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ABSTRACT Zika virus (ZIKV) is implicated in fetal stillbirth, microcephaly, intracranial
calcifications, and ocular anomalies following vertical transmission from infected
mothers. In adults, infection may trigger autoimmune inflammatory polyneuropathy.
Transmission most commonly follows the bite of infected Aedes mosquitoes but may
also occur through sexual intercourse or receipt of blood products. Definitive diag-
nosis through detection of viral RNA is possible in serum or plasma within 10 days
of disease onset, in whole blood within 3 weeks of onset, and in semen for up to
3 months. Serological diagnosis is nonetheless critical because few patients have ac-
cess to molecular diagnostics during the acute phase of infection and infection may
be associated with only mild or inapparent disease that does not prompt molecular
testing. Serological diagnosis is confounded by cross-reactivity of immune sera with
other flaviviruses endemic in the areas where ZIKV has recently emerged. Accord-
ingly, we built a high-density microarray comprising nonredundant 12-mer peptides
that tile, with one-residue overlap, the proteomes of Zika, dengue, yellow fever,
West Nile, Ilheus, Oropouche, and chikungunya viruses. Serological analysis enabled
discovery of a ZIKV NS2B 20-residue peptide that had high sensitivity (96.0%) and
specificity (95.9%) versus natural infection with or vaccination against dengue, chi-
kungunya, yellow fever, West Nile, tick-borne encephalitis, or Japanese encephalitis
virus in a microarray assay and an enzyme-linked immunosorbent assay (ELISA) of
early-convalescent-phase sera (2 to 3 weeks after onset of symptomatic infection).

IMPORTANCE The emergence of Zika virus (ZIKV) as a teratogen is a profound
challenge to global public health. Molecular diagnosis of infection is straightforward
during the 3-week period when patients are viremic. However, serological diagnosis
thereafter of historical exposure has been confounded by cross-reactivity. Using
high-density peptide arrays that tile the proteomes of a selection of flaviviruses to
identify a ZIKV-specific peptide, we established two assays that enable sensitive and
specific diagnosis of exposure to ZIKV. These assays may be useful in guiding clinical
management of mothers at risk for potential exposure to ZIKV and enable insights
into the epidemiology of ZIKV infections.
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Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has become endemic
in Africa, Asia, and the Americas and has been deemed a global threat by the World

Health Organization (1, 2). ZIKV infection during pregnancy is causally linked to severe
neurodevelopmental damage, including fetal microcephaly, intracranial calcifications,
neurodevelopmental damage, and ocular anomalies (3). In adults, ZIKV may also trigger
Guillain-Barré syndrome (4–6). In urban and suburban environments, ZIKV is transmit-
ted in a human-mosquito-human transmission cycle. Transmission is also reported in
sexual partners (7, 8) and via blood transfusion (9). Molecular assays for detection of
ZIKV gene products in body fluids are the gold standard for definitive diagnosis of
active infections (1, 10). However, the median duration of viral RNA is 22 days in whole
blood and 10 days in plasma (11). Furthermore, many infections are asymptomatic,
associated with only mild acute disease, or occur in areas where access to medical care
is limited and blood collection is unlikely to be achieved during the acute phase of
infection. Thus, teratological risk assessment during pregnancy and infection incidence
and prevalence surveys also require serology for detection of gestational infections
after resolution of viremia (12).

Cross-reactivity between ZIKV and other flaviviruses may complicate differential
serodiagnosis and efforts to investigate the epidemiology of infection and linkage to
disease. This is particularly challenging in areas where dengue virus (DENV) is endemic
or Japanese encephalitis virus (JEV) or yellow fever virus (YFV) vaccination is common.
Current recommendations from the U.S. Centers for Disease Control and Prevention
(CDC) are that all samples found seropositive in a Zika virus IgM antibody capture
enzyme-linked immunosorbent assay (MAC-ELISA) should be validated by plaque
reduction neutralization testing (PRNT). PRNT is expensive and labor-intensive and
requires live virus. Furthermore, antibodies to conserved flavivirus domains may con-
found assay specificity, particularly in the acute and early convalescent phases. Here, we
report a sensitive, highly multiplexed, microarray-based assay that enables discrimina-
tion of antibody responses to linear epitopes specific to ZIKV, dengue virus (DENV) 1 to
4, chikungunya virus (CHIKV), West Nile virus (WNV), yellow fever virus (YFV), Ilheus virus
(ILHV), and Oropouche virus (OROV). We also report the identification of a highly
specific epitope for ZIKV located within the NS2B protein. We adapted this NS2B
peptide to a synthetic biotinylated peptide IgG ELISA system with the goal of estab-
lishing an inexpensive, rapid, sensitive, specific, and point-of-care method for ZIKV IgG
detection.

