notice that pre-normalization deep dendrites (black rectangles) 
seem smaller in diameter compared to superficial ones of similar somatic distance. In comparison, post-
normalization dendrites show similar diameters to superficial dendrites of similar somatic distance. Illustration of 
lens and red excitation light illustrates the direction of illumination and decay of light as a function of depth.
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Figure 3.  Auto-fluorescence Light-Sheet image normalization reinforces the iDISCO 3D detection of barrel 
fields (a). Imaging setup of cleared brain samples with a LS microscope. The LS blue excitation illumination plane 
is perpendicular to the filtered CMOS camera (b). A single representative sagittal scan. Shown is the blue/green 
excitation emission spectrum of cleared mouse hemisphere samples before (red frame) and after normalization 
(green frame) (c). Relative (matched minimum/maximum values) pixel intensity histograms of images before and 
after correction. Note the post-normalization shift of pixels (black curved arrow) that corresponds to tissue and not 
to background pixels (d). Pre- and post-normalized image stacks perpendicular to imaging plane, see orientation 
illustration. Pre-normalization image stack shows decreased intensity due to grooves in the tissue surface (white 
arrows) as well as along the path of illumination (down). Orange rectangle region emphasizes the barrel cortex 
region. After applying a threshold (pixels below threshold removed), a 3D region around the barrels was selected 
(green region) for 3D rendering (FIJI) (e). 3D rendering of barrel fields before and after image normalization. 
Annotation for barrels marked in red, the green mesh labels the region of interest. Scale bars are 1 mm.
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Figure 4.  Intensify3D enables accurate detection and quantification of CChIs in deep cortical layers (a). 
Imaging setup of LS microscope. A z stack 1mm deep was acquired by far red excitation/emission LS scan 
of a iDISCO full cortical perpetration (b). Z projection of 250 images showing the CChIs as well as striatal 
cholinergic interneurons. Orange frame highlights the CChIs. Note the decay in background fluorescence 
with tissue depth in original image stack enhanced visibility and homogeneity of deep dendrites of CChIs in 
corrected image stack (green frame) (c). Representative enlarged region overlaid by results of soma detection 
analysis (yellow dots and red numbers) (d). Soma detection analysis (Fiji, See Methods). Mutually detected 
somata (from original and corrected image stacks) show a decrease in intensity (Pearson correlation R = −0.76, 
P < 1 × 10−30) and a wide distribution (red histogram). The somata intensity in corrected image stacks shows 
no correlation with cortical depth ((Pearson correlation R = 0.063, P = 0.42) and a narrower distribution (green 
histogram). All scale bars are 50 µm.
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antibody penetration efficacy both contribute to heterogeneities in the signal (Fig. 1c, left panel). Thus, choliner-
gic interneurons that are sparsely distributed within cortical layer 2/3 are easily visualized in this technique, but 
assessing their numbers, locations, and morphologies within cleared brain samples is confronted with in-depth 
limitations (Fig. 4b, top panel).

To test the capacity of Intensify3D to correct LS images for microstructure analysis we used the iDISCO 
method on cortical tissues of mice where all cholinergic neurons express a red fluorophore and stained these 
cells with a far-red dye. We imaged a 0.8 × 1 mm area of the cortex and applied Intensify3D with automated 
tissue detection. Post-normalization images showed superior uniformity of imaged neurons, enhancing neu-
ronal morphologies (Fig. 4b, bottom panel). Finally, we applied an open-source analysis tool (Fiji, 3D object 
counter)37 to detect the somata of the CChIs and measured the distance of each soma to the cortical surface. 
Detected somata from original image stacks showed declining soma intensities as a function of cortical depth, 
most likely as an effect of decreased penetration of light and/or staining antibody. This reduction has been cor-
rected with images normalized by Intensify3D (Fig. 4c,d). Specifically, the somata intensities in corrected image 
stacks showed no correlation with cortical depth (Pearson correlation R = 0.063, P = 0.42.) and a narrower distri-
bution (Fig. 4d). Our analysis tool thus enabled correct assessment of both the site and density of these neuronal 
populations at variable tissue depths.

