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Abstract

Understanding the impact of gene knockouts on cellular physiology, and metabolism in particular, 

is centrally important to quantitative systems biology and metabolic engineering. Here, we present 

a comprehensive physiological characterization of wild-type Escherichia coli and 22 knockouts of 

enzymes in the upper part of central carbon metabolism, including the PTS system, glycolysis, 

pentose phosphate pathway and Entner–Doudoroff pathway. Our results reveal significant 

metabolic changes that are affected by specific gene knockouts. Analysis of collective trends and 

correlations in the data using principal component analysis (PCA) provide new, and sometimes 

surprising, insights into E. coli physiology. Additionally, by comparing the data-to-model 

predictions from constraint-based approaches such as FBA, MOMA and RELATCH we 

demonstrate the important role of less well-understood kinetic and regulatory effects in central 

carbon metabolism.
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1. INTRODUCTION

Gene knockouts are widely used in biology to identify specific functions of corresponding 

gene products, as well as to study their roles in broader systems contexts. The utility of this 

approach has long been appreciated in the study of microbial metabolism, particularly by 

observing responses to knockouts of metabolic enzymes and global regulators. For example, 

in the model organism Escherichia coli, multiple ‘-omics’ techniques have been applied to 

gain insights into metabolic robustness (Ishii et al., 2007), transcriptional regulatory control 

(Haverkorn van Rijsewijk et al., 2011), hidden reactions (Nakahigashi et al., 2009), as well 

as responses following adaptive evolution (Charusanti et al., 2010; Fong et al., 2006). 

Metabolic fluxes are often the output of interest, and numerous studies have applied 13C-

metabolic flux analysis (13C-MFA) to knockouts of genes in E. coli central carbon 

metabolism and its global regulators (Long and Antoniewicz, 2014a). Many of these studies 
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have been facilitated by the Keio collection of all viable single-gene E. coli knockouts (Baba 

et al., 2006). Knockout studies such as these are highly useful in improving our 

understanding of the structure and dynamics of metabolic networks, and provide data for 

assessing and improving our ability to predict complex genetic perturbation responses. This 

ability is critical to rational strain design in metabolic engineering, and the difficulty of such 

predictions has long been identified as a key obstacle in the field (Bailey, 1991; 

Stephanopoulos, 1999).

Due to the centrality of gene perturbation response prediction to metabolic engineering, a 

variety of modeling approaches have been developed and applied. The most prominent set 

are the constraint-based reconstruction and analysis (COBRA) methods, which rely on 

metabolic network stoichiometry and a defined ‘objective function’. These include flux 

balance analysis (FBA) (Edwards and Covert, 2002), minimization of metabolic adjustment 

(MOMA) (Segre et al., 2002), regulatory on/off minimization of metabolic flux changes 

(ROOM) (Shlomi et al., 2005), and relative optimality in metabolic networks (RELATCH), 

which also includes gene expression data from the reference state (Kim and Reed, 2012). 

These predictive models are then implemented as tools for rational strain design, such as in 

OptKnock (Burgard et al., 2003; Chowdhury et al., 2014; Ranganathan et al., 2010).

In a recent review (Long and Antoniewicz, 2014a), we highlighted important gaps in studies 

of E. coli knockout metabolism. For example, knockouts of many genes in central carbon 

metabolism have not been studied at all, and flux results from those that have been studied 

are often inconsistent or difficult to compare due to differences in culturing conditions and 

analytical approaches. This has impeded broad systems biology analyses that would be 

possible with a large, self-consistent study, as well as by integrating flux data with 

complimentary phenotypic observations. Illustrating the broad interest of such data, Mackie 

et al. (Mackie et al., 2014) recently suggested that knockout phenotypic data would be an 

important addition to the Ecocyc database.

Limitations in the available experimental data have inhibited thorough evaluation of the 

various competing COBRA models and the development more mechanistic kinetic and 

regulatory models. Demonstrating the potential of the latter, Khodayari et al. (Khodayari et 

al., 2014) recently used flux data from seven E. coli knockout mutants to estimate the 

parameters of a kinetic model of central carbon metabolism. In efforts such as these, 

additional high quality physiological data would undoubtedly be of great use.

In this study, we present a comprehensive physiological characterization of wild-type E. coli 
and 22 knockouts of central carbon metabolism enzymes. The scope of this work consists of 

the following physiological data: growth rates, substrate uptake rates, product secretion 

rates, biomass and acetate yields, and biomass composition. These data were collected for 

the knockouts of upper central carbon metabolism, defined here to include glucose 

transporters, the upper portion of the glycolysis (EMP) pathway, pentose phosphate pathway 

(PPP), and Entner-Doudoroff (ED) pathway (Figure 1). In this work, we chose to study 

cellular responses under aerobic, batch (glucose-rich) conditions during exponential growth 

in M9 minimal medium. Under these conditions, no external growth limitations are imposed 

on the cells. We therefore expect to observe metabolic responses that inherently reflect the 
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altered metabolic state of the knockouts, i.e. more so than would be observed with imposed 

growth limitations. Previous continuous culture studies reported surprisingly little metabolic 

variation when E. coli knockouts were grown at an arbitrary low growth rate (Ishii et al., 

2007).