RESULTS
Arboviral peptide array design. Our platform for epitope discovery is a program-

mable peptide microarray that can accommodate up to 3 million distinct linear
peptides on a 75-mm by 26-mm slide (Roche). The array can also be divided into 12
subarrays, each containing approximately ~170,000 “12-mer peptides.” The 12-mer
format is based on the observation that serum antibodies bind linear peptide se-
quences ranging from 5 to 9 amino acids (aa) and bind most efficiently when targets
are flanked by additional amino acids (13). To enable differential detection of antibod-
ies specific for arboviral infections in geographic regions where ZIKV has become
endemic (14, 15), we created a custom NCBI GenBank database for ZIKV, DENV, CHIKV,
YFV, WNV, OROV, and ILHV (Table 1). For each virus selected, we downloaded all
available protein sequences available before October 2016 from the NCBI protein
database. We then created a database comprising overlapping 12-mer peptides that
tiled the whole proteome of each of these agents with 11-aa overlap in a sliding
window pattern. The selected peptide sequences were passed through a redundancy
filter to yield 88,212 unique peptide sequences and 83,748 nonunique peptide se-
quences (present in more than one virus) for a total of 171,960 peptides. Redundant
peptides were excluded prior to synthesis. The individual peptides in the library were
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printed in random positions on the peptide array to minimize the impact of locational
bias.

Arboviral peptide array data analysis. The array data, in the form of fluorescence
signal intensities (arbitrary units [AU]), were background and spatially corrected and
quantile normalized using the R Package “preprocessCore” (16). Spatial correction was
based on a two-dimensional local polynomial regression (LOESS) that adjusts for signal
variation due to spatial effects. A cutoff threshold for peptide recognition was defined
as mean � 2 times the standard deviation (SD) of the mean intensity value of all
negative controls (17). The statistical comparison of peptide microarray intensities
between groups was performed using the limma R package (18). Peptide intensities for
all samples were loaded and normalized using the “normexp” method for cross-array
normalization (19).

Identification and selection of reactive peptides. To test the utility of the array,
we used 308 sera immunoreactive to ZIKV, DENV, CHIKV, YFV, tick-borne encephalitis
virus (TBEV), WNV, or JEV and 21 sera from controls from the greater New York City
metropolitan area with no known history of flavivirus infection or flavivirus vaccination
who had been tested for exposure to Borrelia burgdorferi, the causative agent of Lyme
disease. Table 2 lists sources of sera and reference methods used to define immuno-
reactivity. We employed dilutions of 1:50 or 1:100 based on pilot experiments wherein
intensity analysis demonstrated that 1:50, 1:100, and 1:200 dilutions with known
positive sera produced signal above the threshold (mean � 2 SDs above the mean
obtained with negative-control samples), whereas dilutions of �1:200 produced signals
similar to those found with negative-control samples (mean � 2 SDs).

Signal data points were next filtered such that only peptides that showed signal in
at least one sample (1/12 subarrays) with an intensity greater than the previously
defined threshold (mean � 2 SDs, intensity of ~9,000 AU) were retained. This step
reduced the initial number of peptides from 171,891 to 84,018 for data analysis. Fold
changes and standard deviations were estimated by fitting a linear model for signal
intensities generated by each peptide, applying empirical Bayes smoothing to the
standard deviations, and then determining those peptides that yielded statistically
significant signal by contrasting linear models for each peptide between conditions
(20). The false-discovery rate was controlled at the 0.05 level using the Benjamini-
Hochberg procedure (21). Each analysis was performed twice: once to differentiate
peptides that were immunoreactive with ZIKV early-convalescent-phase versus control
sera and once to differentiate peptides that were immunoreactive with ZIKV early-
convalescent-phase versus DENV convalescent-phase sera. Six hundred twenty-four
peptides yielded statistically significant differences (adjusted P � 0.05) in signal inten-
sity between ZIKV convalescent-phase and control sera. Two thousand one hundred
fifty-six peptides yielded statistically significant differences (adjusted P � 0.05) in signal
intensity between ZIKV convalescent-phase and DENV convalescent-phase sera. Multi-
dimensional scaling (MDS) demonstrated the capacity of these peptides to separate
ZIKV from DENV sera and control group sera (Fig. 1).

TABLE 1 Proteins and peptides represented on the arboviral peptide array

Virus Genus
No. of available
protein sequences

No. of nonredundant
peptides printed

Zika virus Flavivirus 205 7,573
Dengue virus Flavivirus 1,044 74,105
Ilheus virus Flavivirus 33 7,697
West Nile virus Flavivirus 3,650 34,842
Yellow fever virus Flavivirus 3,650 34,842
Chikungunya virus Alphavirus 2,534 18,262
Oropouche virus Orthobunyavirus 390 16,041

