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Abstract

Background: Restricted mean survival time (RMST) is an underutilized estimand in time-to-event analyses. Herein,
we highlight its strengths by comparing time to (1) all-cause mortality and (2) initiation of antiretroviral therapy
(ART) for HIV-infected persons who inject drugs (PWID) and persons who do not inject drugs.

Methods: RMST to death was determined by integrating the Kaplan-Meier survival curve to 5 years of follow-up.
To account for the competing risks of death and loss-to-clinic when estimating time to ART, we calculated RMST to
ART initiation by estimating the area between the survival curve for ART initiation and the cumulative incidence
curve for death or loss-to-clinic. We standardized all curves using inverse probability of exposure weights.

Results: We followed 3044 HIV-positive, ART-naive persons from enrollment into the Johns Hopkins HIV Clinical
Cohort from 1996 to 2014. PWID had a − 0.19 year (95% confidence interval (CI): − 0.29, − 0.10) difference in survival
over 5 years of follow-up compared to persons who did not inject drugs. There was no difference between the two
groups in time not on ART while alive and in clinic (RMST difference = 0.08, 95% CI: -0.10, 0.36).

Conclusions: PWID have similar expected time to ART initiation after properly accounting for their greater risk of
death and loss-to-clinic.
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Background
Describing the occurrence of an event (or events) over time
is central to epidemiological research. There are several
estimands that can be used to summarize the occurrence of
an event, such as providing survival or risk estimands for
specific periods of time (e.g. 1-year survival or 5-year risk).
(Note: we are using the term “survival” here to denote an
event-free state, where the event is not constrained to be
death.) The occurrence of an event in two or more groups
is often compared using a risk difference, risk ratio, or
hazard ratio [1–7]. In this paper we highlight restricted
mean survival time (RMST) as an alternative estimand for

the analysis of time-to-event data. RMST has attractive
properties, namely it: 1) does not require the assumption of
proportional hazards; 2) can summarize the difference in
survival when survival curves initially diverge and later con-
verge; and 3) provides information about absolute risk.
RMST is calculated by integrating the survival function
from the origin to some time t, and is interpreted as the
average survival time within that interval [8–10]. Despite its
attractive properties, epidemiological studies utilizing
RMST remain rare [11–14], particularly in an observational
setting (which would require adjustment of RMST for po-
tential confounding), or in the presence of competing risks
(events that preclude the event of interest from occurring).
The first objective of this paper is to promote the use of

the RMST in the epidemiology and medical literature by
briefly reviewing its calculation, interpretation, strengths, and
limitations. The second objective is to detail an approach to
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standardize the RMST to account for confounding in the
setting of competing events using inverse probability weight-
ing. We illustrate estimation of the adjusted RMST to de-
scribe time to death in an HIV clinical cohort among
persons with and without a history of injection drug use
(IDU) as a risk factor for HIV acquisition. We further
illustrate use of RMST to compare time to initiation of
antiretroviral therapy (ART) among persons who inject
drugs (PWID) and persons who did not inject drugs, prop-
erly accounting for persons who experienced a competing
event (death or loss-to-clinic).

Methods
The definite integral of the survival curve from the time
origin to some specified follow-up time t, where t is less
than or equal to the maximum observed follow-up time,
provides an estimate of the expected event-free time from
0 to t [15]. The area under the survival curve, A(t) is also
known as the RMST. This is in contrast to the marginal
expected survival time, which is only estimable (without
extrapolation) when the survival curve goes to zero during
the observation time [16]. The “restricted” component of
the mean survival calculation avoids extrapolating the in-
tegration beyond the last observed time point. A particular
strength of RMST is the ease of interpretation. The differ-
ence in the area under two survival curves A1(t) –A2(t)
can be interpreted as the extension (or contraction) of the
expected (mean) survival time by time t associated with
membership in group 1 or with treatment 1, as compared
to group 2 or treatment 2. One could easily take the ratio
rather than the difference.