Intensify3D restores distorted artificial 3D data and facilitates quantification of detected 
spheres.  To supply controlled estimates of the performance of intensify3D we created an artificial image of 
randomly scattered 3D spheres. The artificial data is composed of ~500 Gaussian spheres with an artificial point 
spread function and an added background and Gaussian noise (Fig. 5a). We then applied the following intensity 
gradients to the 3D image: (1) Linear along the X axis. (2) Linear along both X and Y. (3) Logarithmic along the Z 
axis, and finally (4) Combined linear along X and Y together with a logarithmic gradient along the depth axis-Z. 
We corrected each distortion with either Intensify3D or CIDRE6 (Fig. 5b). Intensify3D managed to restore the 
shape and pixel proportion in all cases without showing any visible artifacts in the corrected data (Fig. 5b, red 
histograms). In comparison, images corrected with CIDRE displayed “black spots” in the background, probably 
due to interference from the signal. Finally, we estimated the correction by applying the 3D object counter func-
tion (FIJI)19 to detect and measure the spheres compared to the original undistorted data (Fig. 5b, Blue frame). 
Intensify3D performed better than CIDRE in all cases. Predictably, CIDRE did not account for changes in depth 
(Z gradients) since it is not designed for 3D analysis (Fig. 5c). Also, we selected the true positive spheres from 
both uncorrected images or those corrected by Intensify3D or CIDRE, and estimated the difference between 
original and corrected data (Mean absolute error). Again, correction with Intensify3D produced the lowest scores 
in all conditions (Fig. 5d).

Intensify3D is applicable for a large range of biological tissues.  To test the ability of Intensify3D 
in normalizing a variety of biological imaging datasets we chose two well-described complex structures: (1) the 
mouse mammary milk ducts and terminal end buds38 and (2) the mouse heart39. Both samples were cleared with 
the iDISCO technique and imaged with a LS microscope in the auto-fluorescent channel as described above. The 
heart sample showed impressive uniformity across the imaged tissue, allowing classification of the major heart 
arteries and ventricles (Fig. 6a, upper panel). Notice the correction of dark frames along the imaging path (Fig. 6a, 
middle panel, red arrows). Likewise, mammary milk ducts post-correction presented enhanced features, enabling 
detection of distal ducts and buds with the same threshold (Fig. 6b).

Discussion
When the neuroscience pioneers –Santiago Ramón y Cajal, Camillo Golgi, and Alois Alzheimer, to name a few – 
drew beautiful neuronal structures based on their basic microscopes, they likely overcame image inhomogeneity 
and imaging limitations with the help of a keen eye and much experience. Today, manual drawings and descrip-
tive microscopy have been replaced by high resolution, large scale data which call for accurate quantification; 
moreover, signals that seem clear by eye do not always translate well to the downstream computerized tools. 
To address these difficulties, we developed and tested a post-imaging normalization tool in two state-of-the-art 
imaging platforms, and demonstrated that it can overcome common sample heterogeneity in large image stacks 
using both of these technologies and correct significant dataset errors. Specific advantages of our algorithm 
include its capacity to distinguish between the signal and background with minimal parameters defined by the 
experimenter, and avoiding distorting one at the expense of the other, as well as enabling applicability to various 
imaging platforms. The resulting avoidance of imaging errors and improvements in signal homogeneity are there-
fore an important asset for fluorescence microscopy imaging studies of all cells and tissues, especially in the brain.

2-photon imaging.  Numerous microscopy studies require viewing large fields while maintaining high res-
olution and keeping the accuracy of microstructures. Furthermore, enabling accurate semi- or fully-automated 
reconstruction of microstructures from large image stacks is a prerequisite for a number of ambitious research 
efforts, including the Blue Brain project40 and the BigNeuron initiative41. In this context, we challenged the use of 
our Intensify3D tool by analyzing 2P microscopy image stacks of adult mouse brains with fluorescently labeled 
cortical cholinergic interneurons23. Intensify3D normalization enabled homogenous representation across the 
entire image stack. Additionally, Intensify3D corrected significant errors in the estimation of deep dendrite diam-
eters. Thus, normalized images offer a better representation of both imaged cell bodies and their thin extensions 
and serve as a superior platform for reconstructions and possibly modeling of the electrical properties of these 
neurons. Hence, this algorithm may offer a special added value to world-wide leading brain research projects.