Total no. of peptides on
the arbovirus array

171,960
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Identification of an immunoreactive, sensitive, and specific peptide sequence
in the ZIKV NS2B protein. For each agent-positive sample examined, we cataloged all
immunoreactive IgG linear epitopes. Immunoreactivity was highly reproducible, with
minimal interchip variation (see Fig. S1 in the supplemental material). Peptides were
considered agent specific if they were reactive only with their cognate sera, signal
intensities were 2 SDs above the threshold established with negative-control sera, and
a minimum of 3 continuous overlapping peptides were reactive. Based on these criteria,
9 overlapping peptides comprising a total of 20 aa were identified as agent specific in
NS2B of ZIKV (Fig. 2). Nine peptides comprising a 20-aa region in NS2B of ZIKV were
observed to be highly significant in differential analysis, displayed high signal intensi-
ties, and formed an epitope of 9 continuous overlapping peptides. To examine the
potential predictive power of these 9 peptides when differentiating ZIKV convalescent-
phase samples (early and late) from DENV (early and late) convalescent-phase samples,
classification models were created using random forest (22) with signal intensities as
predictors. Signal intensity data were obtained with 108 sera previously defined as
containing antibodies to ZIKV (early and late convalescent phase) by ZIKV nonstructural
protein 1 blockade-of-binding (BOB-ELISA) (23) and 114 DENV (early- and late-
convalescent-phase) samples. The nine peptides from the 20-aa epitope in NS2B were
first ranked with respect to their measurements of mean decrease in accuracy. The
nested classifiers using the top-ranked peptides were evaluated by random resampling
cross-validation with 1,000 iterations. Data were randomly split into a training set (80%)
and a test set (20%) within each iteration. The area under the curve (AUC) values,
together with their 95% confidence intervals (CIs), were calculated, and the correspond-
ing receiver operating characteristic (ROC) curves were plotted. The best-performing
classifier consisted of the top 6/9 ranked peptides and yielded a cross-validated AUC of
0.931 (95% CI, 0.818 to 0.975) (Fig. 3).

Testing and validation of 20-aa ZIKV NS2B peptide. A total of 308 serum samples
were tested with the arboviral peptide array: 138 for ZIKV, 124 for DENV, 24 for CHIKV,
5 for WNV, 10 for YFV, 3 for TBEV, and 4 for JEV and 21 healthy controls with no known
history of flavivirus or alphavirus infection (Table 2). The ZIKV sera included samples

FIG 1 Multidimensional scaling (MDS) of differential peptide signals in assays of sera from subjects with a history of infection with ZIKV, DENV, or neither
(controls). Based on MDS analysis, ZIKV convalescent-phase samples (blue) versus healthy controls (red) clustered in two separate groups (A) and ZIKV
convalescent-phase samples (blue) versus DENV convalescent-phase samples (red) clustered in two separate groups (B).
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collected from 15 patients at three time points: 1 to 6 days after onset of disease (acute
phase), 2 to 3 weeks after onset of disease (early convalescence), and ~6 months after
onset of disease (late convalescence). Other ZIKV sera included samples collected from
individual subjects at a single time point: 15 acute-phase, 75 early-convalescent-phase,
and 3 late-convalescent-phase sera. Based on previous exposure to DENV, we also
divided ZIKV-positive samples into two groups, DENV immune and DENV naive. Thus,
we included 30 ZIKV acute-phase (9 DENV-immune and 21 DENV-naive), 90 ZIKV
early-convalescent-phase (25 DENV-immune and 65 DENV-naive), and 18 ZIKV late-
convalescent-phase (8 DENV-immune and 10 DENV-naive) samples. Eighty-eight of 90
early-convalescent-phase ZIKV sera (98%) were strongly positive for the NS2B peptide
with signal intensities exceeding 60,000 AU. Fourteen of 30 (47%) acute-phase ZIKV
sera, 12/18 (67%) late-convalescent-phase ZIKV sera, and 1/3 (33%) JEV vaccinee sera
were also strongly reactive. Samples with prior exposure to DENV had higher ZIKV
reactivity with the 20-aa NS2B peptide: DENV-immune ZIKV-positive acute-phase sera
had higher reactivity than DENV-naive ZIKV-positive acute-phase sera (55% versus
43%), and DENV-immune ZIKV-positive late-convalescent-phase sera had higher reac-
tivity than DENV-naive ZIKV-positive late-convalescent-phase sera (75% versus 60%).
Four of 124 (3%) DENV, 1/24 (4.1%) CHIKV, and 1/10 (10%) YFV sera were moderately
reactive, with signal intensities below 20,000 AU. No cross-reactivity was observed with
12 DENV acute-phase sera, 1 JEV convalescent-phase serum, 5 WNV convalescent-phase
sera, or 3 TBEV vaccinee sera. One positive acute-phase CHIKV sample from Nicaragua
which was found moderately positive for ZIKV NS2B peptide was collected in November
2016 just before the first clinical ZIKV case was reported in Nicaragua (24). Detailed data
for immunoreactivity, sensitivity, and specificity are given in Table 2. One of the 21
control sera from a patient residing in the greater New York City metropolitan area with
an unknown travel history was also moderately reactive. ZIKV early-convalescent-phase