Statistical methods
RMST, which was originally proposed by Irwin [8] and
later adapted by Kaplan and Meier [17] is defined by [18]:

A tð Þ ¼ E min T ; t�ð Þ½ � ¼
Z t�

0
S tð Þdt ð1Þ

where T is the time to the event of interest, t∗ is the point
in time to which RMST is being calculated between 0 and
the maximum follow-up, and S(t) is the survival function
over time t. S(t) can be estimated using a variety of
methods, i.e. non-parametrically, semi-parametrically, or
parametrically. We follow convention and represent ran-
dom variables with capital letters and possible realizations
of those random variables with lowercase letters.
Challenges in estimating RMST include: 1) deciding how to
estimate the function S(t); 2) adjusting for confounders; and
3) estimating the integral

R t�

0 SðtÞdt.
We focus on the estimation of S(t) using a step func-

tion, specifically, the Kaplan-Meier survival function.
The use of a step function allows for a simple integra-
tion of the survival function to time t by summing the

area under each rectangular step of the survival curve
(i.e., a Reimann sum) [10]:

Â tð Þ ¼
X

k
Ŝ tk−1Þðtk−tk−1ð Þ ð2Þ

where tk are the ordered event times observed over (0, t∗]
and t∗ is included in the set of tk, t0 = 0, ŜðtÞ is the survival
estimate, and by definition Ŝðt0Þ ¼ 1. We can interpret Âð
tÞ as the restricted mean time spent event-free through
time t. Conversely, the integral over (0, t∗] of the comple-
ment of the survival function, F(t) = 1 − S(t), which is the
cumulative incidence function (CIF) is the expected time
after having the event through time t∗ [19].
There are several options for generating covariate-

adjusted curves to account for confounding or non-random
censoring [20]. Here we detail how to obtain standardized
survival curves using inverse probability weighting. Inverse
probability weighting has several attractive properties com-
pared to other methods for generating covariate-adjusted
curves, namely that it produces survival curves that are
marginalized over the distribution of covariates in the study
sample rather than requiring a covariate profile be specified
and is straightforward to implement [21, 22]. Inverse prob-
ability weighting is an extension of direct standardization
[23] and it has been shown that a weighted Kaplan-Meier
estimator can provide an unbiased estimate for an adjusted
survival curve using an inverse probability weighted hazard

function [22]. We define an individual’s weight as Ŵ i

¼ dPðXiÞ= dPðXijZiÞ, where Z is set of covariates sufficient to
satisfy the assumption of conditional exchangeability be-
tween two groups, X = 1 and X = 0. We suggest incorporat-
ing causal knowledge and relying on causal diagrams to
identify a sufficient set of covariates to satisfy this assump-
tion [24]. Note that we stabilized the weights by the mar-
ginal probability of exposure, but non-stabilized weights are
also possible. Other assumptions are necessary to interpret
contrasts between RMST for X = x causally, but a full dis-
cussion of causal inference is beyond scope of this paper;
see [23, 25, 26] for more details. Briefly, one sufficient set of
assumptions includes, in addition to assuming conditional
exchangeability between the exposed and unexposed: 1)
positivity (everyone has a non-zero probability of being ex-
posed) [27, 28]; 2) treatment version irrelevance [29–31]; 3)
no interference (one person’s exposure does not affect an-
other’s outcome) [32, 33]; 4) no measurement error [26,
34]; and 5) correct model(s) specification.
The RMST can also be used in settings where there is

confounding and competing events. When a competing
event precludes the event of interest from occurring, an
alternate estimator is recommended. With j = 1,…, J differ-
ent events, the CIF is the joint probability that an event
occurs and the event is of type j, Fj(t) = P(T < t, J = j). The
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inverse probability weighted CIF for event type j can be
estimated [6]:

F̂ j tð Þ ¼
X
tk ≤ t

Ŝ
Ŵ tð Þ

tk−1ð Þ
� �

dŴ tð Þ
j tkð Þ

nŴ tð Þ tkð Þ

2
4

3
5 ð3Þ

where the overall inverse probability weighted survival func-

tion is Ŝ
Ŵ ðtÞðtÞ ¼ expf−

X
tk ≤ t

dŴ ðtÞðtkÞ=nŴ ðtÞðtkÞg ,

d
Ŵ ðtÞ
j and nŴ ðtÞðtkÞ are the inverse probability weighted

number of events of type j and number of individuals at risk,

respectively, at time t [6].
d
Ŵ ðtÞ
j ðtkÞ

nŴ ðtÞðtk Þ
is the cause-specific haz-

ard ratio at time tk. The complement of the CIF provides the
survival function for the jth event, Sj(t) = 1− Fj(t). The lowest

value Ŝ jðtÞ may attain is bounded by the sum of the cumula-

tive incidences of the competing events, i.e.,
P

J≠ j F̂ J ðtÞ ,

since F̂ jðtÞ þ
X
J≠ j

F̂ J ðtÞ þ Ŝ
Ŵ ðtÞðtÞ ¼ 1.

Integration of Fj(t) or Sj(t) over [0, t
∗] provides the ex-

pected time after the occurrence of event j through t∗

and the expected time prior to the occurrence of event j
through t∗, respectively. Note the interpretation of these
integrals remains the same even if an individual experi-
ences a competing event prior to t∗. For example, if the
event of interest j is initiation of ART and the competing
event is death, then the integration of Sj(t) over [0, t∗]
would be interpreted as the expected time prior to ART
through t∗, even if the individual died before initiating
ART. Similarly, the integration of Fj(t) over [0, t

∗] would
be interpreted as the expected time after ART initiation
through t∗ even if the individual dies following ART ini-
tiation but prior to t∗. The restricted mean lifetime spent
in a state free of all events, including the event of inter-
est and competing events, can be calculated by taking
the difference in the integration of the complement of
the CIF from the jth event and the integration of the
CIF of all other events. Therefore this estimand is:

Z t�

0
S J¼ j tð Þdt−

Z t�

0

X
J≠ j

F J tð Þdt ¼ AJ¼ j tð Þ−LJ≠ j tð Þ ð4Þ

where AJ¼ jðtÞ ¼
R t�

0 1−F J¼ jðtÞdt is the expected survival
time to the jth event and LJ≠ jðtÞ ¼

R t�

0 F J≠ jðtÞdt is the
expected time spent in all non-j events (i.e. the compet-
ing events). That is, the area under the CIF for event j is
the expected time after having event j, therefore the in-
tegral of the complement, AJ = j(t), corresponds to the ex-
pected time remaining in a state free of the jth event.
However, this includes being in a non-j event state. Be-
cause we are interested in time spent free of all events,

the expected time spent in the non-j events states needs
to be removed and is provided in Eq. 4. FJ = j(t) and FJ ≠
j(t) can be estimated using Eq. 3, where the event type
can either be the event of interest, j or the composite of
the competing events.

Application
Despite demonstrated success of combination ART on re-
duced morbidity, mortality, and HIV transmission risk
[35, 36], many populations experience significant barriers
to and delays in the initiation of ART. PWID consistently
experience delayed treatment and lower rates of viral sup-
pression [37–41]. To demonstrate how RMST can provide
further insight into these disparities, we describe 1) time
to all-cause mortality and 2) time to ART initiation among
a cohort of persons engaged in HIV clinical care, stratify-
ing by report of IDU as an HIV acquisition risk factor. We
begin by examining all-cause mortality because we antici-
pate mortality to be an important competing event for
ART initiation and to serve as an example of the imple-
mentation of the use of inverse probability-weighted
RMST in a setting with no competing events.
We followed individuals who enrolled in continuity HIV

care at the Johns Hopkins Moore Clinic for HIV Care from
1994 to 2014, who consented to share their medical record
data with the Johns Hopkins HIV Clinical Cohort (> 90% of
patients) and who had not yet initiated ART. When analyz-
ing time to all-cause mortality, patients were followed from
cohort enrollment until death, 5 years of follow-up or ad-
ministrative censoring in June 2014. Date of death was ascer-
tained through periodic matches against the National Death
Index and the Social Security Death Index, so patients would
not have to return to clinic in order to have their date of
death measured and there are no competing events. While
ART initiation impacts all-cause mortality, it is on the causal
pathway between injection drug use and mortality; because
this analysis focuses on the total effect of history of injection
drug use on mortality, we do not account for ART.
When analyzing time to ART initiation, patients were