2. METHODS

2.1. Chemicals

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO). [U-13C]Glucose was 

purchased from Cambridge Isotope Laboratories (Andover, MA). M9 minimal medium was 

used for all experiments. All media and solutions were sterilized by filtration.

2.2. Strains and culture conditions

E. coli strains were obtained from the Keio collection (GE Healthcare Dharmacon), which 

were generated by one-step inactivation of all non-essential genes in E. coli K-12 BW25113 

(Baba et al., 2006). The specific strains used in this study are listed in Table 1. The Keio 

collection contains two strains per gene knockout, and the reader should note which specific 

strain was used here, as differences resulting from adaptive evolution or contamination of 

stock cultures are possible. Two knockouts were excluded from this study: ΔfbaA and ΔrpiA 
(Figure 1). ΔfbaA is not available from the Keio collection, indicating it is likely essential; 

the purchased ΔrpiA was validated to not be the correct strain. We were unable to create a 

rpiA knockout de novo, suggesting that this gene may be essential.

For assessment of biomass and excreted metabolite yields, each strain was grown in aerated 

mini-bioreactors with 10 mL working volume (Leighty and Antoniewicz, 2013) in M9 

minimal medium with 2 g/L glucose. Cultures were grown until glucose depletion. Biomass 

yields were calculated by regression of glucose concentrations and optical density (OD600) 

measurements (Eppendorf BioPhotometer). Supernatant was collected at the time of glucose 

depletion for analysis of excreted metabolites by HPLC (Au et al., 2014). For assessment of 

dry weight and biomass composition, two biological replicate 100 mL cultures were grown 

aerobically in shaker flasks, in M9 minimal medium with 2 g/L glucose. Cells were 

harvested at mid-exponential phase (OD600 ≈ 0.7). At that point, samples for dry weight 

analysis were taken by filtration of 70 mL of culture using a 0.2 µm cellulose acetate filter 

(Sartorius 11107-47-N), followed by drying for several days at 80 °C until constant weight. 

Additionally, samples containing the equivalent of 1 mL of culture at OD600 = 1.0 (roughly 

0.3 mg of dry weight) were washed twice with glucose-free M9 medium and used for 

biomass composition analysis.

2.3. Biomass composition analysis

The methods used for quantifying biomass composition were previously described in detail 

(Long and Antoniewicz, 2014b). Briefly, samples were prepared by three respective 

methods: hydrolysis of protein and subsequent TBDMS derivatization of amino acids; 

hydrolysis of RNA and glycogen and subsequent aldonitrile propionate derivatization of 

sugars (ribose and glucose, respectively); and fatty acid methyl ester derivatization. In total, 

17 amino acids were quantified. The amino acids arginine, cysteine and tryptophan are 
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degraded during hydrolysis and were thus not detected. For total protein quantification, we 

assumed the values previously reported (Neidhardt, 1987) for these three amino acids. 

Glutamine and asparagine were deaminated to glutamate and aspartate, respectively, during 

hydrolysis; thus, we report the combined pools of each. Quantification of all species was 

achieved by isotope ratio analysis using an isotopically labeled standard and a naturally 

labeled sample. In this study, the standard was generated by growing wild-type E. coli on 

[U-13C]glucose and aliquoting identical (1 mL of an OD600 = 1.0) samples of this “fully 

labeled” biomass. These were centrifuged and washed twice with M9 medium. The 

composition of the fully labeled biomass was characterized using unlabeled chemical 

standards, and subsequently these were used as standards by co-dissolving with the 

unlabeled samples at the beginning of each respective analytical method.

2.4. Gas chromatography-mass spectrometry

GC-MS analysis was performed on an Agilent 7890B GC system equipped with a DB-5MS 

capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; Agilent J&W Scientific), 

connected to an Agilent 5977A Mass Spectrometer operating under ionization by electron 

impact (EI) at 70 eV. Helium flow was maintained at 1 mL/min. The source temperature was 

maintained at 230 °C, the MS quad temperature at 150 °C, the interface temperature at 

280 °C, and the inlet temperature at 250 °C. For GC-MS analysis of amino acids, 1 µL was 

injected at 1:40 split ratio. The column was started at 80 °C for 2 min, increased to 280 °C at 

7 °C/ min, and held for 20 min. For GC-MS analysis of fatty acid methyl esters (FAME) and 

sugar derivatives, 1 µL was injected splitless (Crown et al., 2015b). The column was started 

at 80 °C for 2 min, increased to 280 °C at 10 °C/min, and held for 12 min.