FIG 2 Identification of an immunoreactive 20-amino-acid ZIKV NS2B peptide. The overlapping and
continuous amino acid sequences of the immunoreactive epitope are shown below the clustered column
(peptides 1426 to 1434, NS2B-DITWEKDAEVTGNSPRLDVA; amino acid position based on sequence with
accession no. ZIKV AY632535 and AAV34151).
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samples showed signal intensity up to 60,000 AU for 20-aa NS2B peptides and were
significantly higher (P � 0.005) than control groups except for one JEV vaccinee sample
(Fig. 4A). ZIKV acute-phase and ZIKV late-convalescent-phase samples showed com-
paratively lower signal intensity (up to 40,000 AU) than ZIKV early-convalescent-phase
samples (Fig. 4B).

African ZIKV isolates differ from ZIKV isolates from Asia and the Americas in the presence
of a valine rather than an isoleucine in the 20-aa ZIKV NS2B peptide region employed in our
assays (10th amino acid in 20-aa ZIKV NS2B peptide, V�I). Both peptides were printed,
allowing us to determine the impact of this mutation on immunoreactivity and assay
performance. We found no differences in signals in sera from subjects infected in Asia or the
Americas (Fig. 5). We have no African sera for reciprocal analyses.

Development of a ZIKV NS2B peptide ELISA. Due to costs for fabrication, instru-
ment purchase, and protocol complexity, we view peptide arrays as platforms for
discovery rather than as tools for routine serology. Accordingly, we used data acquired
in array analyses to build a ZIKV NS2B peptide ELISA. Twenty-four-residue peptides
were synthesized that included the immunoreactive 20-aa ZIKV NS2B peptide as well as
two flanking amino acid residues (underlined) at both the amino and carboxyl termini to
serve as spacer molecules for epitope presentation (AGDITWEKDAEVTGNSPRLDVALD). We
also synthesized peptides ranging from 8 to 14 aa within the core of the region defined
as most strongly immunoreactive in Fig. 2 and a concatemer of the 24-aa peptide
joined by a central glutamic acid residue (AGDITWEKDAEVTGNSPRLDVALDEAGDITWE
KDAEVTGNSPRLDVALD). All peptides were synthesized with biotin on either the amino

FIG 3 Average receiver operating characteristic (ROC) curves over 1,000 runs using the 9 overlapping
peptides identified (comprising 20-aa ZIKV NS2B peptide) for training and prediction. The top-performing
model shows strong predictive power, with an average area under the curve (AUC) of 0.931.
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or carboxyl terminus to facilitate binding to plates coated with antibodies to biotin. The
performance of the carboxyl terminus biotinylated 49-aa peptide concatemer ELISA
was superior to the other peptide ELISAs. It identified 96% of ZIKV sera positive in the
peptide array with 94% specificity. The 8- to 14-aa peptide ELISA had less than 50%

FIG 4 (A) Immunoreactivity plots for the ZIKV NS2B 20-amino-acid peptide with ZIKV early-convalescent-phase, DENV acute-phase, DENV convalescent-phase,
CHIKV, YFV, TBEV, WNV, JEV, and normal control sera. x axis, 9 peptides from ZIKV NS2B; y axis, logn values of signal intensities. Control sera were collected from
individuals in the greater New York City metropolitan area who tested negative for Lyme disease and who had no known history of flavivirus or alphavirus
infection or vaccination. (B) Immunoreactivity plots for the ZIKV NS2B 20-aa peptide with ZIKV acute-phase, ZIKV early-convalescent-phase, and ZIKV
late-convalescent-phase sera. x axis, 9 peptides from ZIKV NS2B; y axis, logn values of signal intensities.

FIG 5 Immunoreactivity of ZIKV acute-phase and ZIKV convalescent-phase sera from two Nicaraguan patients to the NS2B 20-aa peptide representing American
isolates (A) (peptides 1426 to 1434, NS2B-DITWEKDAEVTGNSPRLDVA, accession no. ZIKV AAV34151) or African isolates (B) (peptides 1430 to 1438, NS2B-DIT
WEKDAEITGNSPRLDVA, accession no. ZIKV AMD61711). Controls include two DENV convalescent-phase sera and one control serum. Control sera were collected
from individuals in the greater New York City metropolitan area who tested negative for Lyme disease and who had no known history of flavivirus or alphavirus
infection or vaccination.
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sensitivity and 80% specificity. The 24-aa peptide ELISA had ~80% sensitivity and
specificity. The amino terminus biotinylated 49-aa peptide concatemer ELISA yielded
70% sensitivity and 60% specificity. Accordingly, we are here reporting only findings
with the carboxyl terminus biotinylated 49-aa peptide concatemer ELISA (ZIKV-NS2B-
concat ELISA).