followed from clinic enrollment until ART initiation (defined
as the initiation of a three-drug regimen on a single day),
loss-to-clinic (defined as the date on which a patient has
gone one year without a CD4 or HIV RNA measurement or
a clinic visit), death, or 5 years of follow-up or administrative
censoring in June 2014. Patients must be under clinical care
in order to receive treatment. In this analysis, we assume that
patients only receive ART through our clinic. Therefore,
patients must return to clinic for the outcome to occur. By
definition, we can never observe ART initiation among pa-
tients who die or drop out of clinical care (loss-to-clinic)
prior to ART initiation; thus we consider death and loss-to-
clinic to be competing events in this analysis.
We excluded 285 individuals (8.6%) with missing covari-

ate information (33 missing both CD4 count and HIV
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RNA level, 18 missing CD4, 234 missing HIV RNA). The
final analytic sample contained 3044 patients.
We generated stabilized inverse probability of exposure

weights to standardize the Kaplan-Meier survival curves for
all analyses. The denominators of the weights were estimated
using predicted probabilities from a logistic regression model
for IDU as an HIV acquisition risk factor conditional on the
following baseline characteristics: sex, race, prior AIDS diag-
nosis, prior mono- or dual-antiretroviral therapy, age, CD4
cell count and log10 HIV RNA level. The numerators of the
weights were the marginal probability of being in the expos-
ure group that was observed for that individual. Baseline co-
variate values were those measured closest to enrollment
date within a window of 6 months before to 6 months after
enrollment and prior to ART initiation. Continuous covari-
ates were modeled with basis cubic splines [42].
When analyzing time to ART initiation we generated two

sets of curves for PWID and persons who did not inject
drugs: 1) the inverse probability weighted CIF for time to
ART initiation based on Eq. 3 (weights were as defined
above); and 2) the inverse probability weighted cause-specific
CIF for a composite event defined as death or loss-to-clinic.
Because death and loss-to-clinic preclude the occurrence
and/or observation of ART initiation, we treat these two
events as competing events [43]. We present the expected
time not on ART while alive and enrolled in the clinic which

is, Â J¼ART initiationðtÞ−L̂ J≠ART initiationðtÞ, where Â J¼ART initiation

ðtÞ is the area under the survival curve for time to ART initi-
ation and L̂ J≠ART initiationðtÞ is the area under the CIF for
death or loss-to-clinic prior to ART initiation.
To examine whether results were modified by calendar

time, we stratified all analyses by enrollment cohort and
calculated the 5-year RMST. Enrollment cohorts were
loosely defined by changes to ART initiation guidelines
(1996–2001, 2002–2007, 2008–2014). We selected 5 years
as the time point in which to calculate the RMST (t*) be-
cause of our stratified analysis by enrollment cohort. The
most recent enrollment cohorts would have a maximum
5.5 years of follow-up prior to administrative censoring in
June 2014. Furthermore, the majority of ART initiation
events are likely to occur within 5 years of clinical enroll-
ment, so RMST differences in ART initiation are unlikely
to change significantly after 5 years. For all estimates, we
calculated 95% confidence intervals (CI) using the 2.5th
and 97.5th percentiles of 10,000 non-parametric bootstrap
estimates based on unrestricted random samples from the
original data [44]. All analyses were conducted using R
version 3.3.1 [45]. Sample R code for calculating RMST
with competing risks is provided in Additional file 1.

Results
Of the 3044 patients included in the time to ART analysis a
majority were male (65.2%) and non-Hispanic Black (77.2%).