2.5. Calculation of oxygen uptake and carbon dioxide production rate

The carbon dioxide production rate was calculated from overall carbon balance, accounting 

for glucose uptake, acetate secretion, and biomass formation. The oxygen uptake rate was 

calculated from overall redox balance using the degrees of reduction and production/

consumption rates of glucose, acetate and biomass. The degree of reduction of biomass of 

each strain was calculated from the measured biomass composition. The degree of reduction 

(γ) was calculated as follows (Antoniewicz et al., 2007; Crown and Antoniewicz, 2013):

2.6. COBRA modeling

Flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), and the 

relative change (RELATCH) algorithms were implemented through the COBRA Toolbox 

2.0 in Matlab 2012b (Kim and Reed, 2012; Schellenberger et al., 2011) using the E. coli 
iAF1260 genome scale model (Feist et al., 2007). CPLEX from Tomlab (http://tomopt.com) 

was used as the LP and QP solvers. RELATCH was downloaded from the Reed Laboratory 

website (http://reedlab.che.wisc.edu/codes.php). For FBA calculations, the upper bounds for 

glucose and oxygen uptake rates were set at wild-type values of 8.5 mmol/gdw/hr and 12 

mmol/gdw/hr respectively (see Results), and growth rate was optimized. For MOMA and 

RELATCH, the reference state was generated using fluxes previously reported from a 13C-
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MFA study (Leighty and Antoniewicz, 2013) as follows. First, the reported fluxes were re-

normalized to the reported glucose uptake rate of 8.5 mmol/gdw/hr. Then, in the iAF1260 

model, the upper and lower bounds for key branch point reactions in central carbon 

metabolism were set as the measured value plus or minus 0.05 respectively, corresponding 

approximately to the reported 95% confidence intervals. These included the glucose-6-

phosphate isomerase (‘PGI’), glucose-6-phosphate dehydrogenase (‘G6PDH2r’, otherwise 

referred to as “zwf” here), 6-phosphogluconate dehydratase (‘EDD’), triose phosphate 

isomerase (‘TPI’), glyceraldehyde-3-phosphate dehydrogenase (‘GAPD’), pyruvate kinase 

(‘PYK’), phosphotransacetylase (‘PTAr’, toward acetate production), citrate synthase (‘CS’), 

isocitrate lyase (‘ICL’), malic enzyme (ME1, ME2), phosphoenolpyruvate carboxylase 

(‘PPC’), and phosphoenolpyruvate carboxykinase (‘PPCK’) reactions. The upper limit of the 

glucose uptake rate was set to 8.5 mmol/gdw/hr, at least 95% of which was required to be 

transported via the PTS system (‘Glcptspp’). An FBA simulation was then run to obtain a 

genome-scale reference state flux solution. For RELATCH, gene expression data for the 

wild-type reference state was included (Covert et al., 2004). All reaction bounds, including 

all transport bounds, were lifted for the calculation of the knockout phenotype using MOMA 

and RELATCH.

3. RESULTS

3.1. Characterization of physiological responses to gene knockouts

Biomass dry weights—The experimentally determined OD600 to cell-dry-weight 

conversion factors are summarized in Figure 2 (top right). Out of the 23 strains studied here, 

21 strains had a conversion factor that conformed to a normal distribution (as confirmed by 

the Lilliefors normality test) with a mean of 0.31 g/L/OD600 and a standard deviation of 

0.02. The two notable outliers were ΔptsG with a dry weight conversion factor of 0.41 

g/L/OD600 and ΔtpiA with a dry weight conversion factor of 0.41 g/L/OD600. The high 

conversion factors for these two strains were consistently observed in multiple biological 

replicates. Interestingly, we also observed significant foaming in cultures of these two 

strains, while little or no foaming was observed with the other 21 strains. For all subsequent 

calculations we used the individual dry weight conversion factors for ΔptsG (0.42 g/L/

OD600) and ΔtpiA (0.41 g/L/OD600), and used the average value of 0.31 g/L/OD600 for the 

other 21 strains.

Growth rates—The measured growth rates are shown in Figure 2 (top left). The growth 

rate of wild-type strain was 0.63 hr−1. Only one knockout strain had a significantly higher 

growth rate, Δpgm, which grew with a specific growth rate of 0.68 hr−1. The slowest 

growing strains were ΔpfkA (0.16 hr−1), Δtpi (0.17 hr−1), Δpgi (0.19 hr−1), ΔptsG (0.25 hr
−1), Δrpe (0.30 hr−1) and Δcrr (0.44 hr−1). Other strains had growth rates similar to or 

slightly less than the wild-type.

Biomass yields—We observed relatively little variability in the measured biomass yields 

(Figure 2, bottom left). Most knockouts had similar values to the wild-type (0.42 gdw/g). The 

ΔptsG strain had a higher yield of 0.57 gdw/g. Other knockouts had yields similar to or less 

than the wild-type, with ΔybhE having the lowest biomass yield (~0.31 gdw/g).
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Acetate yields—Relatively large variability was observed for acetate yields (Figure 2, 

bottom right), and correspondingly, the acetate secretion rates. The wild-type strain 

produced 0.71 mol of acetate per mol of glucose consumed. The knockouts ΔptsG and Δpgi 
produced little or no acetate, while others produced anywhere from ~0.4 mol/mol (ΔpfkA 
and ΔtpiA) to as much as 0.95 mol/mol (ΔybhE and Δgnd). The variations in acetate yields 

likely reflect significant differences in underlying internal fluxes, particularly with respect to 

the acetyl-CoA node and the TCA cycle.