Validation of the ZIKV-NS2B-concat ELISA. All 329 serum samples (Table 2)
previously tested with the arboviral peptide array were also tested with the ZIKV-NS2B-
concat ELISA. Eighty-six of 90 early-convalescent-phase ZIKV sera (96%) were positive
(optical density [OD] � 0.90) by ELISA. Eight of 30 (26.6%) acute-phase ZIKV sera, 8/18
(44%) late-convalescent-phase ZIKV sera, and 1/3 (33%) JEV vaccinee sera were also
positive (�0.90 OD) with ELISA. Samples with prior exposure to DENV had higher ZIKV
reactivity in ELISA also: DENV-immune ZIKV-positive acute-phase sera had higher
reactivity than DENV-naive ZIKV-positive acute-phase sera (55% versus 33%), and
DENV-immune ZIKV-positive late-convalescent-phase sera had higher reactivity than
DENV-naive ZIKV-positive late-convalescent-phase sera (62% versus 50%). Two of 90
(2%) early-convalescent-phase ZIKV sera, 4/30 (13%) acute-phase ZIKV sera, 2/18 (11%)
late-convalescent-phase ZIKV sera, 9/124 (7%) DENV sera, 1/24 CHIKV sera (4%), and
1/10 YFV sera (10%) were moderately reactive (0.65 to 0.90 OD). No cross-reactivity was
observed with 5 WNV or 3 TBEV sera. One of 21 sera from the control group that was
positive in the peptide array was also positive in the ELISA. Detailed data for immu-
noreactivity, sensitivity, and specificity are given in Table 2.

A total of 154 ZIKV sera (30 acute-phase, 70 early-convalescent-phase, and 54
late-convalescent-phase sera) were also tested side by side by the ZIKV-NS2B-concat
ELISA, a commercial NS1 recombinant IgG ELISA (anti-ZIKV ELISA IgG assays; Euroim-
mun, Lübeck, Germany) (25), and a Zika nonstructural protein 1 (NS1) BOB-ELISA (23)
(Fig. 6A). The sensitivity of the ZIKV-NS2B-concat ELISA was superior to the recombinant
commercial NS1 IgG ELISA with acute-phase (47% versus 13%), early-convalescent-
phase (96% versus 65%), and late-convalescent-phase (55% versus 26%) sera. The
BOB-ELISA had similar sensitivity with early-convalescent-phase sera (94%) and superior
sensitivity with late-convalescent-phase sera (94%) but detected no immunoreactivity
in acute-phase sera (data not shown). The immunoreactivity of ZIKV-NS2B-concat ELISA
with sera collected from 28 ZIKV patients over the time course of infection was higher
in early convalescent phase than in the acute and late convalescent phases and
consistent with findings obtained by using the peptide array (Fig. 4B and 6B).

DISCUSSION

Since the emergence of ZIKV in the Americas in 2015, 583,144 cases have been
reported to the World Health Organization. On 6 April 2017, the United Nations
Development Programme, in partnership with the International Federation of Red
Cross, Red Crescent Societies and the Pan-American Health Organization, estimated the
economic cost of Zika disease in Latin America and the Caribbean alone as up to $18
billion between 2015 and 2017 (26). Costs will ultimately be higher because sequelae
of congenital infection require lifetime support and include more subtle neurodevel-
opmental disabilities than the severe abnormalities observed at birth, such as micro-
cephaly (27, 28).

Accurate estimates of the public health burden of ZIKV and medical management
will require easily accessible, sensitive, and specific assays for detection of infection,
which has been challenging. The efficacy of molecular methods for detection of ZIKV
in serum, plasma, and whole blood is limited to the first few weeks of infection.
Serology has been confounded by cross-reactivity of antibody responses due to genetic
similarity and structural homology of ZIKV with other flaviviruses, especially DENV.
Across the entire genomic sequence, ZIKV shares 55.6% amino acid identity with DENV,
46.0% with YFV, 56.1% with JEV, and 57.0% with WNV (29). False-positive results in ZIKV
ELISA and PRNT assays have been reported after natural infection with other flaviviruses
as well as after YFV and JEV vaccination (30).

The advent of peptide microarrays provides new opportunities to finely map
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discrete regions within the proteomes of viruses and other microbes that can facilitate
differential diagnosis of infectious diseases. We used highly multiplexed, programmable
peptide arrays to identify discriminant epitopes for serodiagnosis of infection. The
ZIKV-NS2B-concat ELISA, generated based on results obtained with the peptide array,
has utility for diagnosis of ZIKV infection. In our protocol using a threshold of an 0.90
OD, the ELISA detected IgG antibodies in 47% of sera from subjects with acute disease
(1 to 6 days after onset), more than 95% of sera from subjects in early convalescence
(2 to 3 weeks after onset), and 55% of sera from subjects in late convalescence (more
than 6 months after onset).

FIG 6 (A) ZIKV-NS2B-concat ELISA sensitivity comparison with Euroimmun anti-ZIKV IgG ELISA and ZIKV-NS1 blockade-
of-binding (BOB) ELISA. (B) ZIKV-NS2B-concat ELISA demonstrates higher anti-ZIKV antibody titer with ZIKV early-
convalescent-phase group than with ZIKV acute-phase and ZIKV late-convalescent-phase groups.