At clinic enrollment, the median age was 39 years (interquar-
tile range (IQR) = 33–45 years), 22.1% of patients had a prior
AIDS diagnosis and 25.9% had received prior mono- or
dual-antiretroviral therapy. The baseline median CD4 cell
count was 279 (IQR= 94–480) cells/μL and the baseline
median log10 HIV RNA was 4.6 (IQR= 3.9–5.3) copies/mL.
Overall, 1155 (37.9%) of the patients were PWID. PWID
were older, more likely to be black, more likely to have re-
ceived prior mono-or dual-antiretroviral therapy, and more
likely to enroll in care prior to 2002 (Table 1).
All-cause mortality was higher among PWID compared to

persons who did not inject drugs, emphasizing the import-
ance of accounting for death as a competing risk when
examining time to ART initiation. The 5-year RMST to
death was 4.51 years for PWID and 4.70 years for people
who did not inject drugs. In other words, in the first 5 years
following clinic enrollment, PWID spend an average of
4.51 years alive and people who do not inject drugs spend an
average of 4.70 years alive. The difference in restricted mean
survival between PWID and people who did not inject drugs
was − 0.19 years (95% CI: -0.29, − 0.09). Panel A of Fig. 1
shows the difference in RMST to all-cause mortality compar-
ing PWID and persons who did not inject drugs between 0
and 5 years after clinic enrollment. There is a near zero
difference in expected time to death between PWID and
persons who did not inject drugs until approximately 2 years
after clinic enrollment. Following two years of follow-up,
PWID begin to experience a shorter time to all-cause mor-
tality than people who did not inject drugs, resulting in an
increasingly negative difference in RMST over time.
Figure 1 shows the relationship between PWID and all

cause mortality for the RMST as well as three of the
most common estimands: the hazard ratio (HR), the risk
ratio (RR), and the risk difference (RD). The RR and RD
were calculated using the Kaplan-Meier estimates for
the survival function. As stated above, PWID experience
an increasingly shorter time to death after 2 years of
clinic enrollment based on the RMST. The HR is a more
variable measure but for the majority of time points at
which an event occurs, the hazard of all-cause mortality
is higher among PWID and the HR estimated from the
Cox model is 1.54 (Fig. 1, panel B). The RR is approxi-
mately 1 (Fig. 1, panel C) and the RD is approximately 0
(Fig. 1, panel D) for a few months after enrollment be-
fore increasing. Overall the four different effect estimates
indicate an increased all-cause mortality for PWID com-
pared to patients who do not inject drugs.
When we examine all-cause mortality by era of clinic

enrollment (Table 2), the difference in time to death
comparing PWID to persons who did not inject drugs in
the first five years after clinic enrollment is larger in
magnitude in the more recent time periods. The differ-
ence in expected time to death over 5 years of follow-up
among PWID compared to persons who did not inject
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drugs is − 0.15 years (95% CI: -0.27, − 0.02) for those en-
tering care between 1996 and 2001, − 0.35 years (95%
CI: -0.64, -0.05) for those entering care between 2002
and 2007, and − 0.30 years (95% CI: -0.53, 0.01) for those
entering care between 2008 and 2014.
Figure 2 shows the CIF for death or loss-to-clinic and

the complement of the CIF for ART initiation by history
of IDU. These curves depict the restricted mean time
after ART initiation (Fig. 2, area ‘a’) and the restricted
mean time after the competing events of mortality and
loss-to-clinic (Fig. 2, area ‘c’). Area ‘b’, the 5-year re-
stricted mean time spent not on ART while alive and
retained in the clinic was 1.51 years (95% CI: 1.44, 1.87)
for PWID and 1.43 years (95% CI: 1.37, 1.64) for persons
who did not inject drugs. PWID experienced a 0.08 year
delay (95% CI: -0.10, 0.38) in time to ART initiation
compared to persons who did not inject drugs. There
was a measurable difference in time spent not on ART
while alive and enrolled in clinic for those entering care
between 2008 and 2014; the 5-year difference in re-
stricted mean time to ART while alive and in clinic was
1.39 years (95% CI: 0.15, 1.98), representing a delay in
initiation of ART for PWID as compared to those who
did not inject drugs (Table 3).