Glucose uptake rates—The calculated glucose uptake rates are shown in Figure 3. The 

uptake rate for wild-type strain was 8.5 mmol/gdw/hr, consistent with previous reports 

(Crown et al., 2015a; Haverkorn van Rijsewijk et al., 2011; Leighty and Antoniewicz, 2013). 

Large reductions in glucose uptake rate were observed in some of the slow growing strains, 

with ΔptsG, Δpgi, ΔpfkA, and ΔtpiA all at approximately 2 mmol/gdw/hr. Additionally, Δcrr 
and Δrpe had lower glucose uptake rates at approximately 5 mmol/gdw/hr. Interestingly, two 

knockouts consumed glucose at a higher rate than the wild-type, the fastest being Δpgm at 

10.1 mmol/gdw/hr. Other knockouts had uptake rates similar to or slightly less than the wild-

type.

Gas exchange rates—Specific oxygen uptake (Figure 3, right) and carbon dioxide 

evolution rates were calculated from redox and carbon balances, respectively (see also 

Figure S1). Despite relatively larger uncertainty in these estimated rates, resulting from 

propagation of measurement errors, some significant variations were still apparent. The 

specific oxygen uptake rate of wild-type was estimated to be ~13 mmol/gdw/hr, consistent 

with prior literature (Chen et al., 2011; Leighty and Antoniewicz, 2013). The strains ΔptsG, 

Δpgi, ΔpfkA, and ΔtpiA consumed oxygen at a much lower rate, ~4 to 5 mmol/gdw/hr; while 

other strains consumed oxygen at a higher rate than wild-type, particularly Δpgm and ΔrpiB 
(~19 mmol/gdw/hr). The carbon dioxide secretion rates and respiratory coefficients (RQ = 

CO2 produced per O2 consumed) are shown in Figure S1. The RQ values for all strains were 

between 1.1 and 1.3, with no significant outliers.

Biomass composition—The biomass compositions for all 23 strains are shown in Figure 

4 (see also Supplemental Materials for more details). We observed several striking 

differences in the relative distribution of the four major biomass components, i.e. proteins, 

RNA, lipids and glycogen. The total protein content varied between 45 wt% and 59 wt% 

(wild-type strain 51 wt%). The RNA content ranged between 14 wt% and 23 wt%, with 

most knockouts having lower RNA content than wild-type (21 wt%). The lipid content 

varied significantly between 3.7 wt% and 6.4 wt% (wild-type strain 4.7 wt%). The glycogen 

content also varied widely, ranging from 0.6 wt% to 8.9 wt%, with most knockout strains 

accumulating more glycogen than the wild-type (3.2 wt%). A notable exception was Δpgm, 

which had almost no glycogen, consistent with the gene’s key role in generating the 

precursor glucose 1-phosphate for glycogen synthesis. The relatively large variations in 

biomass composition highlight the relevance of these measurements for interpreting the 

metabolic and physiological states of these strains.

The normalized distributions of amino acids (per gram of protein) were constant for all 

strains (Figure S2). In contrast, there was large variability in the distribution of fatty acids, 
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particularly amongst C16:0, C16:1 and C18:1 fatty acids (Figure S3). Interestingly, all slow-

growing strains (Δrpe, Δpgi, ΔpfkA, and ΔtpiA) had elevated C16:0 levels and decreased 

C18:1 levels. Another strain that stood out was Δfbp, which had more C16:1 than C16:0.

The calculated degrees of reduction and molecular weights of biomass are listed in Table S1. 

The degrees of reduction had minimal variation, ranging from 4.34 to 4.45 electrons per 

Cmol of biomass. The molecular weight of biomass also varied minimally, ranging from 26 

to 27 gdw per Cmol of biomass.

All physiological data are also provided in a spreadsheet in the Supplementary Materials.

3.2. Correlations in physiological data and PCA analysis

Next, we analyzed the measured growth data, yield data, and biomass composition data for 

pairwise correlations. The results are summarized in Figure 5, and scatter plots of several 

highly correlated physiological parameters are shown in Figure 6. Several correlations that 

we identified were anticipated based on prior literature reports (see below), while other 

correlations were more surprising. The growth rate correlated with several physiological 

parameters, including acetate yield, RNA content, and the content of the fatty acids C16:0 

and C18:1. There were also clear trade-offs between biomass and acetate yields, and 

between fatty acids, particularly C16:1 vs. C16:0, and C16:0 vs. C18:1. The strong 

correlations between biomass composition and growth rate are also highlighted in Figure 6. 

The RNA dependence on growth rate has been reported previously (Neidhardt, 1987; 

Pramanik and Keasling, 1997), and is thought to reflect the need for more ribosomes to 

support fast growth rates. The trade-off in fatty acid composition, on the other hand, in 

which the unsaturated C18:1 is preferred to the saturated C16:0 at faster growth rates, has 

not been previously reported to our knowledge.