Serodiagnosis of Zika Virus Infection ®

March/April 2018 Volume 9 Issue 2 e00095-18 mbio.asm.org 11

http://mbio.asm.org


The specificity of the ZIKV-NS2B-concat ELISA was 94%. One of three JEV vaccinee
sera was seropositive; however, a subject with natural JEV infection was not seropos-
itive. One individual from Nicaragua with acute CHIKV infection was also seropositive.
Chikungunya virus is an alphavirus that would not be anticipated to elicit antibodies
cross-reactive with flaviviruses, and the samples analyzed were all collected before the
introduction of ZIKV. We do not know whether this individual also had a history of
exposure to ZIKV. The closest homologue in NCBI-BlastP to the 20-aa ZIKV NS2B peptide
sequence is a sequence in Spondweni virus (SPONV) (17/20 aa, 85% identity) (see
Fig. S2 in the supplemental material). Spondweni virus has been reported in sub-
Saharan Africa; only 6 cases are documented (31). The SPONV serogroup includes both
ZIKV and SPONV. We have not tested sera from individuals infected with SPONV and
acknowledge that differential diagnosis may not be feasible with the ZIKV-NS2B-concat
ELISA alone. JEV and St. Louis encephalitis virus (SLEV) have 80% amino acid homology
(16/20 amino acid residues) with the ZIKV NS2B peptide sequence. This may account for
false-positive results with sera from the subject recently vaccinated for JEV wherein the
antibody titers for the 20-aa ZIKV NS2B peptide sequence were high and underscores
the importance of obtaining an accurate vaccine history. We did not have access to sera
from subjects exposed to SLEV to test for immunoreactivity to the ZIKV NS2B peptide.
We observed lower-titer cross-reactivity that did not cross the 0.90-OD threshold for
definitive serological ZIKV diagnosis with other flaviviruses, including DENV1, DENV2,
DENV3, DENV4, WNV, and TBEV.

Preexisting dengue virus antibodies may modulate immune responses to ZIKV
infection (32). Priyamvada et al. have proposed that this is due to reactivation of
preexisting memory B cells that target conserved epitopes (33). We found that prior
exposure to DENV was associated with higher ZIKV reactivity to NS2B peptide in both
the peptide array and ZIKV-NS2B-concat ELISA. We cannot ascertain whether the
converse is true as we have no sera from subjects infected with ZIKV who were
subsequently infected with DENV. However, we found no reactivity to the DENV NS2B
using DENV sera.

One of 21 control sera obtained from patients in the greater New York City
metropolitan area tested for Borrelia burgdorferi, the causative agent of Lyme disease,
also had reactivity in the ZIKV NS2B peptide ELISA and peptide array. We do not have
travel history or vaccine records for these control patients and cannot discern whether
reactivity was due to flavivirus infection or vaccination.

The peptide array provided a modest improvement over the ELISA in sensitivity with
acute-phase (47% versus 40%), early-convalescent-phase (98% versus 96%), and late-
convalescent-phase (67% versus 55%) sera. It was also more specific and allowed us to
resolve the JEV and CHIKV immunoreactivity observed in ELISA. Whereas all early-
convalescent-phase ZIKV sera detected 5 or more peptides, each with signal in excess
of 40,000 AU, the JEV vaccine and CHIKV sera detected only 3 peptides; none yielded
signal greater than 30,000 AU. Nine of 124 DENV sera had intermediate reactivity in
ELISA (OD of 0.60 to 0.90). None reacted with 5 peptides or had signal in excess of
40,000 AU. The single serum from the 21-subject control group that was positive in
ELISA remained positive on the array (detecting 5 peptides with more than 40,000 AU).
An algorithm for serodiagnosis of ZIKV exposure based on the limited sample set
employed in this work is shown in Fig. 7.

ZIKV infection in any trimester can result in stillbirth or congenital birth defects (12).
This includes clinically inapparent infections. It is important, therefore, that the diag-
nostic armamentarium for risk assessment have the capacity to detect evidence of
current as well as past infection over the entire course of gestation. The ZIKV-NS2B-
concat ELISA is most sensitive for detection of infection during early convalescence. We
do not have the samples required to assess performance in the interval between early
and late convalescence (3 weeks to 6 months); nonetheless, based on data obtained
during early convalescence, monthly testing during each of the three trimesters should
detect more than 95% of ZIKV infections. Where results are equivocal, the peptide array
can be used to increase the sensitivity for detection of ZIKV infection to 98% and
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delineate triggers for cross-reactivity, including other flavivirus infections or vaccina-
tion. The ZIKV-NS2B-concat ELISA can be readily implemented with equipment em-
ployed in routine clinical microbiology laboratories found in the developing world
where the burden of infection is highest. As the peptide array requires more elaborate
imaging equipment and bioinformatics support for analysis, it will be important to
explore whether less resource-intensive serological tests can be established that quan-
titate responses to the multiple peptides that enhance sensitivity and specificity in the
peptide array.