We compare the RMST spent not on ART but alive and
in clinic to the cause-specific and subdistribution hazard
ratios where ART initiation is the outcome of interest and
death or loss-to-clinic is the competing event in Fig. 3.
We see that PWID spend a longer time alive and in clinic
while not on ART as compared to persons who do not in-
ject drugs, and this difference becomes less pronounced
as t* increases (Fig. 3, panel A). Both the cause-specific
(Fig. 3, panel B) and the subdistribution hazard ratios (Fig.
3, panel C) are variable early into follow-up but level off
and are consistently below 1. The subdistribution hazard
ratio is closer to the null than the cause-specific. The in-
ference from both the cause-specific and the subdistribu-
tion hazard ratio is that PWID have a lower rate (i.e.,
cause-specific hazard) and have a lower qualitative risk
(i.e., subdistribution hazard) of ART initiation compared
to persons who do not inject drugs.

Discussion
Using the restricted mean survival time approach, we
evaluated the expected time to all-cause mortality and
ART initiation by history of IDU among a cohort of
HIV-infected patients receiving treatment in Baltimore,
MD. We estimated that, between 1996 and 2014, PWID

Table 1 Patient baseline characteristics by history of injection drug use

N (%)

Persons who did not inject drugs
N = 1889 (62.1%)

PWID
N = 1155 (37.9%)

Total
N = 3044

Age, median (IQR) 38.2 (31.4–45.3) 41.2 (36.7–46.4) 39.5 (33.7–45.8)

Sex

Female 655 (34.7) 403 (34.9) 1058 (34.8)

Male 1234 (65.3) 752 (65.1) 1986 (65.2)

Race

Black 1395 (73.8) 955 (82.7) 2350 (77.2)

White 415 (22.0) 184 (15.9) 599 (19.7)

Other 79 (4.2) 16 (1.4) 95 (3.1)

CD4, median (IQR) 280 (89–478) 279 (103–485) 279.5 (94–480)

Log10 RNA, median, (IQR) 4.7 (3.9–5.3) 4.6 (3.8–5.2) 4.6 (3.9–5.2)

Prior AIDS

Yes 411 (21.8) 261 (22.6) 672 (22.1)

No 1478 (78.2) 894 (77.4) 2372 (77.9)

Prior ART

Yes 431 (22.8) 357 (30.9) 788 (25.9)

No 1458 (77.2) 798 (69.1) 2256 (74.1)

Year of clinic enrollment

1996–2001 971 (51.4) 787 (68.1) 1758 (57.8)

2002–2007 468 (24.8) 222 (19.2) 690 (22.7)

2008–2014 450 (23.8) 146 (12.6) 596 (19.6)

Abbreviations: ART, antiretroviral therapy, IQR interquartile range, PWID, persons who inject drugs
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a b

c d

Fig. 1 The effect of follow-up time on four different effect estimates comparing all-cause mortality by IDU. Panel a) displays the standardizeda difference
(with 95% confidence interval) in restricted mean time to all-cause mortality by history of injection drug use over follow-up time. Panel b) displays the
standardizeda all-cause hazard ratio (HR) over follow-up time. Panel c) displays the standardizeda all-cause mortality risk ratio (RR) over follow-up time. Panel
d) displays the standardizeda all-cause mortality risk difference (RD) over follow-up time. a Curves are standardized to the distribution of sex, race, AIDS
diagnosis, prior ART mono- or dual-therapy, age, CD4 cell count, log10 HIV viral load, Hepatitis C, history of smoking, and hazardous alcohol use in the total
sample at clinic enrollment using inverse probability of exposure weights. b Dashed grey lines represent the null hypothesis (i.e. difference in RMST = 0, HR
= 1, RR = 1, and RD= 0) in each panel. c The dot-dash black line on panel b is the HR estimated from the Cox Proportional Hazards Model. d The solid black
line on panels b, c, and d is the lowess smoother to show the overall trend of the estimands. e The RR and RD is defined as ð1−SwPWIDðtÞÞ=ð1−Swnon−PWIDðtÞÞ
and ð1−SwPWIDðtÞÞ−ð1−Swnon−PWIDðtÞÞ, respectively, where Sw∙ ðtÞ is the weighted survival curve