Light-Sheet imaging.  Large scale imaging of cleared tissues with a Light-Sheet microscope is a rapidly 
expanding field13,15,17,42. The shapes, dimensions, and locations of cortical barrel fields are critical for studies in 
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Figure 5.  Intensify3D restores distorted artificial 3D data and facilitates quantification (a). 3D rendering 
of undistorted artificial 3D image stack of ~500 Gaussian spheres. Image stack dimensions – X Y Z: 
600 × 600 × 500 pixels (b). Representative image (Z = 50) of undistorted image stack (left bottom) and distorted 
image stacks before and after correction with Intensify3D or CIDRE. All images are presented at the same 
minimum/maximum brightness levels. Outline of intensity histogram for the undistorted image (red curve) 
is overlaid on top of black filled intensity histograms for each of the individual images (left bottom corner) (c). 
ROC space for true/false positive detection rates by 3D object counter plugin (FIJI) on distorted data (crosses), 
Intensify3D (filled circles) or CIDRE (empty circles) corrected. Performance is in comparison to undistorted 
data (d). Relative mean absolute error for measured statistics of true positive spheres for distorted data, 
Intensify3D or CIDRE corrected. Performance is in comparison to undistorted data. Each row was corrected so 
that the minimal error is 1.
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the mouse somatosensory cortex, as well as for neurodevelopmental studies. For example, the barrels are notably 
altered following sensory deprivation during adolescence36, but the scope and significance of these changes in 
individual barrels remain largely unknown. Appling Intensify3D on LS data obtained from cleared adult mouse 

Figure 6.  Correction of SPIM Imaging of mammary gland ducts and heart anatomy (a). Correction of a cleared 
iDISCO heart with intensify3D. 3 views (top, middle and bottom panels) of 3D rendering (ImageJ) based on 
whole mount mouse heart before (red frames) and after (green frames) correction. Aorta (red star), pulmonary 
artery (PA), left atrium (LA), right atrium (RA), right ventricle (RV), left ventricle (LV) and ventricular septum 
(VS) are marked. Scale bar represents 1mm in all views (b). 3D rendering based on whole mount imaging 
of cleared mouse mammary gland ducts before (red frame) and after (green frame) normalization with 
Intensify3D. Scale bar presents 150 µm. Left and right panels are matched in brightness and contrast.
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brains dramatically improved the detection and visualization of the barrel fields, indicating its applicability for 
such studies. At the microscale, we demonstrated that post-normalized scans of detected CChIs somata represent 
their real-life density, distribution, and composition compared to original scans, highlighting the importance of 
image normalization. Finally, to test the applicability of Intensify3D to diverse tissues we selected the mammary 
gland and heart, both of which present considerable challenges. We showed that with normalization we could 
extract the morphology of the milk ducts and buds by “simple” auto fluorescence. The heart is a complex organ 
composed of spaces and cavities that challenge imaging with a LS microscope. While this tissue challenged our 
tissue detections algorithm, the heart post-normalization showed superior uniformity, further strengthening the 
claim that images post-normalization represent the “real situation” better than uncorrected images. This predicts 
future use of the Intensify3D algorithm also for comparative studies that pursue dynamic changes in micro- and 
macrostructures, both in the brain and in other organs.

Artificial data.  Finally, to test the effects of normalization in a well-controlled milieu, we created an artificial 
data set of spheres in 3D and applied 4 types of distortions. Intensify3D managed not only to correct all of these 
distortions without adding any visible artifacts, but was also able to restore the data to the original intensity histo-
gram in all cases (Fig. 5b). Moreover, correction empowered 3D object detection (Fig. 5c) and restored the basic 
statistics of the detected spheres (Fig. 5d). These results indicate that Intensify3D managed to correct both linear 
and logarithmic gradients across all 3 dimensions combined, and achieved it while preserving signal-to-noise 
ratios.