The positive and negative predictive values of a serological assay vary with the
prevalence of infection in the population. Our data concerning sensitivity and speci-
ficity reflect findings in subjects considered to be at high risk for infection with ZIKV or
other arboviruses. Additional studies will be required to establish the positive and
negative predictive values of the assays in other populations.

The peptide array platform that we employed displays only linear amino acid
sequences. It is possible that a system that displays conformational epitopes might
have revealed epitopes with better diagnostic performance profiles than ZIKV NS2B. We
nonetheless predict that due to flexibility and high-throughput screening capacity, the
programmable peptide array platform will become a vital tool in the discovery and
development of serodiagnostics.

MATERIALS AND METHODS
Serum or plasma samples for the study. One hundred thirty-eight serum samples were collected

from 90 children in the Nicaraguan Pediatric Dengue Cohort Study (PDCS) (23) who were reverse
transcription-PCR (RT-PCR) positive for ZIKV in serum and had signs and symptoms of ZIKV infection
between January and 20 September 2016. Acute-phase (1 to 6 days after onset of symptoms), early-
convalescent-phase (14 to 21 days after onset of symptoms), and late-convalescent-phase (~6 months
after onset of symptoms) blood samples were drawn for DENV, CHIKV, and ZIKV diagnostic testing and
annual sample collection as part of the cohort study (Table 2) (34). We included confirmed ZIKV cases
with known prior DENV infection history status (DENV naive or DENV immune) (35). Confirmed ZIKV-
positive cases were classified as DENV naive if they entered the cohort study with no detectable
anti-DENV antibodies (as measured by DENV inhibition ELISA) and had no documented DENV infections
(symptomatic or inapparent) during their time in the cohort. Confirmed ZIKV-positive cases were
classified as DENV immune if they either entered the cohort study with detectable anti-DENV inhibition

FIG 7 An algorithm for serodiagnosis of ZIKV exposure based on the limited sample set employed in this
work.
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ELISA antibodies or entered the cohort study with no detectable anti-DENV antibodies and had one or
more documented DENV infections during their time in the cohort study. All suspected ZIKV cases were
confirmed by real-time RT-PCR in serum, using the CDC Trioplex assay, the ZCD triplex assay (36), or in
some cases the CDC ZIKV monoplex assay (37), in parallel with a DENV-CHIKV multiplex assay (38). We
also included as a control group a total of 124 samples with DENV (12 acute-, 29 early-convalescent-, and
83 late-convalescent-phase) infection confirmed by RT-PCR between 2005 and 2013, from the New York
State Department of Health Wadsworth Center Laboratory (WC), New York City Department of Health
and Mental Hygiene Public Health Laboratory (PHL) (10), Nicaraguan PDCS (34), or the Nicaraguan
Hospital-Based Dengue Study at the National Pediatric Reference Hospital in Managua (39). Twelve
additional DENV early-convalescent-phase sera (3 for each of DENV1 to -4) that tested positive with PRNT
were collected from Thailand (40). Six acute- and 12 early-convalescent-phase CHIKV sera were collected
from real-time RT-PCR-confirmed chikungunya cases in the Nicaraguan hospital-based study (41); 6
acute-phase CHIKV sera were provided by WC and PHL (10). Convalescent-phase CHIKV sera were tested
for anti-CHIKV antibodies with Euroimmun anti-chikungunya virus immunofluorescent assay (IFA) (IgG).
Five banked WNV early-convalescent-phase sera after natural infection were also used (10). Ten YFV
(vaccinated), 3 TBEV (vaccinated), and 4 JEV (1 natural infection convalescent-phase and 3 vaccinated)
sera were collected by the Erasmus University Medical Centre (Rotterdam, Netherlands). Sera from 21
subjects in the greater New York City metropolitan area tested for Lyme disease who had no known
history of flavivirus or alphavirus infection or vaccination were provided by the Lyme Disease Laboratory
(School of Medicine, Stony Brook University) for use as controls.

Arboviral peptide array synthesis, sample binding, and processing. Peptide synthesis was
accomplished by light-directed array synthesis in a Roche maskless array synthesizer (MAS) using an
amino functionalized substrate coupled with 6-aminohexanoic acid as a spacer and amino acid deriva-
tives carrying a photosensitive 2-(2-nitrophenyl)propyloxycarbonyl (NPPOC) group. Coupling of amino
acids was done using preactivated amino acid with activator (1-hydroxybenzotriazole [HOBT]/2-(1H-
benzotriazol-1-yl)-1,1,3,3- tetramethyluronium [HBTU]) and ethyldiisopropylamine in dimethylformamide
(DMF) for 5 to 7 min before flushing the substrate. Cycles of coupling were repeated until 12-mer
peptides were synthesized. Intermediate washes on the arrays were done with N-methyl-2-pyrrolidone
(NMP), and site-specific cleavage of the NPPOC group was accomplished by irradiation of an image
created by a digital micromirror device (Texas Instruments; SXGA� graphics format), projecting light with
a 365-nm wavelength. Final deprotection to cleave off the side chain protecting groups of the amino
acids was done with trifluoroacetic acid (TFA)-water-triisopropylsilane for 30 min.