Table 2 Standardizeda 5-year restricted mean time to all-cause mortality by history of injection drug use

Expected time (years) to All-Cause Mortality

PWID Persons who did not inject drugs Difference

RMST 95% CIb RMST 95% CI RMST 95% CI

All years 4.51 4.42, 4.57 4.70 4.65, 4.74 −0.19 −0.29, −0.09

1996–2001 4.47 4.36, 4.58 4.62 4.54, 4.68 −0.15 −0.27, − 0.02

2002–2007 4.45 4.18, 4.71 4.80 4.56, 5.00 −0.35 −0.64, − 0.05

2008–2014 4.58 4.36, 4.87 4.88 4.80, 4.97 −0.30 −0.53, 0.01
aEstimates are standardized to the distribution of sex, race, AIDS diagnosis, prior ART mono- or dual-therapy, age, CD4 cell count, and log10 HIV viral load in the
total sample at clinic enrollment using inverse probability of exposure weights
b95% CI was based upon the 2.5th and 97.5th percentiles of 10,000 non-parametric bootstrap resamples
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had an expected 5-year restricted mean survival that was
shorter than people who did not inject drugs by
0.19 years, after standardizing on baseline clinical and
demographic covariates. We did not see a difference in
time to all-cause mortality after 5 years of follow-up in
each era of clinic enrollment, likely due to the relatively
few events occurring within 5 years of clinic enrollment.
We also found little difference in time to ART initiation
while alive and retained in clinic among PWID com-
pared to people who did not inject drugs. Other studies
that have reported disparities in time to ART initiation
among PWID compared to persons who did not inject
drugs may not have accounted for death or loss-to-clinic
as competing risks explicitly.
This study had several strengths. The sample size was suf-

ficiently large to examine trends in time to ART initiation

stratified by enrollment cohort, which is of particular interest
because of changing treatment guidelines. We highlighted
the novel approach of using inverse probability weighting to
standardize the RMST in the setting of competing events. By
using inverse probability weights to standardize cohorts of
PWID and persons who did not inject drugs to have the
same distribution of baseline covariates, we were able to esti-
mate restricted mean times to ART initiation that are not
confounded by different clinical indications for treatment.
This study also had limitations. Data were collected

from a single HIV clinic in an urban academic center and
may not be generalizable to other sites. Additionally, we
were unable to ascertain whether patients who were lost-
to-clinic began treatment at a different clinic. As such, our
estimates of time to ART initiation may be biased. Finally,
we examined differences in RMST to ART initiation by

a b

Fig. 2 Standardizeda cumulative incidence functions (CIF)b for ART initiation and for the composite competing event, death or loss-to-clinic, for
PWID (a) and non-IDU (b). a Curves are standardized to the distribution of sex, race, AIDS diagnosis, prior ART mono- or dual-therapy, age, CD4
cell count and log10 HIV RNA level in the total sample at enrollment using inverse probability of exposure weights. bSolid line is the standardized
1-CIF (cumulative incidence function) for ART initiation. Dashed line is the CIF for the composite competing event, death or loss-to-clinic. Area “a”
is the 5-year restricted mean time after ART initiation; “b” is the 5-year restricted mean time spent not on ART while alive and in clinic; “c” is the
5-year restricted mean time after death or loss-to-clinic

Table 3 Standardizeda 5-year RMSTb spent not on ART but alive and retained in clinicb by IDU