General considerations.  Notably, the definition of a “signal” primarily depends on the research question, 
and is subjective. Hence, applying a different size of the spatial filter (SFS), or selecting different maximum back-
ground intensity (MBI) levels will illuminate different structures in the resultant image; setting MBI too low 
will result in background regions of the image that will remain uncorrected, whereas combination of a high 
MBI with a small SFS will likely “correct” signal pixels and result in loss of information. In this context, any nor-
malization process, if done carefully, can reduce signal variability. However, if the normalizing parameter (e.g., 
“housekeeping” gene, total protein concentration, RNA-seq or image background) is selected based on erroneous 
predictions, the correction process itself might introduce artifacts and mask information. For example, in cases 
where significant regions of the image are occupied by signal pixels, the normalization process would be com-
promised since the background in these regions will not be assessed correctly. For Intensify3D, errors might also 
occur if the background of the image is intrinsically different in intensity in one region of the stack as compared 
to another; for example, between different tissue types. Thus, making the basic decisions and defining the intrinsic 
assumptions of this tool is critical for achieving accurate normalization of microscopy signals based on back-
ground features. Another limiting factor comes from the attempt to “clean out” the signal from the image. Adding 
a machine learning approach may provide a more sophisticated way to improve finding of the signal-carrying pix-
els over the current selection, which is based on the definition of basic threshold and size filters. Lastly, the issue 
of normalization between images (along the Z axis) is not trivial. Because of the intrinsic differences in resolution 
between XY and Z in both SPIM12 and 2P11 point spread functions and the fact that Z step size is arbitrary, we 
treat each image as a separate data sample. To best match these data samples, we offer 3 types of between-image 
normalization: (1) The option of upper quantile normalization multiplies all of the pixels in an individual image 
by a constant (different for each image) so that the MBI value will match across the entire stack. This option 
will simply shift the intensity histogram but will not correct for any differences in the background histogram 
distribution (Fig. S3a). (2) Contrast stretch normalization linearly transforms each image in the stack so that the 
lower quantile (10th) and upper quantile values will match for the entire stack. This normalization will correct 
for differences in the “spread” of the intensity histogram (Fig. S3b). (3) Intensify3D records 10,000 quantiles from 
each image to precisely account for the intensity histogram of the background and signal which often occupies 
a very small number of pixels (<1%). Semi-quantile normalization will fit all the image quantiles lower than the 
upper quantile to match across the stack. From the upper quantile and above, the pixels will undergo the contrast 
stretch correction, assuming that these are the main fractions of pixels belonging to the signal. This normalization 
assumes that the background “behaves” similarly throughout the stack and that the differences observed should 
be corrected (Fig. S3c). Finally, there is the option not to correct across the depth of the stack but only by XY 
dimensions.

Conclusions
Our current findings and analyses demonstrate that the Intensify3D tool may serve as a user-guided resource, 
correct sample- and technology-driven variations, improve the reproducibility, and add extractable information 
to numerous imaging studies in neuroscience research as well as in life sciences at large.

Given these advantages, we hope that our work will open an active discussion on matters of image normal-
ization. We believe that image normalization has an integral role in any imaging experiment where numerical 
data is extracted. As in other fields of life sciences, normalization reduces variability between samples even when 
the experimental conditions are superb. Finally, Intensify3D might further be of value to time lapse fluorescence 
imaging platforms such as time lapse structural imaging43,44 or calcium imaging45,46 in which the fluorescence of 
the imaged sample is often compromised during imaging.

Materials and Methods
Mice.  Two months old B57/B6 progeny mice derived from a cross of as loxp-stop-loxp-tdTomato (Ai14 - Stock 
No. 007914, Jackson Laboratories) with ChAT-IRES-Cre mice (Stock No. 018957, Jackson Laboratories) were 
employed.
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Ethics statement.  All experiments were approved by the institutional animal care and use committees 
of The Hebrew University of Jerusalem (NS-15-14344-1, NS-13-13578- 4) which follow the National Research 
Council (US) Guide for Care and Use of 16 Laboratory Animals. All experimental protocols were approved by 
the University Ethics Committee for Maintenance and Experimentation on Laboratory Animals, The Hebrew 
University, Jerusalem, Israel.

Microscopy.  2 photon microscope: A Custom built 2 Photon Microscope, with excitation of 1050 nm and a 
25x lens was used for in vivo imaging of CChIs. Imaging was driven by MScan software (Sutter Instruments, CA). 
Stacks of full-frame images (512 × 512 pixels) were acquired in Z steps of 1 µm. Each stack frame was an average 
of 5 images. CChIs Image stack is 271 µm in total depth (~30 µm from surface to 300 µm).

A La-vision Light-Sheet microscope ultra-microscope II (LaVisionBioTec) operated by the ImspectorPro 
software (LaVision BioTec) with Zoom body (Olympus) 0.63–6.3× lens situated with a Dipping cup LV OM 
DCC20 Dipping Cap [5.7 mm] including correction optics. Images were acquired by an Andor Neo sCMOS 
camera (2,560 × 2,160, pixel size 6.5 µm × 6.5 µm, Andor) in 16bit.