Also shown in Figure 6 are the correlation between glucose uptake rate and both biomass 

and acetate yields, which has implications in terms of the acetate “overflow” metabolism 

interpretation (Basan et al., 2015; Majewski and Domach, 1990). E. coli is believed to 

produce acetate under aerobic conditions in order to maximize glucose uptake and growth 

rate under constrained oxidative phosphorylation capacity. Therefore, at a lower glucose 

uptake rate, a relatively higher oxidative phosphorylation flux would result in higher 

biomass yields and lower acetate flux. For example, Basan et. al (Basan et al., 2015) showed 

a highly linear dependence of acetate flux on growth rate. In our data, the expected trends 

are present: biomass yield correlates negatively with glucose uptake rate and acetate yield 

correlates positively with glucose uptake rate. However, it is interesting to note the imperfect 

nature of this relationship in our data, especially relative to the results of Basan et al. These 

results indicate that the gene knockouts are likely perturbing the system in ways that exceed 

this relatively well-understood phenomenon.

Principal component analysis (PCA) was also applied to explore correlations in our data set. 

PCA is a data reduction technique that can be used to identify redundant and linearly 

dependent measurements, allowing for the identification and interpretation of nontrivial 

variation in large multidimensional data sets such as is presented here. PCA defines a new 

lower-dimensional space spanned by new variables, or “principal components”, that are 
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linear combinations of the original variables and that capture the maximum amount of 

original variation in the data. For PCA analysis, all data was normalized and standardized 

prior to analysis. The results of PCA analysis are shown in Figure 7. Principal components 1 

and 2, accounted for 56% of the total data variability. PC1 mostly captured the growth rate 

dependencies discussed above (i.e. covariation of growth rate with acetate yield, %RNA, 

C16:0, and C18:1), while PC2 captured subtler correlations mostly in biomass composition 

data, particularly between %Carb, C14:0, and C18:0 (see coefficients in Figure 7). The 

various E. coli knockouts clustered in informative ways. For example, knockouts of the 

dominant enzymes in the EMP pathway (Δpgi, ΔpfkA, ΔtpiA) clustered in a region with low 

PC1 and low PC2 values. These knockouts are likely to disrupt the highly active glycolytic 

flux of wild-type cells. ΔptsG was an outlier with low PC1 and high PC2 values. Both 

isozymes of ΔtalA and ΔtalB also clustered together with low PC2 values, and several 

strains clustered with high PC1 and moderately high PC2 values. Interestingly, the two 

knockouts of the ED pathway (Δedd and Δeda) did not cluster together. Hierarchical 

clustering was also applied as an alternative clustering approach, and the resulting 

dendrogram is included in Figure S4. Overall, similar general relationships were observed 

with hierarchical clustering and PCA analysis, for example, the clustering of Δpgi, ΔpfkA, 

ΔtpiA and Δrpe, and the largest distances being between wild-type and this cluster, and 

between wild-type and ΔptsG.

3.3. Evaluating COBRA modeling predictions

Next, we applied several widely used COBRA modeling approaches to predict several of the 

directly measured physiological characteristics for the 23 strains. For FBA, the upper bounds 

on glucose and oxygen uptakes were taken to be those of the wild-type E. coli. The wild-

type glucose uptake and oxygen uptake rates applied were 8.5 mmol/gdw/hr and 12 

mmol/gdw/hr, respectively. The former was as measured in this study, and the latter value 

was chosen because it is within the experimental error of measurements in this study, is 

consistent with previous studies (Chen et al., 2011; Leighty and Antoniewicz, 2013), and 

results in FBA predictions of wild-type growth rate, biomass yield, and acetate yield that are 

consistent with experiment (Figure 8). These constraints are a necessary and common 

assumption of FBA in which the wild-type is assumed to be optimal. No uptake rate 

constraints were applied for MOMA or RELATCH. The reference state, generated as 

described in the Methods section, also had good agreement with the experimental wild-type 

growth rate, biomass and acetate yields (Figure 8). Of the 22 knockout strains studied here, 

13 were knockouts of isozymes catalyzing the same reaction, which do not impose new 

stoichiometric constraints, thus allowing FBA and MOMA to find the trivial wild-type 

solution. The same is true for Δglk, Δedd, Δeda, and Δfbp, which do not carry significant 

flux in the wild-type (both in the FBA solution and according to (Leighty and Antoniewicz, 

2013)). In contrast, RELATCH utilizes gene expression data to calculate the metabolic costs 

of adjustment associated with each individual gene knockout, including isozymes.