Expected time (years) to ART initiation

PWID Persons who did not inject drugs Difference

RMST 95% CIc RMST 95% CI RMST 95% CI

All years 1.51 1.44, 1.87 1.43 1.37, 1.64 0.08 −0.10, 0.38

1996–2001 1.61 1.51, 2.25 1.54 1.48, 1.91 0.07 −0.26, 0.67

2002–2007 1.48 1.25, 2.32 1.61 1.26, 2.09 −0.13 −0.82, 0.72

2008–2014 2.87 2.66, 3.52 1.48 1.34, 2.73 1.39 0.15, 1.98
aEstimates are standardized to the distribution of sex, race, AIDS diagnosis, prior ART mono- or dual-therapy, age, CD4 cell count and log10 HIV viral load in the
total sample at clinic enrollment using inverse probability of exposure weights
bThe RMST spent not on ART but Alive and Retained in Clinic refers to the difference of the integration of the 1-CIF for ART initiation minus the CIF for the com-
posite of mortality and loss-to-clinic
cBased on integration between 1-CIF for ART 2.5th and 97.5th percentiles of 10,000 non-parametric bootstrap resamples
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self-reported history of IDU as an HIV acquisition risk fac-
tor. History of IDU may be under-reported due to social
desirability bias. Furthermore, history of IDU does not
correlate perfectly with ongoing IDU and our estimates
should not be interpreted as such.
Restricted mean survival time is a useful alternative to

the traditional hazard ratio. The use of proportional haz-
ards models in the presence of competing risks whether
examining the cause-specific or subdistribution HR re-
mains subject to the proportionality assumption. Relax-
ing the proportional hazard assumption is possible, but
doing so means no longer having a single summary esti-
mate of association [15]. The RMST provides a single
summary measure of survival through time t∗ that avoids
this pitfall. Furthermore, the cause-specific HR may not
translate to an actual change in risk [43], while the
RMST is estimated directly from risk functions. Never-
theless, the hazard ratio, relative risk and risk difference
remain important measures in their own right [6].
As was demonstrated in the comparison of the RMST,

HR, RR, and RD, all four measures are useful in describing
the difference in all-cause mortality by history of injection
drug use. The RD can highlight the public health import-
ance of a particular exposure of interest as it is measured
on an absolute scale and the HR provides the instantan-
eous relative rate at a particular point in time. Compared
to the HR, an advantage of RMST is that it has more
power to detect differences between exposure groups
when the HR is close to 1 [18]. Further, unlike the HR,
RR, and RD that compare exposure groups at a single

point in time, the comparison of RMST between exposure
levels summarizes the difference in expected mean time to
an event for a given time interval. This is especially useful
when comparing survival functions that diverge and later
converge or cross. A final advantage of the RMST is the
ease of interpretability when summarizing delays in care
or decreases in survival. The use of RMST in our analysis
to describe the difference in time not on ART while alive
and in clinic facilitated the interpretation of our results by
providing a clinically meaningful measure.

Conclusions
RMST can be calculated easily using non-parametric and
semi-parametric estimators. We have demonstrated use
of RMST to determine that PWID have lower expected
survival over the first five years of clinical engagement
compared to persons who did not inject drugs. However,
PWID have similar expected time to ART initiation after
properly accounting for their greater risk of death and
loss-to-clinic as competing events. In conclusion, the re-
stricted mean survival time is a useful alternative in ana-
lyzing time-to-event data that can provide
supplementary information to traditional survival esti-
mands (e.g. the hazards ratio or risk difference).

Additional file

Additional file 1: Contains the R code used to set up the analysis, as
well as an outline of how the various tables in results section were
generated. (DOCX 94 kb)

a b c

Fig. 3 The effect of follow-up time on three different effect estimates comparing ART initiation by IDU accounting for the competing event of death and
loss-to-clinic. Panel a) displays the standardizeda difference (with 95% confidence interval) in restricted mean time in years spent not on ART while alive
and in clinic by history of injection drug use over follow-up time. Panel b) displays the standardizeda cause-specific hazard ratio (HR) over follow-up time.
Panel c) displays the standardizeda subdistribution mortality risk ratio (RR) over follow-up time. a Curves are standardized to the distribution of sex, race,
AIDS diagnosis, prior ART mono- or dual-therapy, age, CD4 cell count, log10 HIV viral load, Hepatitis C, history of smoking, and hazardous alcohol use in the
total sample at clinic enrollment using inverse probability of exposure weights. b Dashed grey lines represent the null hypothesis (i.e. difference in
RMST = 0 and HR = 1) in each panel. c The solid black line on panels B and C is the lowess smoother to show the overall trend of the estimands
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