Cleared brains and tissues: Samples were attached with epoxy glue to the sample holder and placed in an imag-
ing chamber made of 100% quartz (LaVision BioTec). The light sheet was generated by a Superk Super-continuum 
white light laser (emission 460  nm–800 nm, 1 mW/nm – 3 (NKT photonics)). Barrel cortex imaging was done 
at 2× magnification, 10 µm step size and blue excitation filter (peak – 470 nm/width − 40 nm) and a green emis-
sion filter (525/50). Mammary gland imaging was done with 2x magnification 10 µm step size (150 images), blue 
excitation filter (peak – 470 nm/width −40 nm) and a green emission filter (525/50). Heart tissue was imaged 
in 0.8x with 5 µm step size (800 images). For CChIs, imaging was done at 5x magnification, 1 µm step size (later 
down sampled to 4 µm per image with Image J size adjust interpolation) and a far-red excitation (640/30) and 
emission filter (690/50).

Procedures.  In vivo 2-Photon.  For the in vivo 2-Photon experiments, we administered mice with Rymadil 
analgesia (200 mg/kg body weight, 200 µl injection volume). Anaesthetized mice were put in a stereotactic frame 
(Narishige, Japan) and a small craniotomy (3 mm in diameter) was made over the right barrel cortex (2 mm cau-
dal, 3 mm lateral to Bregma); dura was not removed. A 3 mm glass window was implanted over the craniotomy 
and sealed with VetBond (3M). CChIs were imaged through the cranial window. ChAT-IRES-CreXAi14 mice 
were anaesthetized with isoflurane (1–2% by volume in O2 LEI medical). Anaesthetized mice were euthanized 
by cervical dislocation.

iDISCO clearing and staining.  For the iDISCO-cleared brain experiments as well as mammary and heart, 
ChAT-IRES-CreXAi14 mice were anaesthetized with isoflurane (1–2% by volume in O2 LEI medical), admin-
istered with an intra-peritoneal injection of 200 mg/kg sodium pentobarbital. Following trans-cardial perfusion 
with 1xPBS solution and then 10% Formaldehyde in 1xPBS solution, the mouse brains, mammary gland, and 
heart were collected and used for iDISCO clearing as described13. For staining of the tdTomato expressing cells 
we used an anti-RFP antibody (Rockland, 600-401-379) followed by Alexa-647 conjugated Donkey anti-Rabbit 
secondary antibody (Jaxson immunoResearch, 711-605-152), following manufacturer’s instructions.

Software.  Normalization tool and graphical user interface were designed with MATLAB (Simulink). 3D image 
rendering was done using the FIJI (ImageJ), 3D viewer plugin. Neuronal reconstruction was performed in 
Vaa3D (Allen Institute) by N.V. in a “blind manner”. Neuronal diameter analysis was done with NEURON (Yale). 
External MATLAB and ImageJ scripts that were used in the algorithm are detailed under Supplementary Table 1. 
Detailed instructions, source code and standalone files are accessible at GitHub repository - https://github.com/
nadavyayon/Intensify3D and in Supplementary Fig. S1. Example data sets and movies are also available via 
Google Drive link published in the GitHub repository as well.

System requirements.  The normalization algorithm could potentially run on any operating system, since the use 
of memory or CPU power mainly depends on the size of the images and on parallel processing. In the user GUI, 
one can select the number of cores to use. Using more cores may enable simultaneous processing of more images, 
which will be faster but requires more memory. Users who do not possess an active MATLAB License can use the 
standalone version which requires an additional download of Free MATAB library files (500–700 MB depending 
on operating system). To conserve RAM memory, the basic statistics of each image (quantiles or mean intensity) 
are logged and then used for quantile or mean-based normalization across the image stack. Normalized images 
are then saved in a separate folder as an image series. To cope with large data sets, the algorithm takes advantage 
of MATLAB parallel processing (controlled by the user) and simultaneously corrects multiple images in the stack 
given that the RAM memory is sufficient. For memory conservation purposes, the estimated tissue region is saved 
in a form of a support image in a distinct folder. Using a standard PC with a core i7-4930 K and 64 gb of RAM −7 
images of size 512 × 512 may be corrected per 1s. A typical Light-Sheet image also requires background estima-
tion, and will take 5s per image. Naturally, this time estimation depends on the number/speed of processors and 
available RAM that the PC has.
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