The performance of the three models in terms of predicting growth rate, biomass yield, and 

acetate yield are summarized in Figure 8. Pearson correlation coefficients were calculated to 

quantify the agreement between prediction and measurement. In general, FBA predicted 

very few deviations from the wild-type physiology for the 22 knockouts. This resulted in 
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poor agreement with the data, with correlation coefficients of 0.43, 0.17, and −0.12 for 

growth, biomass yield, and acetate yield respectively. As assuming growth rate optimization 

has long been considered invalid for un-evolved knockouts, this poor performance is not 

surprising. MOMA performed better in some cases, for example in predicting growth rates 

for the oxidative pentose phosphate pathway knockouts (predicted: 0.51–0.52 hr−1, 

observed: 0.58, 0.48, 0.53 hr−1), Δpgi (predicted: 0.46, observed: 0.19 hr−1) and ΔtpiA 
(predicted: 0.31, observed: 0.16 hr−1). The overall growth rate correlation coefficient was 

0.51. MOMA had a very poor overall agreement with the biomass yield data (ρ=0.07), and 

in particular overestimated the biomass yield penalties for Δpgi (predicted: 0.31 gdw/g, 

observed: 0.46 gdw/g) and ΔtpiA (predicted: 0.15 gdw/g, observed: 0.39 gdw/g). MOMA 

predicted almost no changes to acetate yields across all strains except ΔtpiA (0.55 mol/mol), 

also resulting in poor overall agreement (ρ=0.24). Of the three models tested here, 

RELATCH predictions agreed best with measurement for growth rate (ρ=0.54), biomass 

yield (ρ=0.52), and acetate yield (ρ=0.40). This is partially a result of the fact, as mentioned 

above, that RELATCH was the only one of the three without a large number of trivial (wild-

type) solutions for knockouts. While performing best of this set of COBRA methods, 

RELATCH did not fully capture the range of growth rates observed. The growth rates of all 

of the slowest growing strains were over-estimated. While performing by far the best in 

terms of biomass yield, it did not predict the high yield for ΔptsG. The acetate yield 

predictions of RELATCH were generally low relative to the measured values, but high for 

the non-producing strains ΔptsG and Δpgi.

4. DISCUSSION

The phenotypic data collected and reported here demonstrate that there are significant 

metabolic and physiological changes associated with the knockout of central carbon 

metabolism enzymes. The “rewired” metabolic phenotypes are direct responses to the 

altered metabolic network, with effects of stoichiometry, kinetics, and regulation manifested. 

The study of this rewiring can offer new insights into these areas. In the knockouts studied 

here, we observed a 4.3 fold range of growth rates, a 1.8 fold range in biomass yields, and a 

wide range of acetate producing phenotypes from non-producing (~0 mol/mol for Δpgi) to 

high-producing (~1 mol/mol for ΔybhE and Δgnd). The corresponding metabolic rates 

(glucose uptake, oxygen uptake, carbon dioxide secretion, and acetate secretion) had 

correspondingly high variations. These results demonstrate that under nutrient-rich 

conditions, the impact of many central carbon metabolism knockouts on the metabolic 

phenotype is dramatic. This contrasts with previous studies in which, for example, at a low 

dilution rate of 0.2 hr−1 no acetate was produced by any knockout strains (Ishii et al., 2007), 

including many of the same as are presented here.

There are several interesting cases to which more specific analyses can be applied. For 

example, it was unexpected that two knockouts to complimentary components of the PTS 

glucose transport (ΔptsG is the glucose-specific transporter, and Δcrr is its first partner 

phosphotransferase) displayed different growth and glucose uptake rates (Δcrr took up 

glucose approximately twice as fast). This could indicate the presence of regulatory effects 

or kinetic differences as alternative transporters or phosphotransferases are utilized. Also of 

note are the phenotypes of the many isozymes studied. Some of these knockouts were 
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severely impacted in terms of growth, indicating a heavy reliance on one dominant isozyme. 

This was the case for Δrpe and ΔpfkA, which had been previously reported to be the 

dominant isozymes (Kotlarz et al., 1975; Lyngstadaas et al., 1998). This was even more 

severely the case for fructose bisphosphate aldolase, where the primary fbaA is essential for 

E. coli growth even with rich media (Baba et al., 2006). In contrast, the growth rate was not 

nearly as affected for tktA/B and talA/B, indicating perhaps a more equitable and flexible 

distribution of the flux load. However, significant differences in biomass and acetate yields 

and biomass composition indicate that measurable phenotypic changes do occur in these 

cases. The one knockout studied here that was not completely integrated into a central 

carbon metabolic pathway was Δpgm. Phosphoglucomutase interconverts G6P and G1P, and 

under glucose rich conditions generates G1P for glycogen biosynthesis (Eydallin et al., 

2007). In this knockout, we observed an elevated growth rate, higher glucose and oxygen 

uptake rates, and negligible glycogen content, in agreement with results reported by Eydallin 

et al. These results show quantitatively the metabolic and growth “opportunity cost” that E. 
coli pays for security against future glucose starvation.