Sera were diluted (1:50 or 1:100) with binding buffer (0.1 M Tris-Cl, 1% alkali-soluble casein, 0.05%
Tween 20, and water). The peptide arrays were incubated overnight at 4°C on a flat surface with
individual sample/subarray. Overnight sample incubation was followed by three 10-min washes with 1�
Tris-buffered saline with Tween 20 (TBST) (0.05% Tween 20) on a Little Dipper automatic washer (catalog
no. 1080-40-1; SciGene) at room temperature (RT). Secondary antibodies (catalog no. 109-605-098; Alexa
Fluor 647-AffiniPure goat anti-human IgG, Fc� fragment specific; Jackson ImmunoResearch Labs) were
diluted in binding buffer at a concentration of 0.1 �g/ml, and arrays were incubated in a plastic Coplin
jar (catalog no. S90130; Fisher Scientific) for 3 h at RT with gentle shaking on a rocker shaker. Secondary
antibody incubation was also followed by three 10-min washes on a Little Dipper washer with 1� TBST
at RT. After a final wash, the arrays were dried and read using a Roche MS 200 microarray scanner (Roche),
and signals were extracted using Roche internally developed image extraction software. The array slides
were scanned at 2-�m resolution, with an excitation wavelength of 635 nm. The images were analyzed
using the PepArray analysis program. The fluorescent signals were converted into arbitrary unit (AU)
intensity plots ranging in minimum to maximum intensity from 0 to 65,000 AU.

ZIKV-NS2B-concat ELISA. A 49-aa-long concatemer of the 24-aa peptide ZIKV NS2B peptide joined
by a central glutamic acid residue and carboxyl-terminal biotin labeled with a junction lysine residue,
AGDITWEKDAEVTGNSPRLDVALDEAGDITWEKDAEVTGNSPRLDVALD(Lys[biotin]), was synthesized with
high-performance liquid chromatography (HPLC) purity of �75.0% (GenScript, Piscataway, NJ). The
peptide was dissolved in 3% ammonia water and stored at �20°C in small aliquots. Peptide ELISAs were
performed on Corning 96-well clear-bottom plates (Sigma-Aldrich). Preadsorbed rabbit polyclonal anti-
biotin antibody-IgG heavy plus light chains (H�L) (catalog no. ab53494; Abcam) were diluted with 1�
ELISA coating buffer (catalog no. BUF030A; Bio-Rad), applied as a coating on 96-well ELISA plates
(0.6 �g/100 �l per well), and incubated at 37°C overnight under a sealed condition. After incubation, the
plate was washed three times with phosphate-buffered saline (PBS)– 0.05% Tween 20 (PBS-T). Following
three washes with PBS-T, plates were incubated for 1 h at RT with 200 �l/well of blocking buffer (catalog
no. 37539; Thermo Fisher Scientific). Afterward, plates were washed again three times with PBS-T. ZIKV
NS2B peptide was diluted in blocking buffer (0.4 �g/100 �l), and 100 �l of diluted ZIKV NS2B peptide
was applied as a coating on plate-wells and incubated at 37°C for 90 min. Following 3 washes with PBS-T,
serum/plasma samples were diluted 1:50 or 1:100 in blocking buffer, coated (200 �l/well), and incubated
at 37°C for 90 min. After 3 washes with PBS-T, preadsorbed goat anti-human IgG H�L– horseradish
peroxidase (catalog no. ab97175; Abcam) was diluted (1:5,000) and coated (100 �l/well) for 90 min at
37°C. Plates were washed again 3 times with PBS-T, 1-Step Ultra tetramethylbenzidine (TMB)-ELISA
substrate solution (catalog no. 34028; Thermo Fisher Scientific) was added, and plates were incubated at
RT and in the dark. The reaction was stopped with 50 �l Wash and Stop solution for ELISA without
sulfuric acid (catalog no. MK021; TaKaRa Clontech). Plates were read on an automated plate reader at
450 nm. The OD readings represent the reactivity of peptide ELISA. The ELISA cutoff was established by
running 48 healthy control human sera with ZIKV-NS2B-concat ELISA. The nonparametric method of two
times the mean of ODs (0.65) of the sera from uninfected healthy controls was established as moderate
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positive, and three times the mean of ODs (0.90) of the sera from uninfected healthy controls was used
as the definitive positive cutoff (42).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00095-18.
FIG S1, TIF file, 7.8 MB.
FIG S2, TIF file, 7.8 MB.
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