Looking at the growth and yield data in aggregate, we can extract general trends and identify 

outliers of interest. For example, we observed a positive correlation between acetate yield 

and glucose uptake rate (Figure 6). This is consistent with the general interpretation of 

acetate overflow metabolism (Majewski and Domach, 1990). However, we can see 

deviations from this trend, including very slowly growing strains that still produce 

significant amounts of acetate such as ΔpfkA and ΔtpiA. Similarly, acetate yield correlates 

negatively with biomass yield, as would be expected given the trade-off of carbon fates; and 

biomass yield correlates negatively with glucose uptake rate. Along with the two strains 

mentioned above, Δrpe also clearly falls into a category of knockout strains that grows both 

slowly and inefficiently. It is notable that while the severity of the EMP disruptions (also 

including Δpgi) may be intuitive due to the large wild-type glycolytic flux, the RPE flux is 

much less (Crown et al., 2015a; Leighty and Antoniewicz, 2013), showing that disruptions 

even in nominally small fluxes can have large effects.

The presented biomass composition information also provided valuable perspective and 

opportunity for insight. It is notable that the total protein content varied only slightly, and the 

relative amino acid composition did not vary at all. However RNA, fatty acids, and glycogen 

contents exhibited much more variation. We demonstrated that RNA content correlated 

positively with growth rate, which had been previously reported (Neidhardt, 1987; Pramanik 

and Keasling, 1997). However, we did not observe the also previously reported negative 

correlations between growth rate and both protein and glycogen content (Neidhardt, 1987; 

Pramanik and Keasling, 1997). Many knockouts exhibited an increased level of glycogen 

storage, which could indicate that it is an effect of a general stress response. Most surprising 

were strains that did not have impaired growth or other significant differences from the wild-

type, but had much higher glycogen levels, such as Δedd, ΔtalB, and ΔpfkB. The total fatty 

acid content ranged moderately both higher and lower than the wild-type, but we observed 

striking correlations in fatty acid content. Faster growing strains had a more equitable 

distribution of C16:1, C16:0, and C18:1 fatty acids. Slower growing strains, however, 

contained much more C16:0, which came primarily at the expense of C18:1. These fatty 

acids are associated with the phospholipid membrane, so the differing compositions likely 
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correspond to different membrane properties, e.g. membrane fluidity and stability (Zhang 

and Rock, 2008). On the other hand, C14:0, which did not change much between the strains, 

is primarily associated with lipopolysaccharide (LPS) (Neidhardt, 1987). Some growth rate 

effects on membrane lipid have been identified previously (Shokri et al., 2002), but the 

identified trends were not as monotonic or clear as is reported here. The exact mechanism 

behind this correlation is worthy of future investigation.

These correlations and others were captured also in the presented PCA analysis. Clustering 

was observed among knockout strains with similar roles in a pathway, particularly the 

dominant EMP enzymes Δpgi, ΔpfkA, and ΔtpiA. These knockouts were likely to have 

similar physiological effects such as sugar-phosphate stress from accumulation of glycolytic 

intermediates (Richards et al., 2013). The ΔptsG strain was also significantly unique from all 

other strains. Surprisingly, a significant distance was observed between the two ED pathway 

knockouts, Δedd and Δeda. This was due to differences in biomass composition, particularly 

higher glycogen levels and less C18:0 in Δedd. It is not known by what mechanism these 

two strains would be affected in this way, as this pathway carries negligible flux in the wild-

type. Both the PCA analysis and hierarchical clustering provided a quantitative sense of the 

similarity between all studied strains, and could identify the knockout strains with the most 

severe impacts relative to the wild-type strain.

Metabolic networks have been most thoroughly studied and understood thus far at the level 

of stoichiometry. This is reflected in the prevalence of the COBRA modeling tools. Using 

the external flux data collected here, we have applied three COBRA methods, FBA, 

MOMA, and RELATCH, to determine whether the observed phenotypes could be predicted 

on the basis of stoichiometry and wild-type phenotypic data alone (fluxes for MOMA; and 

fluxes and gene expression for RELATCH). While RELATCH performed the best of the 

three, all fell short of broad quantitative accuracy. For the isozymes, which make up a large 

fraction of the included knockout set, any deviation from the wild-type could not be 

predicted on the basis of stoichiometry alone by FBA or MOMA. These results demonstrate 

the difficulty of predicting knockout flux behavior, particularly in nutrient-rich environments 

where glucose uptake rates can vary significantly. In this regime, there are likely to be 

significant kinetic and/or regulatory effects, which further study of knockout metabolism 

will help to elucidate.

5. CONCLUSIONS

Knockouts of central carbon metabolism enzymes in E. coli show significant physiological 

and metabolic changes, or “metabolic rewiring”. This is particularly true in the case of 

unconstrained growth conditions used in this study, in contrast to previous reports of 

robustness seen in slow dilution rate chemostat cultures (Ishii et al., 2007). Large variations 

in growth rate, biomass yield, acetate yield, uptake rates, and biomass composition were 

observed. The external metabolic fluxes of glucose uptake, biomass generation, and acetate 

generation provide a glimpse into the kinetic limitations and regulatory adjustments 

occurring in these knockouts. These also provide an important data set for assessing and 

improving metabolic modeling, as we have demonstrated that common COBRA modeling 

approaches do not accurately predict observed behavior. Significantly more detailed 
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understanding of these rewired metabolisms, and commensurate modeling opportunities, 

will be possible with more detailed 13C-MFA studies. The results presented also demonstrate 

the importance and complementarity of biomass composition measurements to the other 

physiological measurements. Relationships between general composition changes and 

common physiological changes like altered growth rate were observed in RNA and fatty acid 

composition. Large differences in glycogen composition, uncorrelated with growth or other 

measured parameters, could offer insights into other types of stress response in these strains.
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Figure 1. 
Upper central carbon metabolism, with all genes studied here shown in their metabolic 

contexts (fbaA and rpiA were not included in this study, shown in red, see Methods section).
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Figure 2. 
Measured physiological parameters. Bar colors reflect pathway assignment (wild-type: gray; 

transporters and phosphoglucomutase: blue; oxidative pentose phosphate pathway: red; non-

oxidative pentose phosphate pathway: green; Entner-Doudoroff pathway: orange; upper 

EMP pathway: purple). Error bars indicate standard errors of the mean for growth rate (n=3) 

and cell density per OD (n=2), and standard errors attributable to regression and 

measurement error for biomass and acetate yield.
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Figure 3. 
Calculated uptake rates of glucose and oxygen. Bar colors reflect pathway assignment (wild-

type: gray; transporters and phosphoglucomutase: blue; oxidative pentose phosphate 

pathway: red; non-oxidative pentose phosphate pathway: green; Entner-Doudoroff pathway: 

orange; upper EMP pathway: purple). Error bars reflect the propagation of measurement 

errors.
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Figure 4. 
Biomass composition analysis. Bar colors reflect pathway assignment (wild-type: gray; 

transporters and phosphoglucomutase: blue; oxidative pentose phosphate pathway: red; non-

oxidative pentose phosphate pathway: green; Entner-Doudoroff pathway: orange; upper 

EMP pathway: purple). Error bars represent standard errors of the mean (n=4; 2 biological 

replicates with 2 technical replicates each).
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Figure 5. 
Pairwise correlation analysis of all measured data. The coefficients are given in the lower 

triangle, and the quality and direction of the correlation is represented visually by ellipsoids 

in the upper triangle (more elongated ellipsoid = higher quality correlation). The coloring is 

scaled to reflect value from −1.0 (red) to 0 (white) to 1.0 (blue). The included data sets (left 

to right) are: growth rate (h−1), dry weight per OD (g/L/OD600), biomass yield (g/g), acetate 

yield (mol/mol), percentages of the four major biomass components, and the relative fatty 

acid contents (mmol/g(lipid)). All coefficients greater than 0.4 indicate a significant nonzero 

correlation at 95% confidence.
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Figure 6. 
Scatter plots of correlated data. Marker colors reflect pathway assignment (wild-type: gray; 

transporters and phosphoglucomutase: blue; oxidative pentose phosphate pathway: red; non-

oxidative pentose phosphate pathway: green; Entner-Doudoroff pathway: orange; upper 

EMP pathway: purple).
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Figure 7. 
Principal component analysis (PCA) plot showing the first two components, which together 

account for more than half of the total variation in the data. The coefficients mapping these 

components to the original (normalized and standardized) data are shown in the table to the 

right.
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Figure 8. 
Comparison of experimental growth rates, biomass yields, and acetate yields to those 

predicted by three constraint-based modeling approaches: FBA (flux balance analysis), 

MOMA (minimization of metabolic adjustment), and RELATCH (relative optimality in 

metabolic networks). Marker colors reflect pathway assignment (wild-type: gray; 

transporters and phosphoglucomutase: blue; oxidative pentose phosphate pathway: red; non-

oxidative pentose phosphate pathway: green; Entner-Doudoroff pathway: orange; upper 
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EMP pathway: purple). Pearson correlation coefficients (ρ) describe the agreement between 

prediction and measurement. Wild-type data were excluded from this correlation.
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Table 1

E. coli strains from the Keio collection (GE Healthcare Dharmacon) used in this study.

Pathway Gene Knockout Plate-Row-Col Strain ID

Wild-type none

PTS glucose transport
ptsG 55-G-3 JW1087-2

crr 57-H-8 JW2410-1

Glucose kinase glk 3-C-5 JW2385-1

Glycogen biosynthesis pgm 5-E-5 JW0675-1

Oxidative pentose phosphate pathway

zwf 3-C-3 JW1841-1

ybhE 19-G-6 JW0750-3

gnd 4-E-3 JW2011-3

Non-oxidative pentose phosphate pathway

rpe 3-C-6 JW3349-2

sgcE 73-D-6 JW4263-1

rpiB 4-G-7 JW4051-2

tktA 5-A-6 JW5478-1

tktB 3-F-5 JW2449-3

talA 3-E-5 JW2448-1

talB 1-H-10 JW0007-1

Entner-Doudoroff pathway
edd 51-D-3 JW1840-1

eda 51-C-3 JW1839-1

Upper glycolysis

pgi 3-F-7 JW3985-1

pfkA 3-F-6 JW3887-1

pfkB 77-B-4 JW5280-1

fbp 5-H-9 JW4191-1

fbaB 77-C-8 JW5344-1

tpiA 4-G-6 JW3890-2
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